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Abstract— This paper presents a nonlinear model of the
human brain activity response to visual stimuli according
to Blood-Oxygen-Level-Dependent (BOLD) signals scanned by
functional Magnetic Resonance Imaging (fMRI). A BOLD signal
usually contains a low frequency signal component (trend),
which is often ignored by the existing models or removed by
approximation methods. However, such detrending could also
destroy the dynamics of the BOLD signal and miss an important
response. This paper shows a model that, in the absence of
detrending, can predict the BOLD signal with smaller errors
than existing models. For detrending, the presented model has
also a lower Schwarz information criterion than existing models,
which implies that the presented model will be less likely to
overfit the experimental data.

I. INTRODUCTION

Responses and interactions of human brain regions are

being investigated as they contribute to the mapping of the

brain network topology and the understanding of the brain

functions. The responses of the brain regions are sampled by

using functional Magnetic Resonance Imaging (fMRI), which

detects the Blood-Oxygen-Level-Dependent (BOLD) signals;

the scanned spatial unit is called a voxel, which is several mm

in size in all three dimensions. Traditionally, the responding

voxels have been identified by using cross correlation [1]

and covariance [2], [3] between the inputs stimuli and the

BOLD signals. The BOLD signals are predicted by the

General Linear Model (GLM) [4]–[9]; this is done under

the assumption that they are the sum of the input stimuli

without any dynamics considered. On the other hand, the

brain voxel dynamics and their interactions represented by

BOLD signals are often modeled in more complicated ways,

like the Multivariable Regressive Model (MRM) [10]–[13]

and the Balloon Model (BM) [14]–[17].

The BOLD signal contains a low frequency signal called

drift or trend [6], [18]–[21], which is thought to be caused

by scanner noise, physiological noise, or other physio-

logical pulsations. The trend component is often removed

(detrended) by using linear or higher order polynomials,

spline approximation, wavelet transformation, or Fourier

transformation. Unfortunately, detrending not only removes

meaningless signals, but also distorts the dynamics of voxels.
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Original BOLD signal

After trend component (<0.01 Hz) removed

Fig. 1. Conceptual BOLD signal (the dashed line) and the detrended BOLD
signal (the solid line). The original BOLD signal has no undershoots, but
the detrended BOLD signal has something like undershoots before and after
the response.

For example, an initial increase in oxygen consumption in

response to a stimulus prior to the blood flow increase

sometimes causes the undershoot prior to the BOLD signal

to increase rapidly; this undershoot is called initial dip [15],

[16]. This phenomenon is important, since the point of time

at which the voxel responds to the stimulus is not the point

of time marking the start of the BOLD signal’s increase, but

the time of the initial dip. However, even if the BOLD signal

has no undershoot, detrending by Fourier transformation can

fake it as shown in Fig. 1, and, thus, detrending could lead

to a wrong estimation of the response time and relationships

between voxels. Therefore, investigations of the dynamics

and interactions of voxels require a model of the BOLD

signal that does not rely on detrending.

This paper presents a dynamical model, which reproduces

the BOLD signal including the trend component, as described

in Section II. Next, Section III presents the parameter opti-

mization algorithm for the dynamical model and shows its

prediction performance for data obtained by fMRI scanner in

an experiment with visual stimuli. Finally, Section IV uses

the traditional models, i.e., GLM, MRM, and BM, to predict

BOLD signals from the same experimental data in order to

compare them with our presented model.

II. DOUBLE OSCILLATION MODEL

This section introduces the model of the BOLD signals of

voxels in the human visual cortex in response to the visual

stimuli. The model is called “Double Oscillation Model”
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u0: Lower Peripheral u1: Upper Peripheral

u2: Lower Center u3: Upper Center

Fig. 2. Four types of visual stimuli.

(DOM) and described by the following equation:

v̇ = −kvv +
∑

j ujwj(vrj − v),
(

ṗ0
ṗ1

)

=

(

kp0,0 −kp0,1
kp1,0 −kp1,1

)(

p0
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)

+

(

v

0

)

,
(

ṡ0
ṡ1

)

=
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ks0,0 −ks0,1
ks1,0 −ks1,1

)(

s0
s1

)

+

(

ksv

0

)

,

ŷ = p0 + s0 + yb

where v ∈ R, p = (p0, p1)
T

∈ R
2, and s = (s0, s1)

T
∈

R
2 are the internal states, ŷ ∈ R is the predicted BOLD

signal, uj ∈ {0, 1} for j = {0, . . . , Nu − 1} denote visual

stimuli, the parameter Nu denotes the number of the visual

stimuli, uj = 1 denotes the presence of the stimulus uj ,

and uj = 0 denotes the absence. Each parameter vrj ∈ R

can be regarded as a reversal potential of v corresponding

to the stimulus uj , and the parameter wj ∈ R
+

0
corresponds

to its weight, where the character R
+

0
denotes the set of

nonnegative numbers. The parameters vrj , wj , and kv ∈ R
+

0

determine the dynamics of v. The parameter kp ∈ R is

the connection weight between the components p and s.

The parameter yb ∈ R is the offset of the predicted BOLD

signal ŷ. The parameters kp0,0, kp0,1, kp1,0, kp1,1, ks0,0,

ks0,1, ks1,0, and ks1,1 ∈R
+

0
determine the dynamics of the

two oscillating components p and s. Since the real parts of

the eigenvalues of the matrix ksn,m corresponding to the

dynamics of the oscillating component s are smaller than

those of s (see Table I), the oscillating component p is the

main fast component and s is the slow trend component.

In addition, the state v represents the underlying neuronal

activity. The internal states v, p0, p1, s0, and s1 are initialized

at the time 1. Therefore, the parameters summarized in Table

I characterize the entire dynamics of DOM.

III. BOLD SIGNAL

For scanning BOLD signals, we have prepared the four

types of visual stimuli shown in Fig. 2. The checkerboard

TABLE I

PARAMETERS OF DOM

Parameter Initial Scaling (10−3) Example A Example B
w0 1 1 3.92
w1 1 1 7.67
w2 1 1 0.02
w3 1 1 0.29
vr0 5 5 7.13
vr1 5 5 8.48
vr2 5 5 −13.59
vr3 5 5 −9.32
kv 5 1 1.83
kp0,0 0.5 1 −0.03

kp0,1
1 0 1.00 ditto

kp1,0
1 1 0.20

kp1,1 1 1 1.42

ks0,0 0.05 0.1 0.013
ks0,1 0.1 0 0.100
ks1,0 0.1 0.1 0.013
ks1,1 0.1 0.1 0.033
ks 0.05 0.1 0.026
yb 0 1 491.8
v(1) 0 0.01 0.00 −8.37
p0(1) 0 1 −2.32 9.06
p1(1) 0 1 6.88 9.96
s0(1) 0 0.1 0.01 0.40
s1(1) 0 0.1 0.01 5.00

images flickering at 10 Hz are called “Lower Peripheral”,

“Upper Peripheral”, “Lower Center”, and “Upper Center”,

labeled as u0, u1, u2, and u3, respectively. Recall that uj = 1
denotes the presence of the visual stimulus uj and uj = 0
denotes its absence. We scanned whole brain T∗

2
-weighted

fMRI images by using a 3T fMRI scanner Magnetom Trio

(Siemens AG [22]) with 30 ms echo time (TE = 30 ms)

and 3 second repetition time (TR = 3 s). Each scan consists

of 50 contiguous slices with 3 mm thickness; Each slice is

an image of 64 × 64 pixels and 3 mm × 3 mm in-plane

resolution. Thus, 204,800 voxels are scanned in total. We

selected region of interest (ROI) corresponding to which the

detrended time series have a large correlation coefficient (r >

0.20) with any of the visual stimulus time series uj , where

“detrend” implies that the low frequency component (f <

1/120 Hz) is removed from the BOLD signal time series

by using Fourier transformation, hereafter. The number of

voxels in the ROI is 155.

The variable n denotes the n-th sample time; uj(n)
denotes the value of the visual stimulus uj and y(n) denotes

the scanned BOLD signal of a voxel at the n-th sample

time. The number of scans N is 252. Since a slice is in the

transverse plane (plane dividing a body into upper and lower

parts), the scan timing of a voxel depends on the position of

the voxel on the superior-inferior axis. In other words, the

n-th scanned BOLD signal y(n) is delayed by τd compared

to the n-th applied visual stimulus uj(n), where the delay

time τd is called the scan delay, hereafter. The experiments

are performed twice; They are labeled with the subscripts A

and B implying that the subscripted variable corresponds to

Experiment A and B, hereafter, e.g., the variable y
A

denotes

the scanned BOLD signal time series y for Experiment A.
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Fig. 3. Visual stimulus time series uj . Each visual stimulus uj(n) has
a binary state: present (uj = 1) and absent (uj = 0). (Top) uj

A
of

Experiment A, (Bottom) uj
B

of Experiment B.

1 252[n-th scan]
470

570
BOLD signal yA trend component

1 252[n-th scan]
470

570
BOLD signal yB trend component

Fig. 4. The scanned BOLD signal time series y. (Top) y
A

of Experiment
A, (Bottom) y

B
of Experiment B.

Fig. 3 shows the time series of the visual stimuli uj . Fig. 4

shows an example scanned BOLD signal time series y of a

voxel in the ROI.

Prediction Performance: The scanned BOLD signal time

series y
A

is used for parameter optimization and y
B

is

used for validation of the model, i.e., as a measure of

generalization ability. The term ŷ(n) denotes the BOLD

signal predicted by a model corresponding to the scanned

BOLD signal y. The prediction performances are evaluated

as the root mean square errors (RMSE) between the scanned

BOLD signal time series y and the corresponding predicted

BOLD signal time series ŷ:

RMSE =
1

N

√

√

√

√

N
∑

n=1

(y(n)− ŷ(n))2.

In addition, the prediction performance is also evaluated by

the Schwarz information criterion (SIC) [23], which is as

follows:

SIC = N logRMSE2 + k logN,

where k denotes the Degrees of Freedom (DOF). The DOF

k of DOM is generally (11 − 2) + 5 + 2Nu = 22 since

DOM has 11 parameters, in which 2 parameters kp0,1 and

ks0,1 are clamped to the default values, 5 internal states,

and 2 parameters for each visual stimulus. Note that, the

smaller the RMSE and the SIC are, the better the prediction

performances are.

For parameter optimization, the detrended scanned BOLD

signal time series y
A

is calculated and is denoted by ydet
A

,

where the superscript det denotes that the superscripted vari-

able corresponds to the detrended scanned BOLD signal time

series ydet. The parameters are optimized by an algorithm

consisting of three processes. The first process optimizes

the parameters of DOM to predict the detrended scanned

BOLD signal time series ydet
A

, and the second and third

processes try to predict the original scanned BOLD signal

time series y
A

by using a random search algorithm. We

have confirmed that this three-step process leads to a better

prediction performance than a simple one-step process.

Parameter Optimization Algorithm:

1) First Process.

• The parameter values summarized in the first col-

umn “Initial” in Table I are denoted by P old.

• yb is initialized to be the minimal value of ydet
A

.

• RMSEold is set to a large enough value (108 in this

paper).

• The following sub-process is repeated

until it converges, where P
change =

{wj , kpn,m, ub, yb, p0(1), p1(1)}, yteacher = ydet
A

,

and the internal state s = (s0, s1)
T is clamped to

(0, 0)T .

Sub-process.

• The parameter values are set to P old.

• The parameter values only denoted in P
change are

changed by the values which have a uniform dis-

tribution U(−a, a), where the parameter a corre-

sponding to the parameters are summarized in the

second column “Scaling” in Table I and are denoted

by P new.

• The predicted BOLD signal time series ŷ is gener-

ated.

• The RMSE between yteacher and ŷ is calculated and

is denoted by RMSEnew.
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1 252[n-th scan]
470

570
DOM ŷA BOLD signal yA

1 252[n-th scan]
470

570
DOM ŷB BOLD signal yB

Fig. 5. The BOLD signal time series ŷ predicted by DOM. (Top) ŷ
A

of Experiment A with RMSE
A

= 5.54, SIC = 984. All parameters
are optimized, which are summarized in the third column “Example

A
” of

Table I. (Bottom) ŷ
B

of Experiment B with RMSE
B

= 6.28. Only the
initial internal states are optimized, which are also summarized in the fourth
column “Example

B
” of Table I, and the other parameters equal to those of

the upper figure.

• If RMSEnew < RMSEold, RMSEold is updated to

RMSEnew and P old is updated to P new.

• If RMSEold is not updated many times (104 in

this paper), this sub-process is considered to be

converged and is finished. Otherwise, this sub-

process is repeated.

2) Second process.

• Next, yb is initialized to be the minimal value of

y
A

.

• RMSEold is set to a large enough value.

• The above sub-process is repeated

until it converges, where P
change =

{ksn,m, pb, sb, yb, s0(1), s1(1)}, and yteacher = y
A

.

3) Third process.

• Finally, the above sub-process is repeated until

it converges, where P
change is the set of all the

parameters of DOM and yteacher = y
A

.

• After convergence, the parameter values P old are

used as the parameters and the initial values of the

internal states of the DOM corresponding to the

scanned BOLD signal time series y
A

.

The BOLD signal time series ŷ
A

predicted by DOM is shown

in the upper figure of Fig. 5, which confirms that DOM has a

good performance on prediction of the scanned BOLD signal

time series y
A

. The prediction performance is evaluated as

RMSE
A

= 5.54 and SIC = 984. y
B

is measured by the

following algorithm for generalization ability comparison;

Model Validation Algorithm:

• The parameter values are set to P old in the third process.

• RMSEold is set to a large enough value.

• The above sub-process is repeated until it converges,

where P
change = {p0(1), p1(1), s0(1), s1(1)}, yteacher =

y
B

.

• After convergence, the parameter values p0(1), p1(1),
s0(1), and s1(1) in P old are used as the initial internal

states of the DOM corresponding to the scanned BOLD

signal time series y
B

.

Note that the scanned BOLD signal time series y
B

is used

only for the initial internal state estimation for the time

series but not for parameter optimization. Recall that lower

RMSE
B

implies a better generalization ability, i.e., a more

valid model. The BOLD signal time series ŷ
B

predicted

by DOM is also shown in the lower figure of Fig. 5. The

prediction performance is evaluated as RMSE
B

= 6.28;

Since RMSE
B

is only little more than RMSE
A

, DOM has a

good generalization ability.

IV. EXISTING MODELS FOR COMPARISON

This section introduces the existing models for compari-

son.

General Linear Model: The General Linear Model (GLM)

[4]–[9] predicts the BOLD signal time series y(n) to be a

summation of convolutions between the visual stimuli uj(n)
and the hemodynamic response function HRF(m):

ŷ(n) =
∑

j

wj

∑

m≥0

HRFj(m)uj(n−m) + c,

where wj is an input weight corresponding to the visual

stimulus uj . The hemodynamic response function HRFj

corresponding to the visual stimulus uj is a finite impulse

response (FIR) filter with the length d and c denotes the

constant bias. This paper estimates HRFj by using the

method presented in [24], where the original method clamps

HRFj(0) to 0, but this paper clamps HRFj(−1) to 0 because

of the scan delay τd. The filter length d is set to d = 10
corresponding to 30 s, which is sufficiently long [24], [25].

The hyperparameters, the smoothness factor h, the strength

of the prior ν, and the noise level σ, are initialized to 1/9, 1,

and 102, and optimized to maximize the likelihood function

p(ŷ
A
|uj , σ, ν, h). Since GLM has no internal states, the

prediction of the BOLD signal time series y
B

for validation

is calculated straightforwardly. The DOF k of GLM is

d×Nu + 1 = 41 in the experiments.

The BOLD signal time series ŷ
A

and ŷ
B

predicted by

GLM are shown Fig. 6 and the prediction performance is

evaluated as RMSE
A
= 10.62, SIC = 1418, and RMSE

B
=

13.92. Although the scanned BOLD signal time series y
A

increases gradually, the BOLD signal time series ŷ
A

pre-

dicted by GLM cannot reproduce such a feature. In other

words, GLM cannot predict the trend component. The error

increases in the case of the scanned BOLD signal time series

y
B

for validation.

Recall that the BOLD signal is often detrended [6], [19]–

[21]. Since detrending is performed by Fourier transforma-

tion, the trend component (f < 1/120 Hz) is reconstructed
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1 252[n-th scan]
470

570
GLM ŷA BOLD signal yA

1 252[n-th scan]
470

570
GLM ŷB BOLD signal yB

Fig. 6. The BOLD signal time series ŷ predicted by GLM. (Top) ŷ
A

of
Experiment A predicted by GLM with RMSE

A
= 10.62 and SIC = 1418,

(Bottom) ŷ
B

of Experiment B with RMSE
B
= 13.92.

1 252[n-th scan]
−30

40
GLM ŷ

detrend
A BOLD signal y detrend

A

1 252[n-th scan]
−30

40
GLM ŷ

detrend
B BOLD signal y detrend

B

Fig. 7. The detrended BOLD signal time series ŷ
det predicted by GLM.

(Top) ŷ
det
A

of Experiment A with RMSEdet
A

= 5.17 and SICdet = 1121,

(Bottom) ŷ
det
B

of Experiment B with RMSEdet
B

= 5.73.

by inverse Fourier transformation. The reconstruction re-

quires 13 parameters (or initial internal states) since the trend

components (f < 1/120 Hz) are scored in 13 bins when the

number of scans N = 252 and the repetition time TR = 3 s.

The reconstructed trend components corresponding to y
A

and

y
B

are denoted by ytrend
A

and ytrend
A

, which are shown in Fig. 4

with the dashed lines. Since both Fourier transformation and

GLM have a constant bias, the DOF kdet of GLM in the case

of detrending is kdet = k+13−1 = 52. GLM also predicts the

1 252[n-th scan]
470

570
MRM ŷA BOLD signal yA

1 252[n-th scan]
470

570
MRM ŷB BOLD signal yB

Fig. 8. The BOLD signal time series ŷ predicted by MRM. (Top) ŷ
A

of
Experiment A with RMSE

A
= 9.69 and SIC = 1261, (Bottom) ŷ

B
of

Experiment B with RMSE
B
= 11.45.

1 252[n-th scan]
−30

40
MRM ŷ

detrend
A BOLD signal y detrend

A

1 252[n-th scan]
−30

40
MRM ŷ

detrend
B BOLD signal y detrend

B

Fig. 9. The detrended BOLD signal time series ŷ
det predicted by MRM.

(Top) ŷ
det
A

of Experiment A with RMSEdet
A

= 5.54 and SICdet = 1045,

(Bottom) ŷ
det
B

of Experiment B with RMSEdet
B

= 5.80.

detrended BOLD signal time series ŷdet
A

and ŷdet
B

, which are

shown in Fig. 7, and the prediction performance is evaluated

as RMSEdet
A

= 5.17, SICdet = 1121, and RMSEdet
B

= 5.73. In

the case of detrending, RMSEs of GLM are not as bad as in

the case without detrending. However, the SIC still remains

large.

Multivariable Regressive Model: The Multivariable Re-

gressive Model (MRM) estimates the BOLD signal y(n) to

be predicted by the past values ŷ(n−m) and uj(n−m) of
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the same time series y and the visual stimuli uj:

ŷ(n)=
∑

j

∑

p>m≥0

kj(m)uj(n−m)+
∑

q≥m≥1

l(m)ŷ(n−m)+yb,

where p and q are the orders of this model, and kj(m) and

l(m) are parameters with the lengths p and q. Because of the

scan delay τd, the visual stimuli uj(n) are past values of the

predicted BOLD signal ŷ(n). Thus, this paper employs p =
2. Note that this is a special case of the Granger Causality

Analysis (GCA) [10]–[13], where GCA additionally takes

into account the effects of other voxels.

The parameters kj(m) and l(m) are optimized by using

the least squares method under the assumption that the

predicted sequence of past values ŷ(n − m) equals that of

the scanned past values y(n −m); This assumption can be

regarded as an internal state estimation since the predicted

past values ŷ are the internal states from a dynamical system

viewpoint [26]. The initial internal states (i.e., ŷ(k), −q ≤

k ≤ −1) are estimated by using the EM algorithm [27] with

consideration of the whole scanned BOLD signal time series

y(n), n = 1, 2, . . . , N . The DOF k of MRM is 2q+pNu+1,

where MRM has q parameters of l(m), the bias term yb q

internal states, and p parameters of kj(m) for each visual

stimulus.

We examined several values of q and found that q = 6
shows the best prediction performance in RMSE and SIC.

Thus, the DOF k of MRM is 21 in the experiments. The

BOLD signal time series ŷ
A

and ŷ
B

predicted by MRM

are shown in Fig. 8 and the prediction performance is

RMSE
A

= 9.69, SIC = 1261, and RMSE
B

= 11.45.

Although, in contrast to GLM, MRM can partially reproduce

the gradually increasing trend component of the given BOLD

signal time series y
A

, it has little generalization ability; it

cannot reproduce the trend component in the BOLD signal

time series y
B

. In addition, it lacks the rapid change of the

BOLD signal. As a result, the prediction performance of

MRM is as bad as that of GLM. In the case of detrending

shown in Fig. 9, MRM can reproduce the scanned BOLD

signal time series ydet
A

with the prediction performance:

RMSEdet
A

= 5.54, SICdet = 1045, and RMSEdet
B

= 5.80. As

in the case of GLM, the SIC is still large.

Balloon Model: The Balloon Model is a four-dimensional

nonlinear dynamical model of the hemodynamic response

[14]–[17]. It takes account of the changes of the cerebral

blood flow (CBF), the cerebral metabolic rate of oxygen

(CMRO2) and the cerebral blood volume (CBV) accompa-

nying the CBF. The equations describing the dynamics of

BM [15] are omitted due to the page length limitation. This

paper employs the BM implemented in SPM [15], [25] for

Bayesian parameter optimization [28] and time series predic-

tion, where the implemented BM is a component of Dynamic

Causal Modelling (DCM) [28]–[30]; DCM is a model of

interactions among neuronal populations and employs the

BM as the model of the BOLD signals in response to the

neuronal populations. Since this paper focuses on the BOLD

signal of a single voxel, the number of regions is 1 and no

1 252[n-th scan]
470

570
BM ŷA BOLD signal yA

1 252[n-th scan]
470

570
BM ŷB BOLD signal yB

Fig. 10. The BOLD signal time series ŷ predicted by BM. (Top) ŷ
A

of
Experiment Awith RMSE

A
= 11.27 and SIC = 1280, (Bottom) ŷ

B
of

Experiment B with RMSE
B
= 13.60.

1 252[n-th scan]
−30

40
BM ŷ

detrend
A BOLD signal y detrend

A

1 252[n-th scan]
−30

40
BM ŷ

detrend
B BOLD signal y detrend

B

Fig. 11. The detrended BOLD signal time series ŷ
det predicted by BM.

(Top) ŷ
det
A

of Experiment A with RMSEdet
A

= 5.94 and SICdet = 1025,

(Bottom) ŷ
det
B

of Experiment B with RMSEdet
B

= 6.05.

interactions are assumed. BM implemented in SPM can also

take the scan delay τd into account. The DOF k of BM is

5 + 2 + 2 + Nu = 13, where the BM has 5 parameters,

and DCM has 2 parameters determining the dynamics of

the neuronal populations, the intercept term, the scale term,

and 1 parameter for each visual stimulus. Note that although

BM has 4 internal states and DCM has 1 internal state

corresponding to the neuronal population, SPM estimates

only the parameters by using the EM algorithm but does

2584



TABLE II

AVERAGE OF NORMALIZED RMSE

Model
without detrending with detrending

NRMSE
A

NRMSE
B

NRMSEdet
A

NRMSEdet
B

DOM 0.78 1.07 (0.78) (1.07)
GLM 1.00 1.69 0.72 0.82
MRM 1.01 1.64 0.74 0.82
BM 1.06 1.70 0.80 0.88

The average of the RMSE between the scanned BOLD signal time series
y and the BOLD signal time series ŷ predicted by each model, where the
RMSE of GLM in each voxel is normalized to 1 and is called NRMSE.
NRMSE

A
denotes the NRMSE for Experiment A, whose time series y

A

is used for parameter optimization. NRMSE
B

denotes the NRMSE for
Experiment B, whose time series y

B
is used for validation of the model,

i.e., for measuring the generalization ability. The superscript det implies
that the scanned BOLD signal time series y is detrended by using Fourier
transformation.

TABLE III

AVERAGE OF SIC

Model
without detrending with detrending

DOF k SIC DOF k
det SICdet

DOM 22 1064 (22) (1064)
GLM 41 1307 53 1194
MRM 21 1199 33 1095
BM 13 1180 25 1091

The average of the SIC [23] for Experiment A. In the case of detrending,
the DOF is increased by 12, since it requires the reconstruction of the trend
components (f < 1/120 Hz), which are scored in 13 bins and the constant
bias is duplicated.

not estimate the initial internal states, which are clamped to

0.

In both the cases concerning with and without detrend-

ing, BM shows the worst prediction performance as shown

Figs. 10 and 11.

Comparison: The prediction performances of DOM and the

existing models are evaluated as the RMSE and the SIC.

For fair comparison, RMSE
A

of GLM is normalized to 1

for each voxel and called the normalized RMSE (NRMSE).

Table II summarizes the average of the NRMSE for all the

155 voxels in the ROI. DOM shows the smallest NRMSE
A

and NRMSE
B

, which implies that DOM is the best way

to predict BOLD signal time series in the case without

detrending. Furthermore, NRMSE
A

and NRMSE
B

for DOM

are not so much larger than NRMSEdet
A

and NRMSEdet
B

for the

other models; DOM provides an alternative way to detrend.

Even if detrending by using Fourier transformation im-

proves the RMSEs, the reconstruction of the trend component

by using inverse Fourier transformation requires additional

parameters; Detrending impairs the SIC. Thus, DOM shows

the best SIC, where Table III summarizes the average of the

SIC. Note that, since the SIC value contains the logarithm

of the RMSE, multiple SIC values are compared by the

difference, but not by the proportion.

V. CONCLUSION

This paper presented a nonlinear dynamical model called

Double Oscillation Model (DOM) to predict the BOLD

signal time series. In comparison with the traditional models,

i.e., General Linear Model, Multivariable Regressive Model,

and Balloon Model, the DOM has the best prediction perfor-

mance in the absence of detrending. DOM does not require

detrending, which could destroy and ignore the dynamics

and relationships of voxels. Thus, DOM helps in finding the

dynamics of voxels and correlation between voxels which

have been ignored as trend component by existing models.
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