2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

Using Self-organizing Incremental Neural Network (SOINN) For
Radial Basis Function Networks

Jie Lu, Furao Shen*, and Jinxi Zhao

Abstract— This paper presents a batch learning algorithm
and an online learning algorithm for radial basis function
networks based on the self-organizing incremental neural net-
work (SOINN), together referred to as SOINN-RBF. The batch
SOINN-RBF is a combination of SOINN and least square
algorithm. It achieves a comparable performance with SVM
for regression. The online SOINN-RBF is based on the self-
adaption procedure of SOINN and adopts the growing and
pruning strategy of the minimal resource allocation network
(MRAN). The growing and pruning criteria use the redefined
significance, which is originally introduced by the growing
and pruning algorithm for RBF (GGAP-RBF). Simulation
results for both artificial and real-world data sets show that,
comparing with other online algorithms, the online SOINN-RBF
has comparable approximation accuracy, network compactness
and better learning efficiency.

I. INTRODUCTION

adial basis function networks are special-designed,
Rthree-layer neural networks. The hidden (second) layer
maps the input samples into a new high-dimensional space
and the output layer performs linear operations in this high-
dimensional space. According to Cover’s theory, a low-
dimensional pattern-classification problem is more likely to
be linearly separable when casted in a high-dimensional
space [1]. The RBF network performs well in many applica-
tions such as time series prediction [2] and face recognition
[3]. These applications are based on the excellent properties
of the RBF network.

The hidden layer consists of the hidden units, which are
the representative nodes picked from input samples, can be
chosen appropriately by methods like K-means. The weights
of the linear connections between the hidden layer and output
layer can be trained by the least squares (LS) methods. The
K-means and LS algorithms are simple to apply and achieve
good enough performances. But they all have a drawback,
the entire training data must be ready before the training
procedure. They can’t handle the situation that the input data
come in serially. Several algorithms have been proposed to
overcome this drawback — [4][5][6][7].

Platt firstly proposed the Resource-Allocating Network,
referred to as RAN [4]. RAN starts with no hidden unit and
allocates a new one whenever an unusual sample arrives. The
unusual means a input sample is far away from the hidden
units and causes a big output error. Otherwise the network

Jie Lu (www.jerrylu@gmail.com), Furao Shen (frshen@nju.edu.cn) and
Jinxi Zhao (jxzhao@nju.edu.cn) are with Robotic Intelligence and Neural
Computing Laboratory(RINC.Lab), the State Key Laboratory for Novel
Software Technology at School of Computer Science and Technology,
Nanjing University, Nanjing, Jiangsu, 210046, P.R.China. Corresponding
author is Furao Shen.

978-1-4799-1484-5/14/$31.00 ©2014 IEEE

updates the parameters of existing units using standard least
mean square (LMS) algorithms. Kadirkamanathan and Niran-
jan enhanced RAN by replacing the LMS algorithm with the
extended Kalman filter(EKF) [5]. The resulting network is
called RANEKF and converges faster than RAN. RANEKF’s
network is also more compact because during the growing
procedure, the faster the convergence is the less hidden units
will be allocated later. But both RAN and RANEKF never
remove the inactive units, making the network unnecessarily
large. Yingwei et al. introduced a pruning strategy to remove
those units that contribute relatively little to the whole
network[6]. This network is the minimal resource allocation
network (M-RAN) which also uses a sliding window to
smooth the growing and pruning procedure.

Huang et al. proposed the generalized growing and pruning
algorithm for RBF (GGAP-RBF) [7] which outperforms all
the algorithm listed above in terms of generalization error,
network compactness and learning speed. This algorithm
uses the normalized significance in the growing and pruning
criteria and updates only the nearest unit instead of the whole
network. The significance of a hidden unit is its average
information over the whole input space. This means that the
distribution of the input space needs to be learned before the
online(sequential) learning producer, which dose’t conform
with the definition of online learning. What makes it worse
is that the distribution is in the form of joint distribution of
each dimension, making the implement of this algorithm very
unfriendly. Therefore, in this paper, we category GGAP-RBF
as a semi-online learning algorithm.

The SOINN-RBF algorithms proposed in this paper are
based on the Self Organization Incremental Neural Network
(SOINN)[8][9].SOINN itself is an online learning algorithm
which obtains an excellent topology representation of the
input space. The output network of SOINN is just suitable
for the hidden layer of RBF network. By simply replacing
K-means with SOINN in the standard RBF network we
get the batch SOINN-RBF. In the online SOINN-RBF we
adopt sliding window [6] technology to smooth the growing
and pruning procedure, use EKF [5] to train the parameter
of output layer and redefine the significance to ensure the
online learning. We compare the performance of SOINN-
RBF with SVM for regression [10], MRAN and GGAP-RBF
in three problems, namely Double Moon-an artificial data
set, Thyroid—a case from PROBENI and Insurance-a data
set used in the CoIL 2000 Challenge.

The rest of paper is organized as follows. Section II gives
brief descriptions of RBF, SOINN and batch SOINN-RBF.
Section III gives details of online SOINN-RBF. Section IV

2142

compare SOINN-RBF with SVM for regression, MRAN and
GGAP-RBF. The conclusions are summarized in section V.

II. BATCH SOINN-RBF

The typical structure of the RBF networks is shown in
Fig. 1. Let x € R™ be the input sample and y € R be the
output. The network can be considered as a mapping from
R™ to R which is written as

K
F@) =" wip(@, u).- (D
k=1
We chooses the Gaussian kernel as the radial function,

1
o(x, pg) = exp (—22|x - uk|2> ,k=1,2,..K (2
Tk

where iy, is the center of hidden unit k£ and oy, is the radius
of hidden unit k.

o1()

center p1
Wy
Input
,\,ﬂp . 20 1wy
eotor e center i
X
b ' W
i
i i
)

Input layer Hidden layer Output layer

Fig. 1. Structure of a typical RBF network

We can see from function (1) and (2) that the network
is characterized by the hidden units’ centers, radii and
weights. A sample from the input space is expanded to the
higher space by measuring the distance to each hidden units
and the output is a linear combination of these distance.
Therefore, the key of learning an RBF network is to choose
an appropriate set of hidden units that can approximate the
distribution of the training data.

The algorithm SOINN, which is based on Growing Neural
Gas (GNG) [10] and Self Organizing Map (SOM) [11], is
adequate to this work. For online data with a complex geo-
metrical distribution, it can form a topological representation
of the input data in a self-organizing way. In addition, the
network’s size doesn’t need to be assigned manually and the
algorithm is very robust to noises. Thus, we choose SOINN
to learn the hidden units of the RBF network.

The main procedure of SOINN is the maintenance of
the network’s units and their connections. When a input
sample arrives, it firstly find the two nearest units and
respectively compare the distances with their radii. If the
new-coming sample is within any of the unit’s dominant area,
the connection between the two units is established and the
nearest one will be pulled towards the sample. Otherwise, a
new unit is added to the network. Fig. 2 shows these two

situations. After this procedure the radii of these two units
are adjusted to make sure they can cover all the connected
neighbors. As the samples keep coming in, the network
grows to fit the distribution of the input data. By introducing
additional strategies like removing the oldest connections
to break early-inappropriate connections and removing the
isolated nodes to eliminate the noises, the resulting network
is a SOINN network.

Fig. 2. Two situations of SOINN’s growing procedure.The picture above
shows the situation that when a input sample lies within the radii of two
nearest units, the connection between these two units will be established and
the nearest one will be pulled to the input sample. The following picture
shows the other situation, a new unit will be allocated when the input sample
is far from its two nearest units.

As the hidden units have been learned by SOINN, the
parameters of the output layer will be trained by the method
of least square. The mapping from the hidden layer to the
output layer can be written as

R =Y 3)
where

R = [®(x1), ®(22), ... D(an)], @

O(zi) = [p(zi, 1), (i, p2)s ooy p(@is pxc)]l, (5)

W = [wy, wa, ..., wg]| T, 6)

Y = [y1,y2, - yn) " -)

R is the hidden layer’s output of all input samples. @ are
hidden units’ weights. Y is the true outputs of all inputs. By
multiplying both side of (3) with RT we get

RTRw = R"Y. (8)

The solution of function (8) is the least square algorithm’s
output:

W= (R"R)"'R"Y, 9)

With the hidden units learned by SOINN and the linear

regression parameters trained by LS algorithm, we get the
batch SOINN-RBF algorithm.

BATCH-SOINN-RBF(DATA)
1 [MhiddensThidden] = SOINN(data)

> fhidden = [H1, 125 -k \Ohidden = (01,02, ...0K
2 Whidden = Ls(datauuhidden’Uhidden)

> Whidden = [W1, W2, .. wr] T

]T

2143

III. THE ONLINE SOINN-RBF
This section describes the details of online SOINN-RBF
with the definition of the normalized significance first, fol-

lowing by the growing and pruning procedures. The pseudo-
code of online SOINN-RBF is proposed in the end.

A. Normalized Significance

Supposing that function (1) is the correct input-output
mapping of the network, the error caused by removing the
hidden unit k is

E(x), = |wg ek (@, pr).- (10)
The error over all n input samples is
1 n
E(x)=— iy [k)- 11
(@) = ; | wi|er (i, pk) (11)

The significance of the unit k is just the error caused by
removing it. However in an online learning algorithm, the
learned data should not be preserved. In this paper, we use the
hidden units to approximate the distribution of input samples.
Thus the normalized significance is written as

S0y malwk |k (pi, k)
ZiKzl m;

where m; is the number of input samples that find unit ¢ as

the nearest unit.

In online SOINN-RBF, every time when a new sample
arrives, all hidden units’ significance should be calculated
again. The computation cost is O(K?) every iteration. This
will slow down the algorithm when K becomes large. For-
tunately there are two features we can take advantage of to
reduce the computation cost. The first is the steeply shape of
the Gaussian kernel exp(—x2/202), which approaches zero
faster when x > . The units that are far away from unit %
will not be taken into consideration. The second is the con-
nections of the hidden units which learned by SOINN. They
store the information of the units’ neighborhood and can be
used to fetch the nearby units. Therefore the significance
used in this paper is

Sigy = By = ; (12)

K Lo
> imq connection(i, k)m|wy o (i,)
K
e M
in which the connection(i, k) equals 1 if unit ¢ and unit k are
connected, otherwise 0. In fact, if connection(i, k) equals 0,
there is no calculation in implementation. The computation
cost falls to O(d * K), where d is the average quantities of

connected neighbors to an unit, which is much smaller than
K.

Sige = , (13)

B. Growing Procedure

Like the RAN[4] algorithm, SOINN-RBF needs to allocate
new hidden units when the current network can’t represent
the new inputs. The criterion used in RAN is ||z, — fins|| >
en&len| > emin Where x, is a new input sample, fi,, is
the nearest unit to x,,, ¢, is the threshold of distance and
ey 1s the output error caused by x,, €mnin is the threshold

of error. The meaning of this criterion is that if the distance
from x,, to i, is bigger than the threshold €, and the error
is bigger than e,,;,, a new unit will be allocated. Otherwise
RAN adjusts the parameters with LMS algorithms. Noticing
that the criterion of SOINN is also based on the distance
testing and by combining the error criterion with it we get
the basic version of our growing criterion in SOINN-RBF.

{ H-’I;n - /’Ln'rlH > Opr1 OF Hxn - MnrQ” > Onr2 (14)

|en| > Cmin

where nrl and nr2 are the nearest and the second-nearest
units to x,, and

€n = Yn — f(xn) (15)

In RAN, ¢, is not a constant value and decays expo-
nentially. The exponential decaying of the distance criterion
adds only the large-radius units at the beginning and as
the samples keep coming in more units with smaller radii
are allocated to fine tune the approximation. We adopt this
strategy to enhance the distance criterion of SOINN-RBF as
Onrl = (]- + e_n/T)Jnrl and 0,0 = (]- + e_n/T)Jnr2~

This paper also enhances the error by multiplying an
significance of x,,

& = Zszl mi@i(mnvﬂi)e .

! 21K:1 m; !
The significance idea of (16) is introduced by GGAP-RBF
[7] and here we use the hidden units instead of the pre-
learned inputs distribution.

In order to further smooth the growing procedure, the
sliding window technology of [6] is used to resist the
impulsive errors

(16)

n

% > lal

i=n—(W-1)

a7

€avg =

where W is the size of sliding window and eqyq is the

average error of the sliding window, which ensures that only

when the network is really unsuitable can the network grow.
Thus, the growing criterion in this paper is

||xn - /f"nrlH > O-T:Tl or Hxn - MnTZH > 0-7;1‘1

€n > €min (18)
’
Cavg > €min
’ . . .
where e, .., is threshold of average error. If these criteria are

satisfied, a new unit will be allocated with parameters

HK+1 = Tn
OK+1 = ||33n - ﬂnrlH (19)
WK+1 = €En

Otherwise the parameters will be updated. This paper
updates the weights using EKF [5] and updates the center of
the nearest unit using the method used in SOINN. The radii
of the two winners are also updated to cover all the connected
neighbors. The reason why we don’t use EKF to update
all the parameters is that EKF is very memory-consuming,
making the algorithm much slower than its theoretical speed,
especially when the dimension of inputs is high.

2144

C. Pruning Procedure

The pruning strategy is the key to make a compact
network. The algorithm can also accelerate by removing
the inactive units. Like MRAN [6], a sliding window is
used in this procedure to ensure that the pruned units are
definitely insignificant. Therefore it enhances the smoothness
of the pruning procedure and the stableness of the online
learning algorithm. The pruning procedure is as follows, if
the significance of unit k is less than a threshold for several
consecutive observations, unit k will be labeled as inactive
and should be removed. Given the threshold sig,,;, and the

window length W , unit k& will be pruned if

is satisfied for W consecutive times.

D. The Online SOINN-RBF Algorithm
The online SOINN-RBF algorithm is described as follows:

ONLINE-SOINN-RBF(DATA)
> Initializing:

1 g1 < @1, 2 < T2
2 O'1<—H.131—$2||,0'2<—||.731—$2||
3 wi,wsy are trained by function (8)
4 mp—1,mo<+— 1, K<+ 2
5 connection < eye(2,2)
> Online Learning:
6 fori< 3ton
7 do > Compute the network’s output:
8 i) < Sy wep(ws, 1)
> Find the two nearest units to x,,:
9 nrl < argmingep.i)lltn —
10 nr2 < argminge:) /me l|Tn — pkll
> Compute the output error:
11 ei — yi — fxq)
12 if criterion (18) is satisfied
13 then > Allocate a new hidden unit:
14 K+ K+1
15 UK — Tn0k — ||[Tn — tnr]|
16 WK < €, W +— 1
17 extend connection with zeros.
18 else > Update the winners parameters:
19 connection(nrl,nr2) < 1
20 connection(nr2,nrl) < 1
21 Hnrl < (mnrl,u(nrl) + xi)/(mnrl + 1)
22 Oprl $ MATk:connect to nr1||/~Lnr1 - Mk”
23 Onr2 $ MATk:connect to nr2||/1'n'r2 - Mk”
24 adjust w1y, wa, ...wg using EKF.
> Check the criteria for pruning:
25 calculate hidden units’ significances using (13)
26 if unit & satisfies criterion (20) for W
consecutive observations
27 then remove the hidden unit &
28 reduce the dimension of EKF
29 reduce the dimension of connection

IV. SIMULATION RESULTS

In this section, the performance comparison of SOINN-
RBF with three other popular algorithms (SVM for re-
gression, GGAP-RBF, and MRAN) are presented for three
problems: 1) Double Moon, 2) Thyroid and 3) Insurance.

The learning accuracy measurement used in our experi-
ments is root mean square error, defined as

1 n
RMSE =23l = el @D

A. Double Moon

Double Moon is artificial data set for nonlinear pattern
recognition algorithms. Fig. 3.a shows the distribution of it.
It consists of a pair of half moons facing each other. The
radius of each moon is 10 and the width of band area is 6.
The bias in horizontal direction is 10 and in vertical direction
is -6. This data set has 2000 train samples and 4000 test
samples.

(c) ||w] = 10 (d)||w] <1

Fig. 3. Batch SOINN-RBF’s results:(a) shows the distribution of train data.
The blue pattern in (b) is the hidden units and their connections learned by
SOINN. (c) is the units with |w| bigger than 10. The size of circle represent
unit’s radius. (d) is the units with |w| smaller than 1.

The parameters of online SOINN-RBF for this data set
chosen as: e,,;, = 0.001, e;m-n = 0.0005, sigmin = 0.0001,
7 =10, W =60, Qo = 0.001, Py = 0.96.

The parameters of GGAP-RBEF for this data set is: €5, =
0.0001, €mae = 2, €min = 0.01, K 0.4, v = 0.999,
Qo = 0.00001, Py = 0.99. And the parameters of MRAN
is: €min = 0.0001, €, ;. = 0.005, €maz = 2, €min = 0.01,
k = 0.15, v = 0.999, W = 150, Qo = 0.001, Py = 0.95.
The distribution information used in GGAP-RBF is learned
before learning procedure. The first dimension is a gaussian
distribution with center at 25 and the sigma of 15, the second

2145

dimension is also a gaussian distribution with center at 20
and sigma of 10.

TABLE I
SIMULATION PERFORMANCE FOR DOUBLE MOON

Process Algorithm RMSE | Time(s)® | gNeurons
Batch SOINN-RBF | 0.0443 2.90 289
SVM-R® 0.0264 11.47 1590
Online SOINN-RBF | 0.1280 8.54 101
GGAP-RBF | 0.1187 22.73 95
MRAN¢ 0.2235 76.45 212

@ CPU:Intel i5-3470. Memory:4G. Platform:matlab R2012b.
b libsym [12] with parameters *-s 4'

© MRAN is out of work.

Table I shows that the batch SOINN-RBF achieves compa-
rable performance with SVM in approximation accuracy and
performs better in learning speed and network compactness,
even though SVM is run in C. The graphic representation of
the network is shown in Fig. 3, from which we may explain
the good performance of the batch SOINN-RBF. We can
see from Fig. 3.b that the pattern of the input samples has
been recognized accurately by SOINN. And this accurate
pattern is the hidden units of the SOINN-RBF network. By
comparing Fig. 3.c with Fig. 3.d, a remarkable phenomenon
should be noticed: the units with big weights are the large
ones and the units with small weights are the tiny ones. This
is consistent with expecting result of exponential decaying
used in distance criterion: the large units are main deciders
of the network and the tiny ones fine tune the network. The
batch procedure and the online procedure are identical in
this respect. Thus, the elaborately-chose hidden units plus
the well-tuned weights make the batch SOINN-RBF accurate
and efficient.

To simplify the compare of online algorithms, GGAP-RBF
is grouped as online learning algorithm. Table I shows that
the online SOINN-RBF obtains similar results in approxi-
mation accuracy and network compactness with GGAP-RBEF,
yet with a faster speed. The online SOINN-RBF outperforms
MRAN in all respects. The main reason of the effectiveness is
that the online SOINN-RBF uses EKF to update the weights
only, while others use EKF to update all the parameters. EKF
is a memory-consuming algorithm. When input distribution
is complex or the inputs’ dimension is high, it will slow down
the speed. Fig. 4. shows the growing procedures of hidden
units. Fig. 5. shows the learning speed comparison of these
online learning algorithms.

B. Thyroid

The thyroid is a data set from PROBEN1'. It consists of
7200 examples and 3772 out of which are for training. Each
example is featured by 21 attributes and has 1 output. The
parameters of online SOINN-RBF for this data set chosen as:
emin = 0.0025, €, . = 0.025, sigmin = 0.0001, 7 = 200,
W =30, Qo = 0.001, Py = 0.99.

Thttp://tracer.lcc.uma.es/problems/ann/ann.html

Mumber of Neurons

— — - MRAN
— — — GGAP-RBF
—— SOINN-RBF

. L . L L n)
800 1000 1200 1400 1600 1800 2000
Input Samples

1 n 1
1} 200 400 GO0

Fig. 4. Hidden units updating process for Double moon

CPU Time(s)
=

! — = - MRAN
— — — GGAP-RBF
——— SOINN-RBF

. . L h n I]
800 1000 1200 1400 1600 1800 2000
Input Sarmples

1 L L
1} 200 400 GO0

Fig. 5. Learning speed comparison for Double moon.

The parameters of GGAP-RBEF for this data set is: €5, =
0.0001, €pmar = 11.5, €min = 1.4, K = 0.6, v = 0.995,
Qo = 0.00001, Py = 0.99. The distribution information of
the 21 attributes is learned before learning procedure. And
the parameters of MRAN is: €,,;, = 0.001, e, ;. = 0.01,
€maz = 10, €min = 0.8, K = 0.6, v = 0.995, W = 40,
Qo = 0.001, Py = 0.95.

TABLE I
SIMULATION PERFORMANCE FOR THYROID

Process Algorithm RMSE | Time(s) | #Neurons
Batch SOINN-RBF | 0.3055 12.73 366
SVM-R* 0.2999 20.11 1999
Online SOINN-RBF | 0.3589 3.90 29
GGAP-RBF | 0.3522 | 109.20 29
MRAN 0.4422 | 1238.46 90

@ libsvm with parameters -s 4 -c 300’

The results of the simulation are shown in Table II. The
batch SOINN-RBF gains the similar approximation accuracy
with SVM for regression. The online SOINN-RBF achieves
an amazing learning speed with the comparable accuracy and
compactness. Fig. 6. shows the growing procedures of hidden
units. Fig. 7. shows the learning speed comparison of these
online learning algorithms.

2146

Mumber of Neurons

i VY
1 — —— GGAP-RBF
I ——— SOINN-REF

L . L L n I]
a 500 1000 1500 2000 2500 3000 3500 4000
Input Samples

Fig. 6. Hidden units updating process for Thyroid.

CPU Tirme(s)
=
~
N

— = -MRAN

= ——— GBAP-REF
i —— SONN-REF

L L L L L T T)
0 500 1000 1500 2000 2500 3000 3500 4000
Input Samples

Fig. 7. Learning speed comparison for Thyroid.

C. Insurance

The Insurance benchmark is a data set used in the ColL
2000 Challenge which contains information on customers
of an insurance company. The data consists of 86 variables
and the last one is the output label. The input attributes are
normalized to range [0,1] in this experiment. This data set
has 5822 samples for training and 4000 samples for testing. It
is collected for the classification on weather a person would
be interest in buying a caravan insurance policy, 1 means yes
and 0 means no. So the output are divided into two class by

label — { 1 if f(x) > 0.5

0 if f(z) < 0.5 (22)

for classification.

The parameters of online SOINN-RBF for this data set
chosen as: e,,;, = 0.001, e;nm = 0.01, sigmn = 0.0001,
T = 800, W = 60, Qo = 0.0001, Py, = 0.96. And
the parameters of GGAP-RBF for this data set is: e, =
0.0001, €ngz = 15, €min = 2.5, k = 0.6, v = 0.995,
Qo = 0.00001, Py = 0.9. The distribution information
of the 85 attributes is learned before learning procedure.
The MRAN algorithm can not work appropriately for this
problem.

Table III shows the simulation results of the simulation
performance for the Insurance data set. An addition column

TABLE III
SIMULATION PERFORMANCE FOR INSURANCE

Process Algorithm RMSE | Accuracy | Time(s) | {Neurons
Batch SOINN-RBF | 0.2344 94.05% 29.54 368
SVM-R¢ 0.2378 | 94.05%° 8.08 1257
Online SOINN-RBF | 0.2422 94.05% 20.68 107
GGAP-RBF | 0.2326 94.05% 2890.32 23
MRAN¢ — — — —

@ Jibsym with parameters s 3 ¢ 300°
® Jibsvm with parameters *-s 0’

€ Out Of Work

with classification accuracy information is added to this
table. We can see that all these algorithms achieves the
identical accuracy. The online SOINN-RBF is much faster
than GGAP-RBEF, even though it has more hidden units.

Fig. 8. shows the growing procedures of hidden units.
Fig. 9. shows the learning speed comparison of these online
learning algorithms. From this figure we can see the dimen-
sional disaster phenomenon of the GGAP-BRF. In contrast,
the online SOINN-RBEF still maintains a fast learning speed
and obtains a smooth learning curve.

Nurnber of Neurons

I
) —— — GGAP-RBF
, : —— SOINN-REF
:

L L I I 1
0 1000 2000 3000 4000 5000 E000
Input Samples

Hidden units updating process for Insurance.

CPU Time(s)
=]

- — — — GGAP-RBF
—— SOINN-RBF

L L I I | 1
0 1000 2000 3000 4000 5000 E000
Input Samples

Fig. 9. Learning speed comparison for Insurance.

2147

V. CONCLUSIONS

Two efficient learning algorithms for the radial basis
function network are proposed in this paper. They are called
SOINN-RBF and all based on the excellent topological
learning ability of SOINN. The batch SOINN-RBF is the
combination of SOINN and the least square algorithm, which
achieves comparable performance with SVM for regression.
The accurate pattern gained by SOINN is the main con-
tributor to the batch SOINN-RBF’s nice performance. The
online SOINN-RBF is basically a variation of SOINN with
the redefined growing and pruning criteria and the back-
propagation error information. Only the weights of the units
are adjusted by EKF algorithm instead of the whole network.
This strategy reduces the memory usage and the computing
cost, therefore accelerate the algorithm, which is especially
obvious when the input data is in high dimension.

Although online SOINN-RBF has gained a fine perfor-
mance in learning speed, it seems to have some prices.
The approximation accuracy and the network compactness
are not as good as GGAP-RBF. How to accelerate an
online algorithm and meanwhile maintaining approximation
accuracy is an challenging topic for further research.

REFERENCES

[1] Cover Thomas M. “Geometrical and statistical properties of systems of
linear inequalities with applications in pattern recognition.” Electronic
Computers, IEEE Transactions on 3 (1965): 326-334.

[2] Mller K-R., et al. “Predicting time series with support vector ma-
chines.” Artificial Neural NetworksHCANN’97. Springer Berlin Hei-
delberg, 1997. 999-1004.

[3] Er Meng Joo, et al. “Face recognition with radial basis function (RBF)
neural networks.” Neural Networks, IEEE Transactions on 13.3 (2002):
697-710.

[4] Platt John. “A resource-allocating network for function interpolation.”
Neural computation 3.2 (1991): 213-225.

[5] Kadirkamanathan Visakan and Mahesan Niranjan. “A function esti-
mation approach to sequential learning with neural networks.” Neural
Computation 5.6 (1993): 954-975.

[6] Yingwei Lu, Narashiman Sundararajan, and Paramasivan Saratchan-
dran. “Performance evaluation of a sequential minimal radial basis
function (RBF) neural network learning algorithm.” Neural Networks,
IEEE Transactions on 9.2 (1998): 308-318.

[7] Huang, Guang-Bin, Paramasivan Saratchandran, and Narasimhan Sun-
dararajan. “Performance evaluation of a sequential minimal radial basis
function (RBF) neural network learning algorithm.” Neural Networks,
IEEE Transactions on 16.1 (2005): 57-67.

[8] Furao Shen, Osamu Hasegawa. “An on-line learning mechanism
for unsupervised classification and topology representation.” IEEE
Computer Society International Conference on Computer Vision and
Pattern Recognition (CVPR 2005), San Diego, CA, USA. 2005.

[9] Furao Shen, Osamu Hasegawa. “An incremental network for on-line
unsupervised classification and topology learning.” Neural Networks
19.1 (2006): 90-106.

[10] Fritzke, Bernd. “A growing neural gas network learns topologies.”
Advances in neural information processing systems 7 (1995): 625-
632

[11] Kohonen, Teuvo. “The self-organizing map.” Proceedings of the IEEE
78.9 (1990): 1464-1480.

[12] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM : a library for
support vector machines.” ACM Transactions on Intelligent Systems
and Technology, 2:27:1-27:27, 2011.

2148

