
Extending Dynamic SOMs to Capture Incremental

Changes in Data

K.M.T.V. Ganegedara, L.C. Vidana Pathiranage,

U.A.R.R. Gunarathna, B.S. Wijeweera and A.S. Perera

Department of Computer Science and Engineering

University of Moratuwa
Moratuwa, Sri Lanka

{thushang.09, lasindu.09, ruwan.09, buddhima.09 and sheh-

an}@cse.mrt.ac.lk

D. Alahakoon

School of Information and Business Analytics

Deakin University

Melbourne, Australia

d.alahakoon@deakin.edu.au

Abstract— Humans learn in an incremental manner. Due to

this reason, humans continuously refine their knowledge of the

environment with the experience gained. Many strides have

been made in the machine learning area to exploit the power of

incremental learning. Incremental learning, in contrast to one-

time learning is far more useful and effective when data is not

completely available at once. Here, we investigate an unsuper-

vised incremental learning algorithm known as Incremental

Knowledge Acquisition and Self Learning (IKASL) algorithm.

IKASL algorithm is able to capture knowledge in an incremen-

tal manner, without disrupting past knowledge. Furthermore,

IKASL algorithm encodes acquired knowledge in such a way

that it can be used to acquire new knowledge more efficiently.

This paper discusses several limitations of original IKASL

algorithm and proposes several extensions to the original algo-

rithm which enhances its performance. These modifications

include influencing spread factor, implementing fuzzy integral

based generalizing technique, etc. Furthermore, the paper

report observations of several experiments conducted with

several datasets to assess the necessity and value of incremental

learning in the real world. These experiments are carefully

designed to reflect interesting characteristics of the IKASL
algorithm.

Keywords—incremental knowledge acquisition; neural

networks; dynamic som; visual semantic patterns;

I. INTRODUCTION

During the early stages of Machine Learning, it often has
been an implicit assumption that, a complete training data set
is available at the execution time of the algorithm. But far
more interesting results could be achieved if the algorithm
encompasses the ability to learn over a period of time, in-
crementally, in contrast to one-shot learning. Furthermore,
incremental learning prevents the need of ―re-inventing the
wheel‖ every time new information arrives. Moreover, in-
cremental learning becomes essential in the learning process.
Christophe Giraud-Carrier suggests that, in learning gram-
mar, recurrent networks fail to learn when inputs are provid-
ed all at once, but succeeds when presented incrementally
(e.g. easy-to-hard) [1].

Furthermore, humans learn in an incremental manner. In-
itially, a human will formulate a basic understanding with
available information and continue to refine the understand-
ing as new information is acquired. Throughout the entire
life, a person will learn in various ways such as acquiring
knowledge, observations and experience.

Inspired by both necessity to overcome the limitations of
one-shot learning and the humans‘ ability to learn incremen-
tally, a manifold of incremental learning algorithms have
emerged over the last decade.

Incremental Knowledge Acquisition and Self Learning
(IKASL) algorithm [2], can be recognized as a novel incre-
mental learning algorithm. IKASL algorithm is capable of
acquiring knowledge in an incremental manner, while pre-
serving the past knowledge. IKASL algorithm can be under-
stood as a n-layer dynamic self-organizing feature maps. Due
to the novelty of this algorithm, it has not been fully explored
for its functionality and usability yet. In this paper we are
proposing several extensions to the original IKASL algo-
rithm which enhances the performance of the algorithm. In
addition, the paper focuses on evaluating the value of incre-
mental learning and its real world applicability by testing
IKASL algorithm against several datasets.

This paper is organized as follows. Section 2 provides the
background knowledge of Self-Organizing Maps (SOM)
algorithm and Growing Self-Organizing Maps (GSOM)
algorithm. Section 3 outlines the IKASL algorithm and pro-
poses several improvements to the original algorithm which
enhances performance. Section 4 presents several experi-
mental results obtained by applying IKASL algorithm to
several real-world datasets. Section 5 concludes the paper.

II. BACKGROUND STUDY

Before delving into technical details of the study, it is
important to investigate existing incremental learning algo-
rithms and their limitations.

A. Other Incremental Learning Techniques

Here, two neural network based incremental learning al-
gorithms, one non-neural-network based incremental learn-

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1231

ing algorithm and the limitations of those algorithms are
discussed.

The lifelong learning cell structures (LLCS) [3] algo-
rithm is an extension to the Growing Cell Structure algo-
rithm (GCS). GCS is based on the SOM algorithm but the
conventional two-dimensional grid of the SOM has been
replaced by a network of nodes whose connectivity defines a
system of triangles. Algorithm uses heuristics to both add
and remove network nodes and connections. The algorithm
can locally adapt the feature map for node insertions and for
learning by heuristics. The LLCS algorithm focuses on local
adaptations for incremental learning while ignoring correla-
tive learning of the self-organizing process.

The SOINN [4] algorithm consists of a two layer net-
work. The training results of the first layer are used as the
training set for the second layer. The two locally accumulat-
ed error based insertion schemes, between class insertion and
within-class insertion allows the SOINN to incrementally
learn patterns in input data. The high node insertion require-
ment of the SOINN network and use of the utility parameter,
constrains topographical organization of the data space input
to the SOINN network.

Though, the popular density-based clustering method
OPTICS [5] is not suitable for data streams, a variant called
OpticsStream [6] can be used to visualize the clustering
structure and structure changes in data streams. The results
produced by the OpticsStream algorithm allow the user to
observe the dynamic nature of cluster structure (i.e. Changes
in cluster structure). Even though OpticsStream, provides
intuitive representations of the clustering structure as well as
how the results changes through time, it tends to find clusters
of data points based on some notion of proximity, but com-
pletely ignore the temporal aspect of the data stream which
can be crucial to studying patterns in data in detail.

IKASL algorithm attempts to overcome the limitations
explained in the above incremental learning techniques. The
next sections describe the algorithms which forms the basis
for IKASL algorithm.

B. Self-Organizing Maps

Analyzing high-dimensional and complex data sets is an
intricate task. Due to this reason, dimensionality reduction
techniques can be very useful. Clustering techniques can be
used to scrutinize high-dimensional data with less effort.
Among various clustering techniques Self-Organizing Map
(SOM) [7] plays a major role. SOM is popular because it is
an unsupervised learning algorithm inspired by the Hebbian
learning rule and the topology preservation property. Moreo-
ver, results of a SOM algorithm can be viewed in a 2D map
for visual analysis.

C. Growing Self-Organizing Maps (GSOM)

Growing self-organizing map (GSOM) [8] is an exten-
sion of SOM algorithm. GSOM algorithm overcomes several
limitations of SOM. GSOM algorithm has the ability to grow
the feature map, if the neural network is insufficient to repre-
sent the input space. Unconstrained learning and node

growth in the GSOM as opposed to constrained learning in
the SOM will ensure the development of a natural topology
of the data space, supporting incremental learning. Also, due
to its dynamic structure, the GSOM achieves the same
amount of spread with lesser number of nodes, and as such
will provide a useful advantage in mapping large data sets
[8]. In addition, such flexible structure provides a better vis-
ualization of the clusters and outliers in the data.

GSOM is initialized randomly with four nodes. As initial
four nodes are organized in a square shape; it allows the map
to grow in any direction depending on the input values.
Moreover, this organization is a good starting position to
implement a 2-D lattice structure [8]. Then the inputs are fed
to the network. If a node‘s error value exceeds a parameter
known as Growth Threshold (GT), the network is allowed to
grow from the boundaries to represent the input space better.

III. EXTENDED IKASL ALGORITHM

A. Original IKASL Algorithm

IKASL algorithm [2] is a Hebbian rule based incremen-
tally learning algorithm which is both stable and plastic.
IKASL algorithm can be perceived as a n-layer structure,
where n is the number of learning periods. Each layer com-
prises two sub-layers; a learning layer and a generalized
layer. Learning layer embodies the GSOM functionality and
generalized layer encodes a generalized representation of the
learning layer immediately below. It is important to note
that, the layers in IKASL are virtual and will come to exist-
ence as required by the learning process. Structure of the
IKASL outcome is depicted below in Fig. 1.

Fig. 1. Output of IKASL Algorithm

L0,L1,L2,…,Ln - Learning layers and G0,G1,G2,…,Gn -
Generalized layers

The first learning layer, which marks the inception of the
learning process, starts with a 4 randomly initialized nodes.
Thereafter each dataset is fed to the feature map comprising
of 4 nodes. Then, for each tuple in the dataset, a winner node
will be selected from the nodes based on selected distance
measure (e.g. Euclidean distance). Then, the weights of the
winning node will be adapted to reflect the input. Moreover,

1232

feature map will grow if it is insufficient to represent the
input space. This process will take place iteratively for all the
tuples in the dataset for a predefined number of epochs.

After the learning phase, the generalization phase tran-
spires. In the generalization phase, winning nodes from the
previous learning layer are identified. Next, these identified
nodes need to be generalized in such a way that, the result
should reflect two important outcomes of the learning pro-
cess; the knowledge embodied in the weight vector of the
winning node (primary outcome) and the knowledge of win-
ner‘s neighborhood nodes (secondary outcome) [2].

The generalization could be achieved by employing
fuzzy integral. The resulting new nodes (Generalized nodes),
form the generalized layer.

In general, Ln learning layer will produce Gn generalized
layer after the generalization phase. Then, next input set will
be fed to the Gn layer. Therefore, Gn will form the basis for
the learning phase which will take place in Ln+1. Further-
more, it is important to note that, each individual node in the
generalized layer will grow into individual feature maps.

Following subsections delineates the modifications pro-
posed to enhance the performance of the original IKASL
algorithm.

B. New Disparity Measure

After generalizing the layer Ln, Gn will come into exist-
ence. Then, the next input sequence is fed to Gn which will
form the next learning layer, Ln+1. While feeding the input
sequence it is possible that input(s) exist which are substan-
tially dispersed from the nodes in Gn layer (i.e. outliers). In
order to identify such outliers, a disparity threshold (DT) has
been introduced. If the distance between the winner node and
input(s) exceed DT, it implies that the input is an outlier with
respect to the node. Therefore, in order not to forget the ex-
isting knowledge, if any input(s) exceed DT, the winner node
will remain unchanged, rather than overwriting current
knowledge of the node with the new knowledge. DT is cal-
culated as follows,

1) Consider an inputs sequence D = d_1,d_2, …, d_m

with d_i=(x_{i1}, x_{i2}, …, x_{ip})

2) Calculate the standard deviation for each column j

3) Define, ‘k’ as the number of columns with a standard

deviation > 0.25

4) Finally, the disparity measure DT is calculated as,

C. Increasing Spread Factor for 1st Learning Cycle

The concept of spread factor originates from the GSOM
algorithm. Spread factor determines the spread of a feature
map. In order to obtain a good spread in the GSOM algo-
rithm, spread factor needs to be predefined by domain ex-
perts. In the IKASL algorithm the first layer forms the foun-
dation for subsequent learning. Therefore, if spread is low

initially, it will affect negatively for subsequent layers.
Therefore, it is important to have a substantial spread in the
first layer, even if the user specifies a low spread factor. We
propose (3) to increase the low spread factor. Fig. 3 presents
how the spread factor is affected by the proposed modifica-
tion.

Fig. 2. Graph showing how spread factor is affected by the proposed

function (with σ=0.2)

Fig. 3. Left hand side shows the clusters with SF = 0.3 without SF

Modification. Right hand side shows the clusters with SF = 0.3 with SF

Modification. As it can be seen due to the enhancement of spread factor,

right side result has produced better clusters than the left side

D. Integrating Fuzzy Integral

IKASL generalization is used to generally represent the
learning outcomes produced at each learning phase. Gener-
alization phase of the IKASL model aggregates learning
outcomes represented by the winner node and its neighbor-
hood nodes. This novel adaptation serves both key features
of continuous learning and knowledge acquisition. For con-
tinuous learning it is important to extract maximum
knowledge from the dynamic feature map as these outcomes
form the basis for subsequent learning.

The contribution to the weight of the generalized node
from the winning node should be maximal and it should be
exponentially reduced when going outwards from the win-
ning node. To calculate the weights of generalized nodes,
fuzzy integral [9] is used. The fuzzy integral is based on the
concept of a fuzzy measure. A fuzzy measure over a set X is
a function of the form,

(1)

(2)

(3)

1233

A fuzzy measure assigns a real value between 0 and 1
for each subset of X

Sugeno Fuzzy Integral

Let g be a fuzzy measure on X and h : X [0,1] a func-
tion. The Sugeno integral of h with respect to g is,

where, where

 is the most important and will be the least important

value. Minimum and maximum operators are denoted by the
symbols ⋀ and ⋁, respectively.

Application of Fuzzy Integral in IKASL generalization
phase,

1) Neighborhood is defined from the winner node and

Euclidean distance for each node from the winner is

calculated.

2) Sugeno λ measure is defined to be a small constant

value

3) Calculate the Sugeno Fuzzy Integral Weight of the

generalized node using the arrays of normalized [0-1]

weight values and the (1-distance) values.

In contrast to taking average of the winner node and the
neighboring nodes, fuzzy integral provides a more intuitive
representation of the knowledge encoded in the winner node
and the neighboring nodes. Fuzzy integral gradually de-
creases the contribution of the individual nodes to the final
result as the node distance between the winner node and
respective node increases. The effectiveness of fuzzy inte-
gral can be seen in Fig. 4, as fuzzy generalization has led to
a better clustering in contrast to average generalization.

Though fuzzy integral has been in the initial version of
the IKASL, it had been published before especially focusing
on textual data. In this paper the fuzzy integral based gener-
alization scheme is implemented with other modifications to
stabilize and improve the IKASL and value demonstrated
with several datasets.

Fig. 4. Left hand side shows the clusters obtained by using ‗average‘ as a

generalizing technique. Right hand side shows the clusters obtained by

using fuzzy generalization

E. Extended IKASL Algorithm

Notation used in the algorithm are, ‗n‘ - number of data
sequences to learn, ‗D‘ - number of dimensions in the data
sequence, ‗Li‘ - i-th learning phase, ‗Gi‘ - i-th generalization
phase, ‗HT‘ – Hit threshold, ‗α‘ - learning rate for weight
adaptations, ‗SF‘ - spread factor controls growth of the
GSOM, ‗GT‘ - growth threshold, decides the spread of the
network based on D and SF, TEi - total quantization error of
node i, ‗DTi‘- Disparity threshold for Gi

Initialization

1) Initialize weight vectors of the four starting nodes

with random values

2) Determine neighborhood size for weight adaptations,

neighborhood size for hit node aggregation, learning rate

and growth threshold

3) Apply spread factor transformation and calculate

new spread factor for 1st layer

Learning

Self-Organization

4) A random input vector is selected and fed to the

network of nodes.

5) The node closest to the input vector is identified using

Euclidean geometry, find node q´ such that

where v, w are the input and weight vectors, respectively, q
is the position vector for nodes, and N is the set of natural

numbers.

6) The network adapts to the input vector by modifying

weights in q´ and nodes in the defined neighborhood.

where, the learning rate LR(k), k ϵ N is a sequence of posi-

tive parameters converging to zero as k ∞. wj(k), wj(k
+1), are the weight vectors of the node before and after the

adaptation, and Nk+1 is the neighborhood of the winning

neuron at (k+1)th iteration.

7) Increase the error value of winner (the difference

between the input vector and the weight vectors)

Node Growth

When TEi > GT, if I is a boundary node,

8) Grow new nodes and initialize weights to match

neighborhood node weights

If not,

9) Distribute weights to neighbors

Smoothing

10) Reduce learning rate and weight update

neighborhood size

11) Resend inputs and adapt weights just as in learning

phase

(4)

(5)

(6)

1234

Generalization

12) Identify nodes with hit values above HT, with

respective neighborhood nodes

13) Aggregation will be performed using Fuzzy

integral, as explained in section III.

Learning from a Generalization layer
The generalization layer preceding L1 will form the ba-

sis for all learning phases after the L1 phase. An additional
step is required to determine which aggregate node will
generate the network topology for each input vector in the
new data sequence. Moreover in order to determine whether
an input is dispersed significantly from the aggregate node,
disparity threshold (DT) is used.

14) All input vectors are fed sequentially, to the nodes

of the generalization layer. The aggregate node closest to

the input vector is identified using Euclidean geometry,

15) Winning node q´ is assigned the input vector. For

all learning epochs to follow, node q´ will develop a feature

map representing the set of assigned input vectors.

Each aggregate node will produce a feature map with a
single node containing a weight vector identical to that of
the aggregate node and map growth will start from this sin-
gle node. Here the learning rate modification will be applied
to prevent learning rate from being negative.

IV. EXPERIMENT RESULTS

Several experiments were conducted to validate the ne-
cessity and value of incremental learning that can be
achieved by the IKASL algorithm. These experiments were
focused on answering questions such as,

 Can the algorithm learn incrementally without over-
writing past knowledge?

 How does the algorithm behave when it encounters a
new knowledge which it has not encountered earlier?

 Can the algorithm incorporate existing knowledge to
acquire new knowledge more accurately?

In previous work, several experiments have been con-
ducted to validate functionality of the original IKASL algo-
rithm using images extracted from a cartoon sequence [10].
However, this study presents results of more thorough and
comprehensive experiments conducted using real-world
images. In contrast to cartoon images, real world images
contain lot more details (e.g. variations in color and texture)
and unnecessary information (i.e. noise, blur). Such charac-
teristics of real-world images make it difficult to learn/cluster
images in an unsupervised manner. Assessing IKASL algo-
rithm with real-world images is very important, as the ulti-
mate goal is to analyze real-world data (e.g. medical, surveil-
lance).

A. Experiment 1

In the first experiment, dataset comprises 3 image sets
extracted from several video footages [11], [12], [13]. There
are 4 types of entities; a human face, a forest, a beach and an

urban scene. Image set sequences are designed in such a way
that each type of images evolves as learning period increase,
as depicted in Fig. 5.

Fig. 5. Sample sets of the image dataset used. The images evolve as the

sequence number increases. For example, observe how the child has grown
as the sequence number increases.

Fig. 6 depicts an experimental result obtained by employ-
ing previously described dataset using IKASL algorithm.
The experiment consists of 3 learning periods. In each learn-
ing period, an input image sequence is fed to the algorithm.
PHOG descriptor [14] was used for feature extraction.
PHOG descriptor is well-suited for this experiment as it can
capture both local shapes and spatial layout [14].

In the 1st learning period (Learn cycle 0) images are
clustered to 2 major clusters C1 and C2. C1 cluster has a
mixed knowledge of a baby‘s face and trees in winter. C2
cluster contains images of an urban scene. Therefore, it can
be argued that C1 doesn‘t have the required knowledge to
distinguish between humans and trees yet.

In the 2nd learning period several interesting events take
place. It can be observed that, C1 cluster has been split into 2
clusters where one cluster (C3) has acquired knowledge of
the face and another cluster (C4) has acquired knowledge
about trees. This particular observation proves that, IKASL
algorithm is capable of employing previous knowledge to
shape new knowledge to be more accurate. Cluster C3 repre-
sents the same person as C1 but grown few years than be-
fore. Furthermore, the knowledge about the trees in the win-
ter season has produced a new cluster which contains trees
without snow. Thus, it can be seen that, IKASL algorithm is
able to capture incremental changes in the data.

In the 3rd learning period, growth of C5 cluster from C2
can be observed. C2 cluster represent an urban scene in the
daylight and C5 represent the same scene at night. It can be
seen that though any urban scenes hasn‘t been provided in
the 2nd learning period, previous knowledge is retained.

B. Experiment 2

Image collection in Fig. 7 consists of natural sceneries
which has different dominant colors. Input is fed to the
IKASL algorithm as 4 input sequences. The experiment was
based on the dominant colors present in the images.

The feature extraction is done as follows. The HSL color
space is divided in to 27 bins. Black (light level less than

1235

Fig. 6. Experiment results for the image dataset comprising a human face, a forest, a beach and an urban scene. PHOG Descriptor was used to generate feature

vectors with following parameters; number of bins = 6 and level = 1. Following parameters were used for the IKASL algorithm. Spread Factor: 0.5, Neighborhood
Radius: 2, Learning Rate: 0.3, Iterations: 100

Fig. 7. IKASL output for a natural scene classification. Set 1 – grey, blue, green, red; Set 2 – red, orange green, - no blue, no grey; Set 3 – blue, grey, yellow,

grey; Set 4 – grey, blue, green, orange. Existence of colors is used for feature extraction of images. Following parameters were used. Spread Factor: 0.5,

Neighborhood Radius: 2, Learning Rate: 0.3, Iterations: 100

1236

0.2), white (light threshold more than 0.9), gray (less than
0.25 saturation threshold) and other colors are split into 24
bins using the hue value (15 for each bin (out of 360)). Then
select the top 8 most dominant colors exist in the image.

Image set 1 consists of images in Grey, Blue Green and
Red. As depicted in Fig. 6, result displays a clear classifica-
tion of different colors into separate clusters. But it can be
seen that C(1,2) has mixed knowledge, evident by different
types of images in that cluster.

In the next learning period, C(2,1) and C(2,2) which has
grown from C(1,2) contains orange/red dominated images.
Also, C(2,3) and C(2,4) (green-dominant) clusters has
grown from previous green-dominant cluster C(1,3). It can
be clearly seen that 2nd learning period has a more refined
knowledge about images compared to the 1st learning peri-
od. Furthermore, it can be observed that, after the 1st learn-
ing period, blue color appears only in the 4th learning period.
Yet, IKASL algorithm has recognized that it has acquired
knowledge about blue color in the 1st learning period. This
particular fact proves that, the algorithm is capable of retain-
ing knowledge without any disruption from new knowledge

Similarly, algorithm has continued to learn about new
data based on the past knowledge it possesses.

V. DISCUSSION AND FUTURE WORK

In this paper, we have discussed the importance of in-
cremental learning by employing a novel unsupervised in-
cremental learning algorithm known as IKASL. IKASL al-
gorithm is both stable and plastic and is capable of perform-
ing complex learning functions which can be observed in
humans. IKASL algorithm is an n-layer structure where each
layer comes into existence as new learning periods occur.
Function of IKASL algorithm comprises two main phases;
learning phase and generalization phase.

The IKASL algorithm can be further enhanced by em-
ploying several extensions. Introduction of the Disparity
threshold helps to identify outliers in the input set and pre-
vent affecting existing knowledge of nodes. Increasing
spread factor in the initial learning phase ensure that there is
a significant spread in the feature map(s) regardless of the
spread factor specified by user. Learning rate modification
ensures a positive learning rate throughout the learning pro-
cess. Finally, fuzzy integral reflects the primary and second-
ary outcomes better than obtaining simple average of nodes.

Moreover, several experiments were conducted by run-
ning the IKASL algorithm for several datasets. It is evident
from the experimental results that the algorithm is capable of
capturing incremental changes in data and learning without
forgetting past information. In addition, IKASL algorithm is
capable of using previous knowledge to refine newly ac-
quired knowledge. Thereby, we have shown the real world
value and necessity of incremental learning.

Though IKASL algorithm is capable of powerful and
complex learning functions, there are several extensions that
could transform the IKASL algorithm to be capable, more
powerful and more complex learning functions.

First, IKASL algorithm is capable of retaining past
knowledge unaffected by subsequent knowledge acquisition.
However, IKASL algorithm does not differentiate between
past knowledge recently activated by new knowledge and
knowledge that has been inactive for a long time. Therefore,
by introducing a mechanism to activate and deactivate nodes
depending on their activation frequency, more information
can be captured during the learning process.

Next, IKASL algorithm currently does not possess the
ability to merge nodes with similar knowledge to reduce
redundant information that could be accumulated. Therefore,
by introducing a merging mechanism to merge redundant
nodes in the knowledgebase, algorithm will be able to exe-
cute the learning process more efficiently.

Finally, IKASL algorithm is an unsupervised neural net-
work based algorithms. However, learning algorithms tend to
perform better when there is some amount of human inter-
vention during the learning process. Therefore by transform-
ing the IKASL algorithm to a semi-supervised algorithm, it
will be able to yield more accurate results, as human can
intervene with the learning process if the algorithm is mis-
guided due to faulty or noisy data.

REFERENCES

[1] Giraud-Carrier, Christophe. "A note on the utility of incremental

learning." AI Communications 13, no. 4 (2000): 215-223.

[2] De Silva, Daswin, and Damminda Alahakoon. "Incremental
knowledge acquisi-tion and self learning from text." In Neural

Networks (IJCNN), The 2010 Internation-al Joint Conference on, pp.
1-8. IEEE, 2010.

[3] Hamker, Fred H. "Life-long learning cell structures—continuously

learning without catastrophic interference." Neural Networks 14, no.
4 (2001): 551-573.

[4] S. Furao, and O. Hasegawa, ―An incremental network for on-line

unsupervised classification and topology learning‖, Neural Networks,
vol. 19, pp. 90–106, 2006

[5] H.-P. Kriegel, P. Kroger, and I. Gotlibovich. Incremental OPTICS:
Efficient computation of updates in a hierarchical cluster ordering. In

Data Warehousing and Knowledge Discovery, volume 2737 of
Lecture Notes in Computer Science, pages 224{233. Springer, 2003.

[6] D. K. Tasoulis, G. Ross, and N. M. Adams. "Visualising the cluster

structure of data streams". In Advances in Intelligent Data Analysis
VII, Lecture Notes in Com-puter Science, pp. 81-92. Springer, 2007.

[7] Kohonen, Teuvo. "The self-organizing map." Proceedings of the

IEEE 78, no. 9 (1990): 1464-1480.

[8] Alahakoon, Damminda, Saman K. Halgamuge, and Bala Srinivasan.
"Dynamic self-organizing maps with controlled growth for

knowledge discovery." Neural Net-works, IEEE Transactions on 11,
no. 3 (2000): 601-614.

[9] R.R. Yager, ―Element selection from a fuzzy subset using the

fuzzyintegral‖, IEEE Transactions on Systems, Man and Cybernetics,
vol.23-2, pp. 467-477, 1993

[10] D. De Silva, ―A cognitive approach to autonomous incremental

learning,‖ Ph.D. dissertation, Clayton School of Inf. Technol.,
Monash Univ., Melbourne, Australia, 2010.

[11] ―Birth to 12 years in 2 min. 45 sec. Time Lapse Lotte. (The
Original),‖ YouTube video, 2:45, posted by "Hofmeester," April 16,

2012, http://www.youtube.com/watch?v=RtyqS68ViWk.

[12] ―Time Lapse of Singapore - Raffles Place - From Day to Night
(Again) (Full HD version),‖ YouTube video, 0:18, posted by

"merlion444," Nov 19, 2009, http://www.youtube.com/watch?v=n8-
WaKkGrkE.

1237

[13] ―One year in 40 seconds,‖ YouTube video, 0:46, posted by "Eirik
Solheim," Dec 26, 2008,
http://www.youtube.com/watch?v=lmIFXIXQQ_E.

[14] Bosch, Anna, Andrew Zisserman, and Xavier Munoz. "Representing
shape with a spatial pyramid kernel." In Proceedings of the 6th ACM

international conference on Image and video retrieval, pp. 401-408.
ACM, 2007.

1238

