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Abstract— In this paper, a kernel 𝐾-means algorithm based
on an adaptive Mahalanobis kernel is proposed. This kernel
is built based on an adaptive quadratic distance defined by
a symmetric positive definite matrix that changes at each
algorithm iteration and takes into account the correlations
between variables, allowing the discovery of clusters with
non-hyperspherical shapes. The effectiveness of the proposed
algorithm is demonstrated through experiments with synthetic
and benchmark datasets.

I. INTRODUCTION

CLUSTERING is an excellent state-of-the-art tool to
knowledge discovering, and it is applied in a wide

variety of fields including taxonomy, data mining, pattern
recognition, computer vision, information retrieval, etc. Clus-
tering means the task of organizing a set of patterns into
clusters such that patterns within a given cluster have a high
degree of similarity, whereas patterns belonging to different
clusters have a high degree of dissimilarity. The most popular
clustering algorithms are hierarchical and partitioning meth-
ods [1], [2], [3], [4]. Hierarchical methods delivers an output
represented by a hierarchical structure of groups known as
dendrogram, i.e., a nested sequence of partitions of the input
data, whereas partitioning methods aims to obtain a single
partition of the input data in a fixed number of clusters, typ-
ically by optimizing (usually locally) an objective function;
the result is a creation of separation hypersurfaces among
clusters. Partitioning clustering methods were performed in
two different ways: hard and fuzzy. In hard clustering, the
clusters are disjoint and non-overlapping in nature. In this
case, any pattern may belong to one and only one cluster.
On the other hand, in fuzzy clustering a pattern may belong
to all clusters with a certain fuzzy membership degree. A
good review of the main fuzzy clustering algorithms can be
found in [5]. Moreover, a survey of the various clustering
methods can be found, for example, in [2], [4].

Several clustering methods have been modified to incor-
porate kernels and a variety of kernel methods to clustering
have been proposed [6]. The core of kernel-based algorithms
is the kernel function. It measures the similarity between
two patterns in a 𝑝-dimensional space. Over the different
kernels used in clustering algorithms, the Gaussian kernel
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is the most commonly used [6], [7]. The Gaussian kernel
usually gives good results and has only one parameter to be
tuned. Despite the good characteristics of this kernel, it is
based on the Euclidean distance, that is, algorithms based
on the Gaussian kernel assume that patterns are more likely
distributed within an hyperspherical region (in other words,
each variable has the same variance and there is no covari-
ance between variables). However, patterns in two different
groups are more likely distributed within two different hyper-
ellipsoidal regions, respectively. The Mahalanobis distance,
which takes into account the correlations between variables
and is scale-invariant, is a better choice to deal with hyper-
ellipsoidal regions. Support vector machines (SVMs) have
been modified through the use of the Mahalanobis kernel [8],
[9], [10], [11].

In this paper, we propose, under the kernelization of the
metric approach, a kernel 𝐾-means algorithm based on an
adaptive Mahalanobis kernel. This kernel is built based on an
adaptive quadratic distance defined by a symmetric positive
definite matrix that changes at each iteration of the algorithm.
The adaptive Mahalanobis kernel takes into account the
correlations between variables, allowing the discovery of
clusters with non-hyperspherical shapes. The effectiveness
of the proposed clustering algorithm is demonstrated through
experiments with synthetic and benchmark datasets.

The rest of the paper is organized as follows: Section II
briefly reviews the theory about kernels and also presents the
standard kernel 𝐾-means with kernelization of the metric
considering the well known Gaussian kernel. Section III
introduces the kernel 𝐾-means with kernelization of the
metric based on an adaptive Mahalanobis kernel. Section IV
deals with the experimental results and Section V concludes
this paper.

II. RELATED WORK

With the introduction of the kernel 𝐾-means algo-
rithm [12], several clustering methods such as fuzzy 𝑐-means
[13], self organizing maps (SOM) [14], [15], the mountain
method [16] and neural gas [17] have been modified to
incorporate kernels and a variety of kernel methods to
clustering have been proposed [6]. Two main approaches
have guided such modifications: kernelization of the metric,
where the centroids are obtained in the original space and
the distances between patterns and centroids are computed
by means of kernels; and clustering in feature space, in which
centroids are obtained in the feature space. Important hard
clustering algorithms based on kernels were developed in
Refs. [18], [19], [20]. Kernel-based fuzzy clustering methods

2014 International Joint Conference on Neural Networks (IJCNN) 
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1885



have been proposed in Refs. [21], [22], [23]. The authors of
Refs. [24], [25] developed a kernelized version of SOM. In
[26] a kernel mountain method was presented and in [27]
a kernel version of neural gas algorithm was proposed. A
semi-supervised kernel-based clustering method with metric
learning was proposed in Ref. [28]. Moreover, various studies
have demonstrated that the kernel clustering methods out-
performs the conventional clustering approaches when the
data have a complex structure, because these algorithms may
produce non-linear separating hypersurfaces among clusters
[18], [6], [7], [29].

Since the beginning of the last decade a number of
researchers have shown interest in kernel-based clustering
methods [6]. The main idea supporting these methods is the
use of a non-linear mapping Φ from the input space to a high
dimensional (possibly infinite) space, called feature space.

In this section we briefly recall the basic theory about ker-
nel functions and the conventional kernel clustering methods.
Let 𝑋 = {x1, . . . ,x𝑛} be a set of 𝑛 patterns indexed by
𝑖 and described by 𝑝 real-valued variables, i.e., x𝑖 ∈ ℝ

𝑝.
A function 𝒦 : 𝑋 × 𝑋 → ℝ is called a positive definite
kernel (or Mercer kernel) if and only if 𝒦 is symmetric
(i.e. 𝒦(x𝑖,x𝑘) = 𝒦(x𝑘,x𝑖)) and the following inequality
holds [30]:

𝑛∑

𝑖=1

𝑛∑

𝑘=1

𝑐𝑖𝑐𝑘𝒦(x𝑖,x𝑘) ≥ 0 ∀𝑛 ≥ 2, (1)

where 𝑐𝑟 ∈ ℝ ∀𝑟 = 1, . . . , 𝑛.
Let Φ : 𝑋 → ℱ be a non-linear mapping from the input

space 𝑋 to a high dimensional feature space ℱ . By applying
the mapping Φ, the inner product x⊤𝑖 x𝑘 in the input space
is mapped to Φ(x𝑖)

⊤Φ(x𝑘) in the feature space. The key
idea in kernel algorithms is that the non-linear mapping Φ
doesn’t need to be explicitly specified because each Mercer
kernel can be expressed as 𝒦(x𝑖,x𝑘) = Φ(x𝑖)

⊤Φ(x𝑘), that
is usually referred to as kernel trick [31], [32].

Because of the kernel trick, it is possible to compute
Euclidean distances in ℱ as follows [31], [32]:

∣∣Φ(x𝑖)− Φ(x𝑘)∣∣2 = (Φ(x𝑖)− Φ(x𝑘))
⊤(Φ(x𝑖)− Φ(x𝑘))

= Φ(x𝑖)
⊤Φ(x𝑖)− 2Φ(x𝑖)

⊤Φ(x𝑘) + Φ(x𝑘)
⊤Φ(x𝑘)

= 𝒦(x𝑖,x𝑖)− 2𝒦(x𝑖,x𝑘) +𝒦(x𝑘,x𝑘).
(2)

The most commonly used kernel in the literature is the
Gaussian kernel, which is given by

𝒦(𝑔)(x𝑖,x𝑘) = exp

{
− (x𝑖 − x𝑘)

⊤(x𝑖 − x𝑘)

2𝜎2

}
, (3)

where 𝜎 > 0 is a kernel hyperparameter that, roughly
speaking, controls how two patterns are considered as close
or similar in ℝ

𝑝.
There are two major variations of kernel clustering meth-

ods which are based, respectively, on: kernelization of the
metric, and clustering in the feature space. Clustering algo-
rithms based on kernelization of the metric seeks for cluster
centroids in the input space and the distance between a

pattern x𝑖 and a cluster centroid y𝑘 is obtained by means
of kernels: ∣∣Φ(x𝑖)− Φ(y𝑘)∣∣2 = 𝒦(x𝑖,x𝑖)− 2𝒦(x𝑖,y𝑘) +
𝒦(y𝑘,y𝑘). On the other hand, clustering algorithms in the
feature space proceed by mapping each pattern by means
of a non-linear function Φ and then obtain the centroids in
the feature space. In this paper, only the kernelization of the
metric approach will be considered.

A. The kernel 𝐾-means algorithm

The kernel 𝐾-means under the kernelization of the metric
approach (here labeled KKMeans) is an iterative two-steps
algorithm (representation and allocation steps) that gives a
partition 𝑃 = {𝑃1, . . . , 𝑃𝐾} of 𝑋 into 𝐾 clusters and their
corresponding cluster centroids y𝑘 ∈ ℝ

𝑝 (𝑘 = 1, . . . ,𝐾)
such that is minimized the following objective function [33],
[34], [6]:

𝑊 =

𝐾∑

𝑘=1

∑

x𝑖∈𝑃𝑘
∣∣Φ(x𝑖)− Φ(y𝑘)∣∣2

=

𝐾∑

𝑘=1

∑

x𝑖∈𝑃𝑘
{𝒦(x𝑖,x𝑖)− 2𝒦(x𝑖,y𝑘) +𝒦(y𝑘,y𝑘)} .

(4)

During the representation step, the partition if kept fixed.
The derivation of the cluster centroids depends on the specific
selection of the kernel function. If we consider the Gaussian
kernel, then 𝒦(𝑔)(x𝑖,x𝑖) = 1 ∀𝑖, and the functional (4) can
be expressed as [7]:

𝑊 = 2

𝐾∑

𝑘=1

∑

x𝑖∈𝑃𝑘
(1−𝒦(𝑔)(x𝑖,y𝑘))

= 2

𝐾∑

𝑘=1

∑

x𝑖∈𝑃𝑘

(
1− exp

{
− (x𝑖 − x𝑘)

⊤(x𝑖 − x𝑘)

2𝜎2

})
.

(5)

It can be shown that the cluster centroids are obtained as:

y𝑘 =

∑
x𝑖∈𝑃𝑘 𝒦(𝑔)(x𝑖,y𝑘)x𝑖
∑

x𝑖∈𝑃𝑘 𝒦(𝑔)(x𝑖,y𝑘)
, 𝑘 = 1, . . . ,𝐾. (6)

In the allocation step, the cluster centroids y𝑘 (𝑘 =
1, . . . ,𝐾) are kept fixed. The clusters 𝑃𝑘 (𝑘 = 1, . . . ,𝐾),
which minimizes the clustering criterion 𝑊 are updated
according to the following allocation rule:

𝑃𝑘 =
{
x𝑖 ∈ 𝑋 : ∣∣Φ(x𝑖)− Φ(y𝑘)∣∣2 ≤ ∣∣Φ(x𝑖)− Φ(yℎ)∣∣2,
∀ℎ ∕= 𝑘, ℎ = 1, . . . ,𝐾} .

(7)

The KKMeans algorithm is executed in the following
steps:

(1) Initialization
Fix 𝐾 (the number of clusters), 2 ≤ 𝐾 < 𝑛;
randomly choose a initial partition 𝑃 of 𝑋 into 𝐾
clusters 𝑃1, . . . , 𝑃𝐾 or choose 𝐾 distinct patterns
y1, . . . ,y𝐾 belonging to 𝑋 as the initial centroids
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and assign each pattern 𝑖 to the closest centroid yℎ
(ℎ = arg min1≤𝑘≤𝐾 ∣∣Φ(x𝑖) − Φ(y𝑘)∣∣2) to construct
the initial partition 𝑃 of 𝑋 into 𝐾 clusters 𝑃1, . . . , 𝑃𝐾 .

(2) Representation step
Compute the cluster centroids y𝑘 (𝑘 = 1, . . . ,𝐾)
according to Eq. (6).

(3) Alocation step
Compute the best partition

𝑡𝑒𝑠𝑡← 0
for 𝑖 = 1 to 𝑛 do

compute the winning cluster 𝑃ℎ such that
ℎ = argmin1≤𝑘≤𝐾 ∣∣Φ(x𝑖)− Φ(y𝑘)∣∣2

if 𝑖 ∈ 𝑃𝑘 and ℎ ∕= 𝑘
𝑡𝑒𝑠𝑡← 1
𝑃ℎ ← 𝑃ℎ ∪ {x𝑖}
𝑃𝑘 ← 𝑃𝑘 ∖ {x𝑖}

(4) Stopping criterion
If 𝑡𝑒𝑠𝑡 = 0 then STOP, otherwise go to (2).

The computational complexity of the KKMeans algorithm
for a single iteration is 𝑂(𝑛𝐾𝑝) [7], where 𝑛 is number of
patterns, 𝐾 is the number of clusters and 𝑝 is the number of
variables.

III. KERNEL 𝐾-MEANS BASED ON AN ADAPTIVE

MAHALANOBIS KERNEL

The most commonly used kernel function in the literature
is the Gaussian kernel. In general, this kernel delivers good
results and requires tuning only for one parameter. The
Gaussian kernel is based on the Euclidean distance between
two patterns x𝑖 and x𝑘 in the input space ℝ

𝑝 and it is known
that the Euclidean distance performs well with data sets
in which natural clusters are nearly hyperspherical, which
means that each variable has the same variance and there is
no covariance between variables. However, patterns in two
different groups are more likely distributed within two differ-
ent hyper-ellipsoidal regions, respectively. The Mahalanobis
distance, which takes into account the correlations between
variables and is scale-invariant, is a better choice to deal
with clusters with hyper-ellipsoidal shapes, which arise in a
number of practical and experimental situations.

The Mahalanobis distance between a pattern x𝑖 and the
overall centroid y in the input space ℝ

𝑝 is given by

𝑑2Σ−1(x𝑖,y) = (x𝑖 − y)⊤Σ−1(x𝑖 − y), (8)

in which

𝑦 =
1

𝑛

𝑛∑

𝑖=1

x𝑖,

and

Σ =
1

𝑛

𝑛∑

𝑖=1

(x𝑖 − y)(x𝑖 − y)⊤.

Inspired by the definition of the Mahalanobis distance, we
can define an adaptive Mahalanobis kernel by substituting

the Euclidean distance with a Mahalanobis-type distance on
the Gaussian kernel [8] :

𝒦(𝑚)(x𝑖,x𝑘) = exp

{
− (x𝑖 − x𝑘)

⊤M(x𝑖 − x𝑘)

2𝜎2

}
, (9)

where 𝑑2M(x𝑖,x𝑘) = (x𝑖 − x𝑘)
⊤M(x𝑖 − x𝑘) is a quadratic

distance defined by a symmetric positive defined matrix M.
Here, the Mahalanobis distance is computed between two
patterns x𝑖 and x𝑘 in the input space ℝ

𝑝 instead of between
a pattern x𝑖 and the overall centroid y. The Mahalanobis
kernel is an extension of the Gaussian kernel. Namely, by
setting M = I, where I is the 𝑝 × 𝑝 identity matrix, we
obtain the Gaussian kernel.

The kernel 𝐾-means based on an adaptive Mahalanobis
kernel (here labeled AMKKMeans) is an iterative two-steps
algorithm (representation and allocation steps) that gives a
partition 𝑃 = {𝑃1, . . . , 𝑃𝐾} of 𝑋 into 𝐾 clusters and their
corresponding cluster centroids y𝑘 ∈ ℝ

𝑝 (𝑘 = 1, . . . ,𝐾)
such that is minimized the criterion 𝐽 measuring the fitting
between the clusters and their centroids, which is defined as

𝐽 = 2

𝐾∑

𝑘=1

∑

x𝑖∈𝑃𝑘
(1−𝒦(𝑚)(x𝑖,y𝑘))

= 2

𝐾∑

𝑘=1

∑

x𝑖∈𝑃𝑘

(
1− exp

{
− (x𝑖 − y𝑘)

⊤M(x𝑖 − y𝑘)

2𝜎2

})
.

(10)

The representation step has now two stages. In the first
stage, the partition and the matrix M are kept fixed. As
in the case of the Gaussian kernel, it can be shown that,
also considering the adaptive Mahalanobis kernel, the cluster
centroids are obtained as:

y𝑘 =

∑
x𝑖∈𝑃𝑘 𝒦(𝑚)(x𝑖,y𝑘)x𝑖
∑

x𝑖∈𝑃𝑘 𝒦(𝑚)(x𝑖,y𝑘)
, 𝑘 = 1, . . . ,𝐾. (11)

In the second stage, the partition and the prototypes
y𝑘 of the corresponding clusters 𝑃𝑘 (𝑘 = 1, . . . ,𝐾) are
kept fixed. It can be shown that the symmetric positive
definite matrix M, which minimizes the clustering criterion
𝐽 under det(M) = 1, is updated according to the following
expression:

M = [det(Q)]
1
𝑝Q−1, in which Q =

𝐾∑

𝑘=1

Q𝑘 and

Q𝑘 =
∑

x𝑖∈𝑃𝑘
𝒦(𝑚)(x𝑖,y𝑘)(x𝑖 − y𝑘)(x𝑖 − y𝑘)

⊤. (12)

The proof of Eq. (12) can be achieved through the La-
grange multiplyers method considering the constraint that
det(M) = 1.

In the allocation step, the cluster centroids y𝑘 (𝑘 =
1, . . . ,𝐾) and the matrix M are kept fixed. The clusters 𝑃𝑘
(𝑘 = 1, . . . ,𝐾), which minimizes the clustering criterion 𝐽
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are updated according to the following allocation rule:

𝑃𝑘 =
{
x𝑖 ∈ 𝑋 : ∣∣Φ(x𝑖)− Φ(y𝑘)∣∣2 ≤ ∣∣Φ(x𝑖)− Φ(yℎ)∣∣2,
∀ℎ ∕= 𝑘, ℎ = 1, . . . ,𝐾} .

(13)

The AMKKMeans algorithm is executed in the following
steps:
(1) Initialization

Fix 𝐾 (the number of clusters), 2 ≤ 𝐾 < 𝑛;
randomly choose a initial partition 𝑃 of 𝑋 into 𝐾
clusters 𝑃1, . . . , 𝑃𝐾 or choose 𝐾 distinct patterns
y1, . . . ,y𝐾 belonging to 𝑋 as the initial centroids
and assign each pattern 𝑖 to the closest centroid yℎ
(ℎ = arg min1≤𝑘≤𝐾 ∣∣Φ(x𝑖) − Φ(y𝑘)∣∣2) to construct
the initial partition 𝑃 of 𝑋 into 𝐾 clusters 𝑃1, . . . , 𝑃𝐾 .

(2) Representation step
(a) Stage 1: Compute the cluster centroids y𝑘 (𝑘 =

1, . . . ,𝐾) according to Eq. (11).
(b) Stage 2: Compute the matrix M according to

Eq. (12).
(3) Allocation step

Compute the best partition
𝑡𝑒𝑠𝑡← 0
for 𝑖 = 1 to 𝑛 do

compute the winning cluster 𝑃ℎ such that
ℎ = argmin1≤𝑘≤𝐾 ∣∣Φ(x𝑖)− Φ(y𝑘)∣∣2

if 𝑖 ∈ 𝑃𝑘 and ℎ ∕= 𝑘
𝑡𝑒𝑠𝑡← 1
𝑃ℎ ← 𝑃ℎ ∪ {x𝑖}
𝑃𝑘 ← 𝑃𝑘 ∖ {x𝑖}

(4) Stopping criterion
If 𝑡𝑒𝑠𝑡 = 0 then STOP, otherwise go to (2).

For a single iteration the complexity of the AMKKMeans
algorithm for computing the cluster centroids is 𝑂(𝑛𝐾𝑝)
and the complexity for computing the partition is 𝑂(𝑛𝐾𝑝2).
The complexity of computing 𝑀 depends on the method of
matrix inversion used in the implementation of the clustering
algorithm.

IV. EMPIRICAL RESULTS

To show the usefulness of the adaptive Mahalanobis kernel
𝐾-means algorithm in comparison with the kernel 𝐾-means
algorithm with the usual Gaussian kernel, two configurations
of synthetic quantitative datasets in ℝ

2, and four benchmark
datasets selected from the UCI Machine Learning Reposi-
tory1 [35] are considered. The standard 𝐾-means algorithm
(here labeled KMeans) is also considered.

To assess the performance of the different clustering
algorithms and compare them, we assume that the ground
truth (the a priori partition) is known and we use two external
evaluation measures: the corrected Rand index (CR) [36], as
well as the overall error rate of classification (OERC) [37].

The CR index takes its values from the interval [1, 1],
in which the value 1 indicates perfect agreement between

1http://archive.ics.uci.edu/ml/

partitions, whereas values near 0 (or negatives) correspond
to cluster agreement found by chance [38]. The OERC index
aims to measure the ability of a clustering algorithm to find
out a priori classes present in a dataset and takes its values
from the interval [0, 1] in which lower OERC values indicate
better clustering results.

A. Synthetic datasets

Each synthetic dataset was simulated considering classes
with different sizes and shapes. The synthetic datasets have
500 points each, divided into four classes with sizes 200,
150, 50 and 100, respectively. Each class in these data were
drawn according to a bivariate normal distribution with mean
vector and covariance matrix represented by

𝝁 =

[
𝜇1

𝜇2

]
and Σ =

[
𝜎2
1 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2

]
.

Two configurations of synthetic datasets are considered:
(1) the class covariance matrices are diagonal and almost
the same; (2) the class covariance matrices are not diagonal
but almost the same.

Patterns of each class in data configuration 1 (Figure 1(a))
were drawn from a bivariate normal distribution with, re-
spectively, the following parameters:
Class 1: 𝜇1 = 45, 𝜇2 = 30, 𝜎2

1 = 100, 𝜎2
2 = 9, 𝜌 = 0.0

Class 2: 𝜇1 = 70, 𝜇2 = 38, 𝜎2
1 = 81, 𝜎2

2 = 16, 𝜌 = 0.0
Class 3: 𝜇1 = 45, 𝜇2 = 42, 𝜎2

1 = 100, 𝜎2
2 = 16, 𝜌 = 0.0

Class 4: 𝜇1 = 42, 𝜇2 = 20, 𝜎2
1 = 81, 𝜎2

2 = 9, 𝜌 = 0.0
Patterns of each class in data configuration 2 (Figure 2(a))

were drawn from a bivariate normal distribution with, re-
spectively, the following parameters:
Class 1: 𝜇1 = 45, 𝜇2 = 30, 𝜎2

1 = 100, 𝜎2
2 = 9, 𝜌 = 0.7

Class 2: 𝜇1 = 70, 𝜇2 = 38, 𝜎2
1 = 81, 𝜎2

2 = 16, 𝜌 = 0.8
Class 3: 𝜇1 = 45, 𝜇2 = 42, 𝜎2

1 = 100, 𝜎2
2 = 16, 𝜌 = 0.7

Class 4: 𝜇1 = 42, 𝜇2 = 20, 𝜎2
1 = 81, 𝜎2

2 = 9, 𝜌 = 0.8
Figures 1(b), 1(c) and 1(d) show the clustering results

furnished, respectively, by the KMeans, KKMeans and
AMKKMeans algorithms on the synthetic dataset 1. The
KMeans and KKMeans algorithms cannot categorize the
synthetic dataset 1, as it can be seen in Figures 1(b)
and 1(c), respectively. As it can be seen in Figure 1(d), the
AMKKMeans algorithm furnishes a better categorization of
the data when the class covariance matrices are diagonal and
almost the same.

Figures 2(b), 2(c) and 2(d) show the clustering results
furnished, respectively, by the KMeans, KKMeans and
AMKKMeans algorithms on the synthetic dataset 1. Also
in this case, the KMeans and KKMeans algorithms cannot
categorize the synthetic dataset 2, as it can be seen in
Figures 2(b) and 2(c), respectively. As it can be seen in
Figure 2(d), the AMKKMeans algorithm furnishes a better
categorization of the data when the class covariance matrices
are not diagonal but almost the same.

For each synthetic dataset, the CR index and the OERC
were estimated in the framework of a Monte Carlo simulation
with 100 replications. In each replication the clustering
algorithms were run (until the convergence to a stationary
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value of the adequacy criterion) 100 times and the best result
for each clustering algorithm was selected according to the
adequacy criterion. The average and the standard deviation
of these measures based on 100 Monte Carlo replications
were computed. The term 2𝜎2 in the Gaussian and adaptive
Mahalanobis kernels was estimated as the average of the 0.1
and 0.9 quantiles of ∣∣x𝑖−x𝑘∣∣2, 𝑖 ∕= 𝑘 [39]. The algorithms
were applied to the synthetic datasets 1 and 2 to obtain 4-
cluster partitions. The 4-cluster partitions furnished by the
clustering algorithms were compared with the known a priori
4-class partition.

Table I presents the performance of the KMeans and
KKMeans clustering algorithms, as well as the performance
of the AMKKMeans algorithm on the synthetic dataset 1
according to the CR index and the OERC. As was pointed
out, the performance of the AMKKMeans algorithm was
clearly superior when the class covariance matrices are
diagonal and almost the same, in comparison with all the
other algorithms.

TABLE I

PERFORMANCE OF THE ALGORITHMS ON THE SYNTHETIC DATASET 1:

AVERAGE AND STANDARD DEVIATION (IN PARENTHESIS) OF THE CR

INDEX AND OERC.

CR OERC
KMeans 0.340 (0.055) 0.385 (0.044)
KKMeans 0.338 (0.061) 0.389 (0.048)
AMKKMeans 0.646 (0.100) 0.177 (0.068)

TABLE II

PERFORMANCE OF THE ALGORITHMS ON THE SYNTHETIC DATASET 2:

AVERAGE AND STANDARD DEVIATION (IN PARENTHESIS) OF THE CR

INDEX AND OERC.

CR OERC
KMeans 0.254 (0.035) 0.438 (0.032)
KKMeans 0.255 (0.035) 0.438 (0.033)
AMKKMeans 0.759 (0.041) 0.083 (0.016)

Table II presents the performance of the KMeans and
KKMeans clustering algorithms, as well as the performance
of the AMKKMeans algorithm on the synthetic dataset 2
according to the CR index and the OERC. Once again,
the performance of the AMKKMeans algorithm was clearly
superior when the class covariance matrices are not diagonal
but almost the same, in comparison with all the other
algorithms.

B. Benchmark datasets

The clustering algorithms were applied to four bench-
mark datasets obtained from the UCI Machine Learning
Repository [35], namely Breast Tissue, Iris plants, Wisconsin
Diagnostic Breast Cancer (WDBC) and Wine. Table III (in
which 𝑛 represents the number of patterns, 𝑝 represents the
number of variables and 𝐾 represents the number of classes)
describes shortly the datasets considered.

For each dataset, the number of clusters is set equal
to the number of classes and the algorithms are run 100
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Fig. 1. Synthetic data 1.
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Fig. 2. Synthetic data 2.

TABLE III

SUMMARY OF THE DATASETS.

Dataset 𝑛 𝑝 𝐾
Breast Tissue 106 9 6
Iris Plant 150 4 3
WDBC 569 30 2
Wine 178 13 3

times and the best results were selected according to the
clustering adequacy criterion. The algorithms were applied to
the datasets to obtain a 𝐾-cluster partition. For each dataset
the known a priori 𝐾-class partition was assumed as being
the true partition. Then, the 𝐾-cluster partitions furnished
by the clustering algorithms were compared with the known
a priori 𝐾-class partition. Once again, the term 2𝜎2 in the
Gaussian and adaptive Mahalanobis kernels was estimated
as the average of the 0.1 and 0.9 quantiles of ∣∣x𝑖 − x𝑘∣∣2,
𝑖 ∕= 𝑘 [39].

The results presented by the clustering algorithms are
summarized in Table IV.

The KMeans, KKMeans and AMKKMeans clustering
algorithms were applied to the Breast tissue dataset. The
6-cluster partition obtained with these clustering algorithms
was compared with the known a priori 6-cluster partition.
The CR index were 0.271, 0.271 and 0.289, respectively,
whereas the overall error rates of classification were 43.4%,
43.4% and 41.5% for these clustering methods, respectively.
As it can be seen, the AMKKMeans algorithm furnished
results slightly better than the results furnished by the other
algorithms.

Concerning the Iris plants dataset, the 3-cluster partition
obtained with the KMeans, KKMeans and AMKKMeans
clustering algorithms was compared with the known a priori
3-cluster partition. The CR index were 0.716, 0.730 and
0.941, respectively, whereas the overall error rates of clas-
sification were 11.3%, 10.7% and 2% for these clustering
methods, respectively. As it can be seen, the performance of
the AMKKMeans algorithm was clearly superior.

The KMeans, KKMeans and AMKKMeans clustering
algorithms were applied to the Wisconsin Diagnostic Breast
Cancer dataset. The 2-cluster partition obtained with these
clustering algorithms was compared with the known a priori
2-cluster partition. The CR index were 0.491, 0.534 and
0.613, respectively, whereas the overall error rates of classi-
fication were 14.6%, 13.2% and 10.7% for these clustering
methods, respectively. As it can be seen, the performance of
the AMKKMeans algorithm was superior.

Finally, concerning the Wine dataset, the 3-cluster partition
obtained with the KMeans, KKMeans and AMKKMeans
clustering algorithms was compared with the known a priori
3-cluster partition. The CR index were 0.371, 0.371 and
0.965, respectively, whereas the overall error rates of clas-
sification were 29.8%, 29.8% and 1.1% for these clustering
algorithms, respectively. As it can be seen, the performance
of the AMKKMeans algorithm was clearly superior.

In conclusion, for these real benchmark datasets, the
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adaptive Mahalanobis kernel 𝐾-means clustering algorithm
presented the best performance, in comparison with the
standard 𝐾-means and the kernel 𝐾-means based on the
well known Gaussian kernel.

TABLE IV

BENCHMARK DATASETS

Breast Tissue Iris plants
CR OERC CR OERC

KMeans 0.271 0.434 0.716 0.113
KKMeans 0.271 0.434 0.730 0.107
AMKKMeans 0.289 0.415 0.941 0.020

WDBC Wine
CR OERC CR OERC

KMeans 0.491 0.146 0.371 0.298
KKMeans 0.534 0.132 0.371 0.298
AMKKMeans 0.613 0.107 0.965 0.011

V. CONCLUSIONS

In this paper, we proposed a kernel 𝐾-means algorithm
based on an adaptive Mahalanobis kernel. This kernel is
built based on an adaptive quadratic distance defined by
a symmetric positive definite matrix that changes at each
algorithm iteration and takes into account the correlations
between variables. The main advantage of the proposed
clustering algorithm over its conventional counterpart is that
the introduction of a symmetric positive definite matrix allow
the discovery of clusters with non-hyperspherical shapes. The
effectiveness of the proposed algorithm was demonstrated
through experiments with synthetic and benchmark datasets.

Concerning the synthetic datasets considered, the
AMKKMeans algorithm presented better performances
when the class covariance matrices are diagonal and almost
the same and also when the class covariance matrices are
not diagonal but almost the same. Concerning the real
benchmark datasets, the adaptive Mahalanobis kernel 𝐾-
means clustering algorithm presented the best performance,
in comparison with the standard 𝐾-means and the kernel
𝐾-means based on the well known Gaussian kernel.

As future works we can consider a kernel 𝐾-means
algorithm based on an adaptive Mahalanobis kernel based
on an adaptive quadratic distance defined by a symmetric
positive definite matrix (diagonal and not diagonal) for each
cluster. Moreover, a kernel 𝐾-means algorithm based on an
adaptive polynomial kernel (𝒦(x𝑖,x𝑘) = (𝛾x⊤𝑖 Mx𝑘 + 𝜃)𝑑)
can be proposed.
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