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Support Vector Machine with SOM-based Quasi-linear
Kernel for Nonlinear Classification

Yuling LIN, Yong FU and Jinglu HU

Abstract— This paper proposes a self-organizing maps (SOM)
based kernel composition method for the quasi-linear support
vector machine (SVM). The quasi-linear SVM is SVM model
with quasi-linear kernel, in which the nonlinear separation
hyperplane is approximated by multiple local linear models with
interpolation. The basic idea underlying the proposed method is
to use clustering and projection properties of SOM to partition
the input space and construct a SOM based quasi-linear kernel.
By effectively extracting the distribution information using
SOM, the quasi-linear SVM with the SOM-based quasi-linear
kernel is expected to have better performance in the cases of
high-noise and high-dimension. Experiment results on synthetic
datasets and real world datasets show the effectiveness of the
proposed method.

I. INTRODUCTION

Support Vector Machines (SVMs) [1] have been widely
introduced in different application areas and become the state
of the art. In this method one maps the data into a higher
dimensional feature space and seeks an optimal separating
hyperplane in this space, which can be done by the kernel
trick. Nonlinear SVMs employ sophisticated kernel func-
tions, such as polynomial functions, sigmoid function and
radial basis function (RBF), etc., to fit datasets with complex
decision surfaces. Unfortunately, as many other nonlinear
classification methods, nonlinear kernel SVM models also
face the potential over-fitting issue when facing some real
world datasets with the characteristics of high-noise and
high-dimensional [2], [3].

One of the ideas to overcome the overfitting problem of
nonlinear SVM is to build multiple local linear classifiers be-
cause a nonlinear separation boundary can be approximately
seen as an aggregation of piecewise linear boundaries. B.
Chen et al. (2010) [4] proposed a quasi-linear SVM which
realizes the multiple local linear model interpolated with
basis function in kernel level. Thereby the quasi-linear SVM
is an SVM with a composite quasi-linear kernel function.
Different from conventional kernels, an interpolation basis
function is designed for describing junction between multiple
local linear. Thus based on the above features a quasi-linear
kernel is a flexible and adjustable between the linear and
nonlinear kernel function which is built by incorporating
prior knowledge mined from each local training subsets.

In order to compose the quasi-linear kernel, a clustering
method is needed to partition the input space along the
classification boundary. The k-means clustering method is
a typical one to realize the partition [4], [S]. However, the
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performance of the SVM is sensitive to the partition result,
especially in high-noise and high-dimensional cases [6], [7],
[8], [9]. Moreover, for some complicated input space, the
k-means clustering method may not be suitable for the
partition. Therefore it is highly motivated to develop a better
way to compose the quasi-linear kernel.

The Kohonen’s self-organizing map (SOM) [10] is a
neural network algorithm based on unsupervised competi-
tive learning. It has excellent capability for analyzing large
and complex multivariate data. SOM attempts to address
the problems of high-dimensional data and identifies the
underlying patterns by reducing the dimensionality achieved
through grouping of similar objects and mapping them to a
low-dimensional space, usually to a two-dimensional surface
also known as a topological map. Thus the properties of SOM
includes clustering and projecting while trying to preserve the
topological and metric relationship of the primary data space.
Furthermore, visualization of complex multidimensional data
is also one of the main features of the SOM. It is readily
explainable, simple and easy to visualize on complex mul-
tidimensional data. Based on the above advantages, SOM
has been widely applied in various engineering applications
including image analysis, pattern recognition, and financial
diagnosis [11], [12], [13], [14]. It has been proven to be
a valuable tool in data mining and knowledge discovery in
large databases (KDD) dataset [15], [16], [17], [18], [19].

This paper attempts to introduce the SOM to extract prior
knowledge of the input space in order to compose a quasi-
linear kernel, especially in the cases of high-noise and high-
dimension. In the approach, the clustering property of SOM
realizes a vector quantization (VQ) to produce a weight
vector which has the same dimension as the input data. The
projection property of SOM maps weight vectors to a two-
dimension topological map, generating a 2-D feature vector.
The close samples in the input space will be assigned with
the same weight vector or similar weight vector. Thereby the
close samples are mapped to the same position or to close
position on the topological map also. Based on properties
of SOM the distribution information of high-noise and high-
dimensional dataset can be extracted effectively. Based on the
trained SOM, local training subsets is obtained by simply
partitioning the topological map. The information of local
subsets is utilized to compose the quasi-linear kernel. Finally
SVM is trained with the SOM based quasi-linear kernel.

A series of experiments are carried out to test the effective-
ness of the proposed method, using a set of synthetic datasets
and real world dataset. Experimental results are compared
with SVMs with other kernels and k-means based quasi-
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linear SVM approaches.

The rest parts of the paper are organized as follows: Sec-
tion 2 describes the quasi-linear SVM and SOM algorithm.
Section 3 introduces the proposed SVM with SOM based
quasi-linear kernel in detail. Section 4 describes numeri-
cal simulations to show the effectiveness of the proposed
method. Finally, Section 5 presents discussions and conclu-
sions.

IT. QUASI-LINEAR SVM
A. SVM with quasi-linear kernel

In the case of binary classification problem, suppose we
have the following labeled training data points of N samples
(x1,91)s - (T, Uk), -+ -, (TN, yN)s 21 € RY is the input
vector corresponding to the kth sample labeled by y, €
{-1,+1} depending on its class.

The task of a classifier is to learn the discriminant or
separating boundary between the two classes. Let us consider
a classifier whose classification boundary can be described

by
fp(x) = g(x),

where g(z) is a nonlinear function. Applying Taylor expan-
sion to the nonlinear function g(z) around the region z = 0,

zeR? (1)

) =90) + (4O + 77O+ o @

and defining a vector by

1 T
o) = (40 + 5T O+) @
then we get a regression form of the classifier
Fo(@) = 9(0) + 27 0(x) @)

where 0(z) is a vector of unknown functions of z.
By parameterizing the unknown vector 6(z) using basis
function based networks

M
0(z) = D QR;(x)+Q
j=1
M
9(0) + 2" = Y bR(x)+b,
j=1

we express the classifier as one consisting of M local linear
classifiers with interpolation, see Fig.1, defined by

M
= (Qfx+b;)R;(z) +b (5)
=1
where Q; (j = 0,1,...,M) and b; (j = 1,...,M) are
the parameters of jth local linear classifier, b the constant
parameter, R;(x) the basis function.

Introducing two parameter vectors ®(z) and ©, defined
by

o(z) = [Rl(x),xTRl(x), ... ,RM(m),xTRM(x)]T
o = [blag?v"wavQTM}T' (6)

the Eq.(5) can be further expressed as:
fo(z) =0T . d(x) +b. @)

Based on the procedure of a standard SVM, we apply the
structural risk minimization principle to the Eq.(7), then we
have a QP optimization problem, described by

1aoT
mll)n @ @+CZI§Z ®)
st yZ[GTCI)(xl)+b] 21751
1¢6>0,i=1,2,...,N
The QP optimization problem can be computed by La-
grangian algorithm. Then the dual formulation is obtained
by solving Lagrangian algorithm
1 N
3 > oy K x;) =Y o (9)
ij=1 i=1

N
s.t. {Zi—l i =0

max J (a) =

0<a; <C,i=1,...,N

where «; is Lagrange multiplier, which can be obtained in
Eq.(9). The z; for which a; > 0 are called support vectors;
they contribute to the geometric location of the margin hyper-
plane.

The composite quasi-linear kernel is defined as

K(xi,xj) =

M
= (1+44z; IJZ

Finally, the model f,(x) can be identified as nonlinear
SVM classifier with the composite quasi-linear kernel.

@T(.CCZ)@(IJ)

2 Ri(z;).  (10)

N
y =sign>_ aik(z, ) + 1] (11)
=1

B. Self-Organizing Maps (SOM)

The SOM algorithm which is an unsupervised and com-
petitive learning algorithm was originally introduced by the
Kohonen in 1982 [20]. SOM can be used as clustering
tools due to that it can convert the non-linear statistical
relationship of high dimensional data into simple geometric
relationships on a low-dimensional display. By that way, the
data points which possess similar properties are placed close
to each other within the output of SOM. Fig.1 shows a visual
representation of SOM model, which is made up of two
layers. Let X be the number of samples in the input layer,
and let n, * n, be the number of nodes in the output layer
which are arranged in a rectangular pattern with x rows and
y columns, which is called topological map. Each sample in
the input layer is connected to each node in the output layer.
Thus, each node of topological map is associated with X
weight vectors and X two-dimension (2-D) feature vectors.
Let W;; the weight associated with the connection between
input sample ¢ and output node j, and it has the same
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X inputs

Fig. 1. A structure of SOM

dimension with input vector. The 2-D feature vector which is
two dimensions is the location of the node on the topological
map. SOM is also a vector quantization (VQ) algorithm.
SOM is thus an algorithm that combines these two tasks:
VQ and vector projection.

The VQ learning algorithm of SOM updates not only the
weights of the winning node, but also those of the spatially-
close nodes, based on the activation zone for each node. The
training steps, including competition and weight adaptation
processes, are repeated until the stopping criteria are met,
which can be concluded as follows:

Step 1: Select the size and structure of the topological map.
Initialize weight vectors W;;(t) with small random values.
N is the total number of nodes in the topological map. ¢ is
the index of the learning step.

Step 2: In the competitive process, compute Euclidean
distance between input vector and all nodes of topological
map Eq.(12).

K
di =Y _|X;(t) - W0, i=12....N (12
j=1

where K is the dimension of the input vector X (t).
Step 3: Find the best match unit (BMU) based on the
distance d; Eq.(13).
d; =mind;, i=1,2,...,N (13)
Step 4: In the weight adaptation process, update the new
weights at time ¢ + 1 of the BMU and its neighbourhood
nodes defined by the activation zone.

Wit +1) = Wi(t) + n(t)mi- () (X (¢) — Wi(t))  (14)
where 7)(¢) is the learning rate and m; ;- (¢) is the topological
neighbourhood depending on lateral distance between the
node ¢ and the BMU ¢*. A Gaussian neighbourhood function
centered at BMU ¢* is defined by Eq.(15):

1P = P

90 ) 15)

i (t) = exp(—
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Fig. 2.

where P; is the position vector of the neighbourhood node,
the P is the BMU, and g(t) is a parameter which is
gradually decreased.

Step 5: Repeat by going to step 2 until the change in the
wight vectors is less than a predetermined threshold or the

maximum number of iterations is reached.

III. SOM BASED QUASI-LINEAR KERNEL
A. Framework of SVM with SOM-based quasi-linear kernel

In this paper, the SOM based quasi-linear kernel is pro-
posed to provide robust performance of quasi-linear SVM
in high-noise and high-dimensional dataset. The basic idea
underlying the proposed method is to use clustering and
projection property of SOM to reduce the data noise and
data dimension of original input space. Based on these two
properties, the SOM effectively extracts the distribution in-
formation of high-noise and high-dimensional dataset. After
training SOM, a simply partition technique is used to obtain
local training subsets from two-dimensional topological map,
and each subset is utilized to capture prior knowledge of
corresponding local linear boundary. The center and radius
of each training subsets are be treated as prior knowledge.
In addition, each node is associated with the weight vector
and the 2-D feature vector on 2-D topological map. Thus the
quasi-linear kernel is established by weight vector of SOM
and 2-D feature vector of SOM respectively. Finally SVM
is trained with two kinds of SOM based quasi-linear kernel
respectively. The research framework is shown in Figure 2.

Process of building SOM based quasi-linear kernel is
divided into three stages. There are training SOM to produce
a topological map, partition dataset on the topological map
and constructing the SOM based quasi-linear kernel. The
detailed processing stages are introduced next subsection.
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B. Composition of SOM-based quasi-linear kernel

1) Training SOM: 1In this study, SOM is trained for
reducing the data noise and data dimension of input space.
The clustering of SOM realizes a vector quantization (VQ),
unlike more standard VQ algorithms, centroids are priori
ordered on a two-dimension grid of nodes. Moreover during
the learning phase, its implemented by competitive learning
and learning algorithm uses a neighborhood function to
preserve the topological properties of the input space. After
learning, SOM produces a similarity graph of input space.
Each node implies a cluster and it allows appearing empty
node which means that not input data classify into the node.
The close samples in the input space will be assigned to the
same node or to close nodes on the topological map. This
property can be seen as a data filtering so as to reduce noise,
when setting a sufficient nodes of topological map. L.E.B.
da Silva and J.A.F. Costa (2013) [21] and S. Klanke and H.
Ritter (2005) [22] also applied SOM to reduce data noise.

A illustrate is given in Fig.3. There are two kinds of labels
of sample which are black dots and cross. The dotted line
represents a 3*3 two-dimensional topological map. Fig.3(a)
exhibits a dataset with noise in the input space. Fig.3(b)
shows the 3*3 two-dimensional topological map is trained
to approach input space. Fig.3(c) explains the close samples
in the input space are assigned to the same node or to close
nodes and given a same label on the topological map. Thus
the clustering property of SOM can reduce the amount of
data and noise.

On the other hand, data dimension is reduced to a two
dimensional topological map that is implemented by projec-
tion property of SOM. In the SOM method, each node has
a weight vector and a 2-D feature vector associated with
it. The 2-D feature vector is generated by projecting weight
vector nonlinearly onto a two-dimensional grid of nodes. The
relation of the horizontal and vertical dimensions of the grid
of nodes ought to comply at least roughly with the relation
of the two largest principal components of the weight vector
of SOM, respectively. Therefore SOM as excellent capable
for analyzing large and complex multivariate data. The
Sammon’s projection method [23] is used in this research.

2) Partition on the topological map: After training SOM,
a simply partition technique is used to extract prior knowl-
edge from two-dimensional topological map for constructing

(b)

Using clustering property of SOM to reduce noise

(a) Original input space
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(c) Hit map of SOM

(d) Simple partition

Fig. 4. An example on the training SOM and partition of topological map

a composite quasi-linear kernel. In other words, it partitions
training dataset to several local training subsets. Here a hit
matrix of SOM is used to help partition map. Because the
empty nodes should be avoided to be selected, and the node
which has highest sample density near the center of local
partition area should be chosen. The center and radius of
each local partition area are treated as prior knowledge.

An example on synthetic data is used to formulate the step
of training SOM and partition of topological map. As showed
in Fig.4(a), a two-class dataset is constructed comprising
500 points in each class, the points are uniformly drawn
from some shifted cosine signals in the three-dimensional
space and perturbed with Gaussian noise. Fig.4(b) is a 10%10
topological map with B and M class labels. The hit map of
SOM is showed in Fig.4(c). It represents the classification
result of number of samples on each node. Fig.4(d) describes
a simple partition on the topological map which is cutting
into square pieces of 3 * 3.

3) Construction of the SOM-based quasi-linear kernel:
According to the definition of the quasi-linear SVM de-
scribed in the section 2, the quasi-linear kernel Eq.(10) is
defined as inner product of an explicit nonlinear mapping.
The mapping capacity of the quasi-linear kernel can be
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adjusted by the number of local linear classifiers M. In
addition, quasi-linear kernel is built by using basis function
R;(x) which is used to interpolate the piecewise linear
hyperplanes, and each basis function corresponds to one local
linear hyperplane. In this study, the number of local linear
classifiers M and parameters of basis functions are obtained
from above two steps. The Gaussian function is selected as
the basis function to represent the distribution information of
input space.

Nl =l ?

Ri(xi) = exp( o2
i

) (16)
where p; is center of the [-th data cluster, o; is width of the
[-th data cluster, and )\ is a scale parameter.

IV. NUMERICAL EXPERIMENTS

In this section, experiments are carried out to show the
effectiveness of the proposed SOM based quasi-linear SVM
in synthetic datasets and real world dataset classification. The
results are compared with SVMs with other kernels and K-
means based quasi-linear SVM.

A. Evaluation metrics

The hit ratio is used to measure the model performance,
which is defined as

1N
Hit ratio = — H;
it ratio N ; ;
where H; = 1 if MO; = AO;; H; = 0, otherwise. MO;
is the model output, AO; is the actual output, and N is the
number of the testing examples.

a7

B. Research Data

1) Synthetic dataset: The two class nonlinear synthetic
datasets are generated, which is normal distributed along the
cosine direction. One dimension represents angle variable,
the rest dimension corresponding its cosine value using
different coefficients. The noise is added to sample point by
normal distribution also, where ;x = 0 and 6 = Z. The noise
intensity is controlled by Z. The higher disorderly data by
increasing parameter of Z.

2) Financial dataset: The financial dataset is a stock
market direction problem. The directions of stock price are
categorized as ”1” and ”-1” in the research data. ”’1” means
that the next day’s stock price is higher than today’s stock
price, and “-1” represents that the next day’s stock price is
lower than today’s stock price as detail refers to Y. LIN et
al. (2013) [24] please.

The four nonlinear synthetic datasets and one financial
dataset are applied to execute experiments, which is two
classification problem. The characteristics of each dataset
are showed in Table I. The 90% of the total data is utilized
to train model, and test model by remainder data. Table II
shows Syn2, Syn3 and Finance datasets occur over-fitting
problem. Since nonlinear RBF kernel can not obtain better
classification result than linear kernel.

TABLE I
RESEARCH DATA

Data set Dim Noise Sample Main problem

Syn 1 3 2 1000 High noise

Syn 2 100 0 1000 High dimension

Syn 3 100 3 1000 High noise and high dimension

Syn 4 3 0 1000 No noise and low dimension

Finance 53 high 900 High noise and high dimension
TABLE II

COMPARING OF LINEAR KERNEL AND RBF KERNEL

Hit ratio
Kernel
Synl Syn2 Syn3 Syn4 Finance
Linear 76 80 74 76 61.11
RBF 73 98 48 100 52.22

C. Experimental Results and Analysis

In the experiments, we firstly investigate the clustering
property of SOM to show the effect of noise reduction by
testing different size of topological map. Secondly, we com-
pare the performance of three kinds of quasi-linear kernels to
exhibit the performance of proposed SOM based quasi-linear
SVM by setting different number of partition M. There are
K-means based quasi-linear kernel (K-means QLK), weight
vector of SOM based quasi-linear kernel (SOM-W QLK) and
2-D feature vector of SOM based quasi-linear kernel (SOM-
2D QLK). In this study, the dimensions of original input
space is reduced to a two-dimensional topological map. The
node shape is set to hexagonal lattice. The learning rate and
neighborhood range are set to 0.05 and 1.

TABLE III
EXPERIMENTAL RESULTS OF NOISE REDUCTION BY CLUSTERING
PROPERTY OF SOM

Hit ratio

Data

10¥10  20*20  30*30 40*40  50*50
Syn 1 76 77 77 79 79
Syn 2 81 81 88 91 93
Syn 3 68 71 74 75 83
Syn 4 83 95 100 100 100
Finance  58.88 61.11 62.22 64.44 64.44

1) Experimental results of noise reduction by clustering
property of SOM: In order to test effecting of clustering
property of SOM with relation of noise reduction. We test
different n*n size of topological map and different noise level
datasets, as shown in table IIl. The weight vector of SOM
based quasi-linear kernel is used here. Since the clustering
property of SOM realizes the vector quantization (VQ) which
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TABLE IV
EXPERIMENTAL RESULTS OF DIFFERENT PARTITION NUMBER

Number of partition (%)

Data kernel
4 9 16 25 36 49 64 81
K-means QLK 75 74 74 75 75 76 73 73
Synl  SOM-W QLK 75 75 75 75 79 79 79 80
SOM-2D QLK 74 74 74 75 75 75 75 75
K-means QLK 80 79 80 82 82 81 84 86
Syn2  SOM-W QLK 80 88 89 93 91 91 92 92
SOM-2D QLK 82 81 80 79 79 82 82 82
K-means QLK 74 74 74 74 74 75 70 65
Syn3  SOM-W QLK 75 75 76 75 76 77 76 79
SOM-2D QLK 75 75 76 77 77 79 80 80
K-means QLK 83 98 99 100 100 100 100 100
Syn4  SOM-W QLK 82 83 84 95 95 100 99 100
SOM-2D QLK 79 80 79 79 79 81 81 82
K-means QLK  61.11 60 60  61.11 6333 6222 59.17 59.17
Finance SOM-W QLK 5444 5778 6222 6444 6444 6444 66.67 66.67
SOM-2D QLK 61.11 6222 6222 6222 61.11 6222 6222 6222

is without reduces dimension. Number of partition on the
topological map is 36.

In Table III, it is easy to see larger topological map
provides higher accuracy of the model. One reason is that
excessive input item are overlapped to a small size of topo-
logical map. It can not preserves the topological and metric
relationship of the original data space effective. Therefore,
a larger size of map is needed for sufficient resolution. In
other word, reducing data noise by setting a sufficient nodes
of topological map.

2) Experimental results of SOM based quasi-linear SVM:
We investigate the performance of proposed SOM based
quasi-linear SVM by comparing with K-means based quasi-
linear kernel in terms of testing different number of partition
in four kinds of nonlinear synthetic and one financial dataset-
s. The relative performance of the models is measured by hit
ratio, which is the percentage of the total correct of trend
prediction. The experiment results are shown on Table IV.
The size of topological map is set 50*50.

In Table III, the SOM-W QLK and SOM-2D QLK reaches
higher performance in Syn 1, Syn 3 and Finance datasets.
The common characteristics of these two datasets is high
noise. In other words, proposed SOM based quasi-linear
SVM can effective deal with high noise data than K-means
based quasi-linear SVM.

On the other hand, the K-means QLK has high accuracy
than SOM-2D QLK on Syn 2 and Syn 4 datasets. These two
datasets without adding noise and it not occurs over-fitting

problem, see Table II. Thereby K-means based quasi-linear
SVM can works will and stable on noise-free dataset.

From Syn 2 and Syn 4 datasets we also know when
number of partition increases the accuracy increases too.
It means the separating boundary of SVM is quite soft.
Comparing with results of Table II, the performance of RBF
kernel is highest among all five kernels. Thus RBF kernel
has high performance on non-overfitting data. As we know
RBF kernel can approaches a very soft separating boundary
of SVM.

The characteristics of Syn 3 and Finance datasets are
high noise and high dimensional. In Syn 3, the SOM-2D
QLK has highest performance of all five kernels. In Finance
dataset, SOM-W QLK obtains highest performance. Thus the
proposed SOM based quasi-linear SVM can effective deal
with high noise data and high dimensional dataset. It worth
to have further study to verify the function of dimensional
reduction of SOM in real world datasets.

V. CONCLUSIONS

In this paper, a SOM-based quasi-linear SVM is pro-
posed to provide better performance in high-noise and high-
dimensional dataset. The SOM-based quasi-linear SVM is an
quasi-linear SVM with the SOM-based quasi-linear kernel
function. The clustering and projection properties of SOM is
used to construct a SOM-based quasi-linear kernel function.
Based on these two properties, the distribution information
of high-noise and high-dimensional input space is extracted
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effectively. After training SOM, a simply partition technique
is used to catch local distribution information subsets from
topological map. Then a SOM-based quasi-linear kernel
function is built by local distribution information from SOM.
Finally quasi-linear SVM is trained by SOM-based quasi-
linear kernel function.

The proposed approach was tested on four synthetic
datasets and one real world dataset. Simulation results ex-
hibit that our proposed method produces robust performance
which are outperform other comparable methods in high-
noise and high-dimension datasets.
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