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Abstract—The task of identifying native and foreign elements
and rejecting foreign ones in the pattern recognition problem is
discussed in this paper. Such the task is a nonstandard aspect of
pattern recognition, which is rarely present in research. In this
paper, ensembles of support vector machines solving two—classes
and one—class problems are employed as classification tools and
as basic tools for rejecting of foreign elements. Evaluation of
quality of classification and rejection methods are proposed in
the paper and finally some experiments are performed in order
to illustrate acquainted terms and methods.

I. INTRODUCTION

Rejection is an aspect of pattern recognition shallowly re-
searched and rarely considered in practice. In standard attempt
to pattern recognition, an object is classified to one of given
classes. The set of classes is either fixed a priori (supervised
problem), or is determined at the stage of a recognizer con-
struction (unsupervised problem). In these cases, it is assumed
that all classified elements belong to a fixed set of classes.
However, this assumption is often insufficient in practice. It
is proved in important practical applications that processed
are not only elements of the fixed set of classes, but also
elements not belonging to these classes. Let us use the names
native elements for elements of given classes and foreign
elements for ones not belonging to any given class. Example
applications of rejecting foreign elements are: recognizing
printed texts, manuscripts, music notations, biometric features,
voice, speaker, recorded music, medical signals, images, etc,
c.f. [1], [10].

The dissemination of technologies using pattern recogni-
tion increases the importance of identifying foreign elements.
For example: in recognition of printed texts, foreign elements
(blots, grease, or damaged symbols) appear in a negligible
scale due to regular placement of printed texts’ elements
(letters, numbers, punctuation marks) and due to their good
separability. These features of printed texts allow employing
effective segmentation methods and filtering foreign elements.
However, in recognition of such sources as recorded voice,
biometric features, medical images, geodetic maps or music
notation etc., problem of foreign elements is more important.
Unlike printed text, such sources as, for instance, geodetic
maps or music scores, contain elements placed irregularly
and overlapping native elements. Such elements are hardly
distinguishable by size and shape analysis.

Due to weak separability of foreign and native elements
of recognized sources, segmentation criteria must be more
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tolerant than in the case of printed texts in order not to reject
native elements at the stage of segmentation. In consequence,
more foreign elements are subjected to stages of recognition
following segmentation and should be eliminated then. The
problem of analysis of foreign elements is highly important
in such domains as analysis of medical signals and images,
recognition of geodesic maps or music notations (printed and
handwritten) and its importance will be increasing in future,
c.f. [4].

The problem of rejecting foreign elements in recognition
tasks is not present frequently in research and is rather rarely
present in papers on pattern recognition. Assuming that clas-
sified elements are always native ones, i.e. they belong to
one of recognized classes, and ignoring rejection of foreign
elements is rather a standard attempt. Alike, papers describing
practical applications of pattern recognition methods ignore the
problem of foreign elements, what may come from insufficient
theoretical research of this subject and limited abilities of
existing rejection methods. There are significant exceptions,
which show that the rejection problem cannot be disregarded,
c.f. [5], [8].

The motivation of this study arises from discussion on
classification with rejection option. As outlined above, up—to—
date research and practice still need conducting further studies
on new aspects in the domain of pattern recognition. It is
expected that research in this area will overcome technological
barriers and will increase effectiveness in areas mentioned
above.

The paper is structured as follows. Related research and
introductory remarks are presented in section II. In section III,
various ensembles of classifications based on binary classifiers
are shown. The discussion includes evaluation criteria of rejec-
tion and reclassification methods. Conclusions and directions
of further research are presented in section IV.

II. PRELIMINARIES

A. Support Vector Machine

The experiment described in this paper is a classification
with Support Vector Machine (SVM). Here we give brief
description of SVM necessary to introduce discussed concept
of rejection. Technical details of SVMs can be found in [9].

Classification of elements is usually done on vectors of
features (observed, measured etc.) rather than on elements



themselves. In order to simplify description we will talk about
features representing elements rather then about elements
themselves. Let us recall that SVM can directly separate two
classes of elements, which are linearly separable. However,
using transformation of features into a highly—dimensional
space, it is possible to separate linearly in ultimate space
classes, which are linearly non separable in the space of
features.

1) Two—classes SVM: Let us assume that there are two
classes labeled -1 and +1. Hence, the space of features is
included in RY. Assume that vectors of features of training
elements z; € R? are labeled as y;, wWhere y; is either -1 or
+1, for ¢+ = 1,2,...,N and for N being the cardinality of
the learning set. For a possibility of a non linear separation
of the two classes, the space R® is mapped into a space of
higher dimension using so called kernel function K(z,z’).
Then a SVM decision function is implemented as:

N
f(z) =sgn (Zyi*ai*K(x,xi)—i—b) (1)

i=1
where coefficients «; and b are computed by maximization of
the following convex quadratic programming (QP):
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with the following constrains:

N
/N 0<a<C A D aixyi=0 (3)
i€{1,2,...,N} j=1

The regularization coefficient C' in Equation 3 controls
trade—off between margins and misclassification errors. In this
work the regularization coefficient C is set to 1. As the kernel
function K (z,2’) the Gaussian kernel is taken

1
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where d is the number of features.

2) One—class SVM: In this study we employ one—class
SVM classifier, which separates one class data from thee
origin. Below, we give brief description of this class of SVMs
while details ate presented in [7] Assume that z; € R? are
vectors of features of training elements, for ¢ = 1,2,..., N
and for IV being the cardinality of the learning set. Assume
also K(x,z’) is a kernel function. Then a one—class SVM
decision function is implemented as:

N
f(z) = sgn (Z a; x K(z, ;) — p> (5)

where «; and p are obtained by maximization of the following
convex quadratic programming (QP) problem:
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with constrains:

N
1
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i€{1,2,..., N} j=1

where v is an equivalent of the regularization coefficient C' in
Equation 3.

The classifiers were implemented using the libsvm library
for Matlab [2].

B. Evaluation

Quality evaluation of classification with rejection requires
non standard measures. Intuitively, it is important to measure
how exact rejection procedure, i.e. how many foreign elements
are classified as native ones and oppositely, how many native
elements are rejected. Of course, measuring classification
quality of native elements to proper classes is still of great
importance.

For better understanding how quality of classification with
rejection should be measured we adopt parameters and quality
measures used in signal detection theory. Since these param-
eters are widely utilized, we do not refer to original sources,
but of course do not claim to letting these factors on. The
following confusion matrix a two classes problem is adopted
in evaluating quality of classification with rejection in Table I.
Parameters exposed in this Table were then used in defining
several factors, which outline classification quality.

TABLE 1. CONFUSION MATRIX FOR classification with rejection

PROBLEM

Classification
as foreign

Classification
as native

Native elements True Positives (TP)

False Positives (FP)

False Negatives (FN)
True Negatives (TN)

Foreign elements

The parameters in Table I are numbers of elements of
a testing set. They have the following meaning:

e TP — the number of native elements classified as
native elements (no matter, if classified to correct
class, or not),

e FN — the number of native elements incorrectly
classified as foreign ones,

e F'P — the number of foreign elements incorrectly
classified as native ones,

e TN — the number of foreign elements correctly clas-
sified as foreign ones.

To describe quality of classification with rejection three
sets of complimentary factors are used.

Classifier’s overall performance for both categories of ele-
ments (native and foreign ones) is measured by the following
two factors. These factors measure effectiveness of correctly
classified native elements together with correct rejected foreign
elements:

TP+TN

A =
Y = T p T FN+ FP+ TN ®)
I FP+FN
= TP YFN+ FP+ TN



The next two factors evaluate influence of one category of
elements classes at classification of native elements or rejection
of foreign elements. Here are the factors for native elements:

TP
ative I°recision TP FP )
Native False Di Rate = rr
ative False Discovery Rate = TP+ FP
and the factors for foreign elements:
TN
Foreign Precision = TNTFN (10)
Foreign False Di Rate = N
oreign False Discovery Rate = TN T FN

The factors measuring effectiveness of classification inside
one category of elements, i.e. in the category of native elements
and in the category of foreign elements. In this case taken
are proportions of correctly classified and incorrectly rejected
native elements to all native ones:

TP

ative Sensitivity TP+ FN (11)
FN

Native Miss Rate = m

and proportions of correctly rejected foreign elements and
incorrectly classified foreign elements to all foreign ones:

TN
F ; itivity = ————— 12
oreign Sensitivity TN+ FP (12)
FP
Foreign Miss Rate = ————
oreign Miss Rate TN T FP

Finally, the so called F—measure defines a balance between
the precision and the sensitivity:

Precision - Sensitivity
F-measure = 2 -

13)

Precision + Sensitivity

The above factors are pairs of complimentary factors. In
order to increase quality of classification, Accuracy, Sensitivity
and Precision should be maximized or, equivalently, Error,
Miss Rate and False Discovery Rate should be minimized.
Hence, there is no need to analyze all factors. It is sufficient
to focus on one type of them, i.e. either on the ones to be
maximized or on the ones to be minimized.

III. EXPERIMENT

In this study we test several architectures of binary clas-
sifiers and one—class classifiers on synthetic data. Support
vector machines were used as classifiers. Dataset includes
native elements split between two classes and foreign elements
structured as described later in this section.

A. Dataset

The testing environment is defined in the bipolar unit
interval [—1, 1] x [—1, 1]. Two classes of native elements were
generated using Gaussian distribution, 600 elements in each
class. Centers (mean values) of these classes were located in
points (0.1,0.1) and (—0.3,—0.3) while standard deviations
was set to 0.15 for each class. Therefore the classes overlap,
as it can be seen in Figure 1.
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Fig. 1.

Testing environment

Three different groups of foreign elements were added, 200
elements in each group. The first group includes uniformly
distributed ones in the whole testing area. Therefore, foreign
elements laid on both classes of native ones and outside them.

The second group contains 200 foreign elements located
outside of both classes of native elements. This elements were
generated with Gaussian distribution centered in the point
(0.6,—0.6) and with standard deviation equal to 0.1. As it
can be seen in Figure 1, this group of elements is separated
from both classes of native elements classes.

The third group includes 200 foreign elements located
between both classes of native elements. This group was gener-
ated using a modified Gaussian distribution. The = coordinate
was generated using the Gaussian distribution with the mean
value equal to 0 and with the standard deviation equals to 0.1.
Then, the y coordinate was generated as equal to —z increased
by a random value (uniformly distributed) from the interval
[0,0.1]. Finally, the = coordinate was decreased by 0.1. As
the result, this group of foreign elements lays between both
classes of native elements, c.f. Figure 1.

Test were done in two series. In the first one the whole
set of elements was used as the learning set while testing set
included randomly chosen 50% elements of every group of
elements (i.e. 300 elements in each class of native elements and
100 ones in every group of foreign ones). Hence, the testing set
is the subset of the learning set. In the second testing series, the
whole set of elements was split to two equal parts. Therefore,
learning and testing sets were disjoint.

B. Rejection methods

1) Global SVM rejection: The global rejection schema is
shown in Figure 2. The dataset is split into two subsets of
native and foreign elements first. Then, in the second step, the
set of native elements is split up into proper classes.

This method needs the learning set to contain native
elements split up among classes and foreign elements.
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2) Local SVM rejection: In Figure 3 the local rejection
schema is shown. In the first step of classification, the dataset
is split up among both classes of native elements. This means
that all foreign elements fall into classes of native ones. In the
next step of classification, foreign elements are separated from
native ones.

This method needs the learning set to contain native
elements divided among classes and foreign ones.

Fig. 4. Results of global rejection
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3) One—class SVM rejection: In Figure 5 the one—class
rejection schema is shown. In the first step of classification,
the dataset is split up among both classes of native elements.
This means that all foreign elements fall into classes of native
ones. In the next step of classification, one—class SVM is used
to separate elements of the class from the rest of elements.
This step is done for each class separately.

This method needs the learning set to contain native
elements divided among classes to train the SVM classifier
as well as the one—class SVM classifier. However, unlike the
global and the local rejection this rejection method does not
need the knowledge on distribution of foreign elements.

4) Distance rejection: The classifier was modified in order
to produce probabilistic outputs. The method proposed in [6]
was applied. Using a distance f(x) between an element and
decision boundary, a probability of correct classification was
computed according to the formula:

1

= T e @)’ (1

p(z)

The classification decision taken at the low probability
level can be rejected as not credible. The low probability level

Fig. 6. Classifier for distance rejection
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Fig. 7. Results of local rejection

is defined by a threshold. The threshold can be obtained by
calculation of the reject trade—off for the learning sets [3].

This method needs the learning set to contain native
elements divided among classes and foreign ones.

C. Results

Tests were performed in two series:

e the testing set was taken as a subset of the learning
set (the half of the learning set was taken under
consideration). This approach was aimed to outline
differences between analyzed methods of classifica-
tion with rejection without an influence of learning
shortcomings,

e  separated learning and testing sets (the whole dataset
was split into two equal subsets) were used to simulate
more realistic conditions.

In each series five models have been tested:

e classification without rejection. i.e. all elements fall
into one of two classes of native elements,
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classification with a one—class SVM to reject all
foreign elements classified as members of the class,
but laying outside of the area occupied by the given
class of native elements, c.f. Figure 5,

classification in two stages, c.f. Figure 2. In the first
stage a SVM classifier separates native elements and
foreign ones. In the second stage, elements already
classified as native, are assigned to proper classes,

classification in two stages, c.f. Figure 3. Firstly, all
elements, native and foreign, were distributed among
both classes of native elements. Then, foreign ele-
ments were rejected for each class of native elements
separately,

all native and foreign elements classified to both
classes of native ones. Then, foreign elements rejected
based on distance to boundary of decision regions.

All models were tested on four testing datasets. Each
dataset included two classes of native elements and selected
foreign elements:
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Fig. 9. Classification, no foreign elements, models tested on the learning set (upper chart) on separated training and testing sets, separation ratio: 0.50 (bottom
chart)
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Fig. 10. Classification with rejection, models tested on the learning set (upper chart) and on the learning and testing sets, separation ratio 0.50 (bottom chart)

e foreign elements generated randomly with uniform In all tests the factors TP, FN, FP and TN (c.f. Table I
distribution were added to to native ones, for factors’ definition) were counted. The factors were used
to calculate measures such as the accuracy, the precision, the

e outside foreign elements added to to native ones, recall and the F-measure.
e in-between foreign elements added to to native ones, In Figure 9 tests done on both classes of native elements are
illustrated. Foreign elements were not considered. Figure 10
e all foreign elements added to native ones. illustrates results of tests done on all elements: native and
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Fig. 12.

foreign ones. Figures 11 and 12 show results of tests performed
on configurations native elements of one class contra all other
elements (native and foreign). Upper chart of every Figure
exposes results for configuration with the testing set included
in the learning set while bottom chart depicts results for
configuration with separated learning and testing set (c.f. notes
on learning and testing sets at the beginning of this section).
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C2 versus all others, without rejection, models tested on the learning set (upper chart) and testing set with separation ration 0.50 (bottom chart)

D. Discussion

Let us recall that the number of native elements may be
reduced by rejection method, c.f. [4]. In tests described here,
the number of native elements is equal to 600, they are grouped
in two classes. This number stay nearly unchanged in cases of
global and local rejections. The rejection based on one—class
SVM reduces the number of the native elements by nearly 5
percent. However, the rejection based on SVM distance rejects



over 20 percent of the native elements.

Considering classification without foreign elements, all
tests reported here show that classification results do not
differ significantly between both configuration of datasets, i.e.
the configurations with the learning set including the testing
one and with the learning and testing sets disjoint. Obtained
statistics are from the range 97-100% for the first configuration
and 96-100% for the second one, c.f. Figure 9. The best
classification results were obtained for rejection based on SVM
distance, because all misclassified elements that lied between
classes were rejected.

The influence of a learning set is noticeable for the results
of the classification with rejection. The difference in the
accuracy for the models tested on the testing set included in
learning one and on the testing sets separated from the learning
one is the biggest for rejection based on SVM distance. The
difference is nearly 10% For each group of foreign elements
and it is around 5% for all groups of foreign elements collected
together. Other statistics show also significant differences.
Additionally, big variability can be observed for rejection
based on the one—class SVM and the on the local rejection
tested on the group of foreign elements placed between classes
of native elements.

Most of rejection methods give better results than methods
without rejection. Rejection based on SVM distance is the only
exception. It brings worse results even for foreign elements
placed between both classes of native elements. There is also
a problem with global rejection used for foreign elements
placed inside both classes of native elements. In such the case,
rejection method does not work.

The accuracy is well correlated with the f-measure. There-
fore, A rejection method can be evaluated explicitly. Local
rejection obtains the best results. The good results are also
obtained by the rejection based on one—class SVM and the
global rejection, but only for the random and outside foreign
elements.

The last series of tests analyzes differences between results
for both native classes. When the classification without rejec-
tion is used, the difference is equal to 14% in the accuracy
calculated for each class separately (elements of the class
versus the rest of elements) and for the group of outside foreign
elements. This difference is equal to 10% for the inside group
of foreign elements. However, for all the rejection method,
except the method based on SVM distance, the accuracy for
both classes is the same for the outside foreign elements. For
the inside foreign elements the difference is smaller than for
the model without rejection in all cases except the global
rejection.

IV. CONCLUSIONS

The task of identifying native and foreign elements and
rejecting foreign ones in the pattern recognition problem is
discussed in this paper. Such the task is a nonstandard aspect
of pattern recognition, which is rarely present in research. In
this paper, ensembles of support vector machines solving two—
classes and one—class problems are employed as classification
tools and as basic tools for rejecting of foreign elements.
Evaluation of quality of classification and rejection methods

3487

are proposed in the paper and finally some experiments are
performed in order to illustrate acquainted terms and methods.

Tests done in the reported experiment affirm importance of
the brought up problem of rejection of undesirable elements in
pattern recognition problem. Such elements are called foreign
ones in contrast to native ones. They may appear at any stage
of pattern recognition tasks: measurement, observation and
segmentation, feature extraction and selection, classification.
There are several sources of foreign elements: errors and mis-
takes of measurement and observation, distortion and dirtiness
of a (paper) document, carelessness of tool’s reading and using
etc.

The tests proved that the proposed model of local rejection
gave the best results in all tested scenarios. Moreover, the
method of global rejection and the one—class SVM based
rejection can be also used in selected scenarios to reduce a
range of learning data.

This study opens interesting directions of real world pat-
tern recognition tasks investigations. In particular, aspects
of a paper-to-computer memory technologies is among of
high importance tasks in research and practice. Especially,
imperfectness of scanned documents’ segmentation is of great
interest, since this stage produces undesired foreign elements
affecting next stages of such technologies.
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