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Abstract—We collect data from the HIV Resistance Drug
Database and, based on CD4+ and viral load measures, together
with RNA sequences of the reverse transcriptase and of the
protease of the virus, we design models using machine learning
techniques MultiLayer Perception (MLP), Radial Basis Function
(RBF), and Support Vector Machine (SVM), to predict the
patient’s response to anti-HIV treatment. In this work we applied
the SMOTE Algorithm to deal with the enormous difference
between the number of case and control samples, which was
crucial for the accuracy of the models. Our results show that
the SVM model proved more accurate than the other two,
with a ROC curve area of 0.9398. We observe that, from 1000
patients, there are 646 samples for which the three methods
delivered correct predictions. On the other hand, for 69 patients
all three models fail. We analyzed the data for those patients
more carefully, and we identified codons and properties that are
important for a response/non-response result. Among the codons
that our models identified, there are several with strong support
from the literature and also a few new ones. Our analysis offers
numerous insights that can be very useful to the prediction of
patients’ response to anti-HIV therapies in the future.

I. INTRODUCTION

The HIV (Human Immunodeficiency Virus) is a retrovirus
that attacks the humans CD4+ T cells, causing the decline
in their natural defenses against pathogenic microorganisms.
Given the high rate of mutation that retroviruses present [1],
fighting them is a very difficult task. There are many variants
of a same type of HIV in a single individual. This variation is
even higher among viral strains from different patients. Such
mutations can cause a particular patient not to have a good
response to antiretroviral treatment, since the virus installed
on your system may have developed resistance to some drugs
used to combat the infection. Recognizing HIV mutations
that lead to resistance of the virus to certain medications and
predicting whether the patient will have a satisfactory response
to therapy are challenges that require the use of computational
and statistical techniques to be faced in a timely fashion.

Many machine learning methods have been applied in
attempts to predict whether a patient will or not have a satis-
factory response to HIV cocktail drugs. To this end, properties
of the virus RNA sequences of each patient were considered.
Neural Network models have been developed considering such
characteristics [2], Support Vector Machines models have also
been introduced [3] [4]. A comparative study was conducted
considering the performance of these tools and human experts
[5], which showed evidences that the computational methods
are more efficient than human experts. Methods that do not

consider the genotype of the HIV have also been presented [6]
[7] [8]. Recently, a method based on multilabel classification
exploring cross-resistence was presented [9].

In this work, we fitted prediction models and developed
an extensive analysis involving the machine learning tech-
niques MultiLayer Perception (MLP), Radial Basis Function
(RBF), and Suport Vector Machine (SVM). These approaches
were selected because they are well known and they can
deliver accurate results when precisely tunned. We applied
SMOTE (Synthetic Minority Over-sampling Technique) [10],
a synthetic oversampling algorithm, to resolve the unbalance
between the case and control cases without causing overfitting.
In this paper we answer the following questions: (1) Which
of those approaches has the best performance considering
accuracy rate?, (2) Are there significant differences among
the wrong results of each method?, (3) Are there patterns or
properties of the data that induce the approaches to fail?, and
(4) Mutations in RNA and clinical measures have the same
predictive power on all models?

The remainder of this paper is organized as follows.
The next section presents aspects of HIV virus and AIDS
(Acquired Immunodeficiency Syndrome) treatment that will
be considered in the study. In Section III, the experiments and
the data used are described. The results obtained are presented
in Section IV. Section V contains a discussion of the results
and our concluding remarks.

II. HIV AND AIDS TREATMENT

The structure of the HIV is composed of an outer lipopro-
tein membrane containing specific receptors (gp120 on the
surface and gp14 that crosses the membrane), an inner cover
which insulates its genetic material, the proteins necessary
for virus replication in cell (p11 protease, integrase p31, and
reverse transcriptase p51), and two structural proteins (the
former of capsid p24 and the former of nucleocapsid p17).

The cycle of HIV is extremely fast. Every day, about 100
copies of the virus are produced. The viral RNA has a high
rate of mutations observed. The mutations occur mainly on
the reverse transcriptase viral RNA replication step, since the
enzyme responsible does not have the control mechanisms
required to repair errors in base pairing occurring at this stage.
These mutations produce changes in the structure of proteins,
causing the virus not to be recognized by the immune system
of its host, and making the new subtype resistant to the drugs
used.
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Fig. 1. Correlation between viral load and CD4+ cells count in patients (A)
with CD4+ > 350 cells/mL, and (B) with CD4+ ≤ 350 cells/mL.

The parameters for evaluation of the patient state are
the laboratory tests of rates of CD4+ and Viral Load (VL).
According to the values obtained, anti-HIV therapy is indicated
or not. In this work we applied the guideline treatment for HIV
from the National Institute of Health (NIH) until February
2013, which recommended the monitoring of patients for
initiation of therapy based on rate of CD4+ cells, and the
patterns were as follows: (Group 1) CD4+ < 350 𝑐𝑒𝑙𝑙𝑠/𝑚𝐿;
(Group 2) 500 𝑐𝑒𝑙𝑙𝑠/𝑚𝐿 > CD4+ > 350 𝑐𝑒𝑙𝑙𝑠/𝑚𝐿; and
(Group 3): CD4+ > 500 𝑐𝑒𝑙𝑙𝑠/𝑚𝐿.

III. EXPERIMENTS DESIGN

A. Data preparation

The data used in this work were collected from the HIV
Resistance Drug Database [11]. It includes 1000 patients
with the following attributes: CD4+ at the beginning of the
treatment (CD4), viral load at the beginning of treatment (in
log base 10) (VL), RNA sequence of the reverse transcriptase
of virus (RT), sequence of the protease (PR). We compute
the response of the patient to treatment after 16 weeks. It is
considered a positive response to the treatment when after 16
weeks there is a reduction of the viral load by a factor of at
least 10 (1 in log basis). Patients with positive response are
called responders (class 1) and patients with negative response
are called non-responders (class 0).

One interesting observation about this data is illustrated in
Figure 1, the correlation between the viral load and the CD4+
cells count. In Figure 1 (A) are patients with CD4+ count >
350 at the beginning of the treatment, while in Figure 1 (B)
are counts for patients with CD4+ ≤ 350. It is expected that
the larger the viral load, the least is the CD4+ cell count, since
with a larger number of viruses circulating in the body fluids,
represents a stronger aggression to the immunological system.
Nonetheless, analyzing Figure 1 (A), it is easy to notice the
null correlation between those two variables (line parallel to
the 𝑥 axis), as opposed to the strong inverse correlation in
Figure 1 (B).

The data presented three problems that should be dealt
with before being used to train a classifier: (1) 80 of the
1000 patients do not have the PR sequence available, (2) The
RT sequences have different numbers of bases, and (3) The
Responders and Non-responders classes are unbalanced, there
are 794 samples (79.4%) of class 0 and 206 samples (20.6%)
of class 1.

For efficiency purposes, each amino acid was represented
by a single natural number between 1 and 22, resulting in
approximately 565 entries to the Neural Net. Since RT have
different number of nitrogenous bases sequenced in each
patient, the codons were translated into peptide sequences,
using EMBOSS Transec [12] [13] software, and then they were
aligned using the tool called Clustal Omega [14] [13]. The
output of Clustal Omega is composed by 26 possible symbols
(22 amino acids and 4 special situations, for example, missing
data and gaps). The symbols ”underline” and ”gap” used to
represent missing data resolved the problems of (1) missing
codons on RT and (2) RTs of different lengths. With the special
characters inserted by the Clustal Omega, the number of inputs
for the neural model was 593. A binary representation of those
symbols was also considered in our experiments, but the results
did not present any improvement.

The two types of approaches used to solve the problem
of unbalanced classes are oversampling (replication of data
from smaller class) and undersampling (data reduction of
larger class). As the amount of examples for training is
not large, discarding some of them would negatively affect
the training; for that reason, undersampling was discarded.
Simply replicating the data from minority class increases the
bias of the classifier for this class, however it makes the
model very specific to these replicate cases, damaging the
generalization. We used the oversampling synthetic technique
called SMOTE (Synthetic Minority Over-Sampling Technique)
[10], which creates artificial data based on spatial features
between individuals of the minority class, in order to extend
the decision region, thus increasing the generalization power
of the classifiers generated for these data. SMOTE was applied
in order to equal the number of minority class examples to the
majority class, resulting in a base with 794 instances (50%)
of class 0 and 794 instances (50%) of class 1. The solution
of the above-mentioned three problems resulting thus in a
database with 1588 (1000 real + 588 synthetic) patients and
596 columns (593 of (PR+RT) + CD4 + VL + response to
treatment). The use of the SMOTE technique improved our
results considerably. Due to lack of space, the charts indicating
such improvements cannot be presented in this paper.
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B. Classifiers considered

Three different computational intelligence techniques were
used for the design of the classifiers: MultiLayer Perceptron
(MLP), Radial Basis Function (RBF), and Support Vector
Machine (SVM).

For defining the best MLP configuration, we used multi-
layer perceptron networks with two intermediate layers, which
are able to approximate any continuous function [15]. Different
numbers of intermediate layers were considered, but none of
them showed better results than two.

Because a very large number of connections can lead the
network to memorize the training patterns instead of extracting
their general characteristics and provide generalization, several
values were tested for the number of nodes in the first
intermediate layer(100, 150, 200, 250, and 300), and for the
number of nodes in the second intermediate layer (50, 75,
100, 125, and 150). We also varied widely the rate of learning
to observe the effect on the error, since a high learning rate
makes the training very unstable and prevents the convergence
of the learning process. The activation function chosen was
hyperbolic tangent.

The learning algorithms tested were: Gradient descent
with momentum and adaptive learning rate backpropagation
(traingdx), since the momentum accelerates the training pro-
cess and reduces the possibility of local minimum, whereas an
adaptive learning rate attempts to keep the learning step size as
large as possible, while keeping learning stable [16]; resilient
backpropagation (trainrp), which is fast and uses little memory
[16], and one-step secant backpropagation (trainoss), which
usually converges faster than conjugate gradient methods [17].

As stopping criterion, we used the maximum number of
iterations equal to 1500 or max fail equal to 10, which indicates
that if the error in the validation set grows for ten consecutive
iterations, the training is stopped to avoid overfitting. The
best configuration found for MLP had 250 nodes for the first
intermediate layer, 125 nodes for the second intermediate layer,
0.001 for the learning rate and one-step secant backpropagation
as learning algorithm.

The RBF has a fixed number of intermediate layers equal
to one and number of neurons in the hidden layer is defined
at run time, which gradually grows to reach the established
mean square error taken as a parameter. Therefore, only one
parameter was varied in search for the best possible value:
the spread of radial basis functions that are used by each
neuron. The values tested in this search were: from 1 (default)
to 21 by a factor of 2. These values were chosen because
this parameter is directly associated with the smoothness of
the approximation function, so that the higher the value,
the smoother the function. Thus, a high spread means many
neurons will be required to fit a fast-changing function while
a low spread means a lot of neurons will be necessary to fit a
smooth function and the network may not generalize well [16].
As stopping criterion we used a mean squared error goal equal
to 0.05. The RBF starts with no neuron in the hidden layer and,
as the inputs are being provided, a new neuron is inserted with
center equal to the input vector with the smallest error until it
reaches the mean squared error specified as parameter [18].

For SVM, according to Hsu, Chang and Lin [19] there

are three main parameters to be varied in search of the best
classifier: kernel function, box constraint and rbf sigma. Kernel
function is used by SVM to map the training data in the kernel
space. Box constraint represents a restriction value for the
soft margin and rbf sigma represents a scaling factor in the
radial basis function kernel. In search for the best parameter
settings, Hsu, Chang, and Lin [19] advise starting with the
kernel function ”rbf” and default parameters. Then, in order to
obtain a better accuracy, different box constraint values were
tested (11 values, from 1𝑒−5 to 1𝑒5 by a factor of 10.) and rbf
sigma (11 values, from 1𝑒−5 to 1𝑒5 by a factor of 10).

For training the MLP, the data were divided into three
sets: training, testing and validation. Worrying maintaining the
proportions of the two classes in the three sets, the division was
made as follows: we separated the the instances in accordance
with the classes (0 and 1); randomized both groups; each one
was divided in ten equal parts, in order to realize a 10-fold
cross validation; for each one of the ten runs of the training,
one fold class 0 and one class 1 were put together at random to
form the test set, while the other nine of each class were united
randomly and divided into training set (2/3 of the remaining
instances) and validation (1/3 of the remaining instances). This
process was repeated 5 times to obtain a number of accuracy
rates relevant to the statistical tests. For the training of RBF
and SVM was performed similar process of dividing data. The
difference is that they were only divided into two sets: training
(80%) and test (20%).

For the experiments we used MATLAB R2011b [16],
which has a family of toolboxes with functions used to solve
various types of problems and represent several processing
structures. For the experiments with SVM, we used the Statis-
tics Toolbox, and for MLP and RBF we used the Neural
Network Toolbox.

IV. RESULTS

A. Statistical Performance of the Methods

The accuracy of the models created is presented in Table
I. According to the results, the SVM Model had the best
performance, with 87.11% of correct predictions, while the
RBF Model presented 84.34%, and the MLP Model, 71.02%.
The distance between MLP and SVM is about 16 percentage
points, and between SVM and RBF is 2.77 percentage points.
Based on this observation, we can conclude that the MLP
Model had the worst performance, because the difference of
the MLP results to the other methods was highly significant.
SVM and RBF had close percentages of correct predictions,
for checking if there is statistical difference between them, an
appropriate test was performed, as described next.

To verify the normality of the data and thus identify the
most appropriate statistical test to find out if there is statistical
evidence that SVM was better than RBF, two Kolmogorov-
Smirnov tests [20] were applied, one for each model. For
RBF we have 𝐻0 : 𝑋 ∼ 𝑁(𝜇 = 84.33613;𝜎2 = 6.227)
and 𝐻1 : 𝑋 ∼ 𝑜𝑡ℎ𝑒𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. For SVM we have 𝐻0 :
𝑋 ∼ 𝑁(𝜇 = 87.11225;𝜎2 = 6.7943) and 𝐻1 : 𝑋 ∼ 𝑜𝑡ℎ𝑒𝑟
𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. The values of the test statistic obtained for RBF
and SVM were 𝐷 = 0.1367 and 𝐷 = 0.1251, respectively. As
the critical value for a sample of size 50 and a significance
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TABLE I. PERFORMANCE OF MODELS FOR EACH CLASS: (𝜇) MEAN

PERCENTAGE OF CORRECT PREDICTIONS; AND (𝜎) STANDARD DEVIATION.

Model Class 𝜇 𝜎

MLP
0 71.25 % 6.72
1 70.80 % 10.66

Total 71.02 % 5.38

RBF
0 78.56 % 3.42
1 90.11 % 3.70

Total 84.34 % 2.49

SVM
0 85.71 % 3.33
1 88.51 % 3.72

Total 87.11 % 2.61

level of 0.05 is equal to 0.1923, we do not reject the hypothesis
that the data come from a normal distribution.

Given that the data follow a normal distribution, a t-test
was performed to check for statistical evidence that the SVM
showed better results than the RBF. For 𝐻0 : 𝜇𝑆𝑉𝑀 = 𝜇𝑅𝐵𝐹
and 𝐻1 : 𝜇𝑆𝑉𝑀 > 𝜇𝑅𝐵𝐹 , with confidence level of 95%, the
test statistic was 5.3853 and p-value 2.489e-07. Thus, as the
rejection region for the null hypothesis, considering 98 degrees
of freedom, is t > 1.658, we reject the null hypothesis with
𝛼 = 0.05 and we conclude that the SVM has accuracy rates
higher than those obtained by the RBF.

Another evidence of the superiority of SVM can be seen
in the ROC curves. Figure 2 illustrates the ROC curves for the
three classifiers, considering all patients of 50 folds. The MLP
had an area under the curve of 0.7824, while the RBF had a
larger area of 0.925, very close, but still smaller than the area
obtained by SVM, 0.9398.

The accuracy of models for each class is presented in Table
I. According to the results, the SVM and the MLP models
showed no significant differences in performance, indicating
that the synthetic patients created by the SMOTE were able
to extend the decision region of the minority class without
increasing the bias of the classifier for that class, and thus
increased the generalization power of classifiers. The RBF
model was slightly more sensitive to synthetic data. In this
model, the minority class showed a mean accuracy 11.55
percentage points higher than the other class, indicating a
greater bias towards the minority class than other models, but
not considerably affecting the generalization of the network,
since it presented high accuracy.

B. Qualitative analysis of results

For each patient, a consensus response was computed for
each model, using a simple metric: The majority response of
5 predictions. Figure 3 presents a Venn Diagram of consensus
responses predicted incorrectly. From a universe of 1000
patients, 646 patients (called the EASY group) had responses
correctly predicted by all models, while for 69 patients (called
the HARD group) all models failed in finding the correct
response. With 19 exclusive (not shared with any other model)
incorrect predictions, SVM was the most accurate model. The
model with the largest number of predictions, both exclusive
and in general, was MLP (99).

For the remainder of this Section, we focus our attention
on identifying which properties in the data would separate the
69 (incorrectly predicted by all three methods) patients in the

Fig. 2. ROC curves considering results of 50 runs of three Models.

Fig. 3. Venn Diagram of patient’s response predicted incorrectly. The
response for each patient was considered the consensus class in 5 predictions
in each model.

HARD group from the 646 (correctly predicted by all three
methods) individuals in the EASY group.

Initially, the VL and CD4+ count were analyzed. Table II
presents the average of VL and CD4+ in these two groups.
The average VL was very close in the two groups (4.19 in
the EASY and 4.86 in the HARD group). We did not find
evidences that there is correlation between incorrect inferences
and VL. On the other hand, CD4+ count presented significant
difference between the two groups. While in the EASY group
the CD4+ count average was 293.39, in the HARD group it
was 184.88.

TABLE II. THE AVERAGE(STANDARD DEVIATION) OF VIRAL LOAD

AND CD4+ FOR EASY AND HARD GROUPS.

Property EASY group HARD group
Viral Load 4.19(0.7) 4.86(0.5)

CD4+ 293.39(197.08) 184.88(156.12)

We also investigated the distribution of classes in each
group. Table III shows the percentage of responders and
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non-responders in each group. There is significant difference
between the frequency of each class in each group (9.49
percentage points). However, we did not find a linear correla-
tion between CD4+ and occurrence of errors in predictions.
We fitted decision trees for identifying the frequency of
responders/non-responders according to VL and CD4+. Figure
4 shows the decision tree to CD4+ count, the frequency of
patients responders with CD4+ count ≤ 151 is 70.4% while
in patients with count > 151 is 83.3%. A similar behavior of
distribution of responders and non-responders is observed in
VL. Figure 5 shows that patients with VL ≤ 3.85 had more
difficult for responding to treatment (96.9% non-responders
and 3.1% responders). The concentration of responders grows
with VL, when VL > 4.65 the frequency of responders is
38.9%.

TABLE III. THE DISTRIBUTION OF THE CLASSES IN EASY AND

HARD GROUP.

Class non-responders responders
EASY group 80.5% 19.5%
HARD group 71.01% 28.99%

Fig. 4. Decision Tree fitted considering CD4+ count at start of treatment.

Additional information is required for investigating which
properties would be able to characterize each patient’s group
individually. We used decision trees for identifying differences
among the RT and PR amino acid sequences in each group.

Figure 6 presents two models: (RESP NONRESP) the
raw data, 1000 patients separated by actual class, where
1 denotes responders and 0 denotes non-responders, and
(EASY HARD) Patients from groups EASY (646 sam-
ples) and HARD (69 samples). Figure 7 presents six mod-
els: MLP PRED, RBF PRED and SVM PRED were es-
timated considering the predicted classes by each model,
and MLP CORRECT PRED, RBF CORRECT PRED and
SVM CORRECT PRED the outputs of each model are clas-
sified in correct or incorrect prediction.

Figure 6 (RESP NONRESP) presents the model where
we are looking for the codons that are more relevant for the
classification task. According to the tree built, pr10 is the
most significant codon for separating responsers from non-
responders in general. We did not observe any difference in
the frequencies of amino acids on this codon.

The tree Figure 6 (EASY HARD) models the codon which
best separates patients correctly and incorrectly predicted.
rt184 was the most important codon for it. The group of
patients predicted incorrectly presented two possible amino
acids translated in codon rt184: Methionine (M), and Valine
(V). The relative frequencies of these amino acids in this group

were: (M) 76.82% and (V) 23.18%. The following amino
acids occur in this codon in the EASY group: (I) Isoleucine
1.4%, Methionine 39.16% (M), Valine 55.88%(V), and a non
standard amino acid 3.56% (X). Codons rt211 and rt296 were
indicated as two of the most important codons. The literature
contains literature references to codon rt211 [21], but we could
not find references to codon rt296.

The trees in Figure 7 (MLP PRED-
MLP CORRECT PRED) were fitted for comparing if there
are differences on the prediction power of codons, considering
predicted classes and correct and incorrect predictions
in the MLP model(MLP PRED-MLP CORRECT PRED,
respectively). When the tree to consider predicted classes the
most important codon is pr63. The most important codon for
separating correct and incorrect predictions in the MLP model
is pr82. Considering codon pr82 we observed two significant
differences between frequencies of amino acids in correct and
incorrect predictions. In the EASY group predictions: Alanine
16.16% (A) and missing codons 3.84%. In the HARD group
predictions: Alanine 3.27% (A) and missing codons 20.82%.
So, there is, indeed, considerable differences regarding this
codon in the two scenarios.

The trees in Figure 7 (RBF PRED-
RBF CORRECT PRED) were fitted for the RBF model. In
the tree that considers predicted classes, the most important
codon is rt184. The most important codon for separating
correct and incorrect predictions in the RBF model is
pr211. Considering codon rt184 we observed two significant
differences between frequencies of amino acids in responders
and non-responders. In responders: Methionine 59.14% (M)
and Valine 36.88% (V). In non-responders: Methionine
41.49% (M) and Valine 53.36% (V).

SVM is the method that presented the best perfor-
mance, its results are analyzed in Figure 7 (SVM PRED-
SVM CORRECT PRED). The most important codon for sep-
arating the patients considering the class predicted by SVM is
pr10, and for separating its correct and incorrect predictions
is rt184. Considering codon rt184 we observed two significant
differences between frequencies of amino acids in correct and
incorrect predictions. In correct: Methionine 42.30% (M) and
Valine 52.37% (V). In incorrect: Methionine 71.15% (M) and
Valine 26.92% (V).

The differences detected in the frequencies of the identified
amino acids are a strong evidence to validate the binary tree
models developed.

V. DISCUSSION AND CONCLUSION

We did an extensive study of different types of genomic
data taken from the HIV Resistance Drug Database and its
relation to the prediction of patient’s response to anti-HIV
treatment.

Due to the lack of balance between the case and control
samples available, the use of SMOTE technique was central to
the success of our analysis. The SMOTE algorithm was applied
for resolving the unbalance problem of the data, creating
synthetic patients rather than simply replicating a portion of
the smaller class. The analysis was based on three well known
computational intelligence methods: MLP, RBF, and SVM.
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Fig. 5. Decision Tree fitted considering Viral Load at start of treatment.

Fig. 6. Decision Trees estimated considering all codons of RT and PR for: (RESP NONRESP) 1000 patients and their actual classes: responders and non-
responders; and (EASY HARD) EASY and HARD group.

Fig. 7. Decision Trees estimated considering all codons of RT and PR for: predicted classes of all models (MLP PRED, RBF PRED and SVM PRED); and
correct and incorrect predictions in each model (MLP CORRECT PRED, RBF CORRECT PRED and SVM CORRECT PRED).

We used statistical tests and ROC analysis for comparison
of the accuracy of the methods. Decision trees helped the
identification or confirm relationships between: (1) RT/PR
codons and predicted classes, (2) RT/PR codons and correct
and incorrect predictions, and (3) CD4+/VL and responder
and non-responder patients. The results of our analysis offer
valuable insights on the behavior of those methods.

We found that the RBF and the SVM models have similar
accuracy, although statistically SVM was the best, both being
more accurate than MLP by a large margin. Interestingly, RBF
is more sensitive than SVM to synthetic samples created by
the SMOTE algorithm. While predicted classes by SVM were
proportional to frequency of actual classes, RBF was not.

A Venn Diagram was built for analyzing the number of
patients’ responses predicted incorrectly that are shared by the
methods. We identified 646 samples predicted correctly by all
methods in all tests, and 69 samples predicted incorrectly in the
same situation. SVM had 19 incorrect exclusive predictions,
while RBF had 65, and MLP had 99. Based on this observation

we can conclude that SVM tends to fail only when the others
methods also fail.

We fitted a decision tree for recognizing patterns that
separate 69 patients predicted incorrectly from 646 patients
correctly predicted. Codon rt184 was identified as the best
property for characterizing these two patient groups. Several
works have related mutations on this codon to resistance to
therapy anti-HIV [22] [23] [24].

Indeed, three decision trees had as root codon rt184
(Figures 6, (RESP NONRESP), and 7 (RBF PRED-
SVM CORRECT PRED)). We computed the relative
frequency of amino acids on this codon for each class
considered by the trees. Significant differences of frequency
of amino acids between the classes of the trees Figure 6
(EASY HARD) and Figure 7 (SVM CORRECT PRED)
were found, considering as classes correct and incorrect
predictions. Tree Figure 6 (EASY HARD) was fitted with 69
patients predicted incorrectly from 646 correct for all methods,
and tree Figure 7 (SVM CORRECT PRED) considers the
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TABLE IV. RELATIVE FREQUENCY OF PATIENTS BY CLASS, CD4+
COUNT AND VIRAL LOAD.

CD4+ data # Patients Class(%) CV 𝜇(𝜎) CD4+ 𝜇(𝜎)

All 1000(100%)
0(79.4) 4.18(0.68) 291.60(193.65)
1(20.6) 4.80(0.56) 233.50(207.96)

≤ 350 701(70.1%)
0(76.6) 4.32(0.69) 183.11(095.33)
1(23.4) 4.85(0.54) 155.11(105.51)

> 350 299(29.9%))
0(86.3) 3.85(0.52) 516.36(141.40)
1(14.7) 4.62(0.60) 548.71(243.69)

correct and incorrect prediction of the SVM model only. An
inverse correlation was observed in frequency of Methionine
(M) and Valine (V) between classes in both trees. In the
tree Figure 6 (EASY HARD): EASY group (M=39.16% and
55.88%); and HARD group (M=76.82% and V=23.18%).
In tree Figure 7 (SVM CORRECT PRED): EASY group
(M=42.30% and V=52.37%); and HARD group (M=42.30%
and 52.37%). Methionine was more abundant in the patients
inferred incorrectly. Methionine at rt184 is found in wild-type
HIV, which is later replaced by Valine [25].

Tree Figure 6 (EASY HARD) has rt184 as principal prop-
erty to separate correct from incorrect predictions. Tree Figure
6 (RESP NONRESP) has codon pr10, largely mentioned in
the literature [26] [27], as the main observed mutation which
leads to failure of the treatment of the patients studied. Model
SVM had the best performance in the test done, and, curiously,
codon rt184 was also identified as the one which may induce
SVM to go wrong (Figure 7 (SVM CORRECT PRED)). For
model SVM, codon pr10 had the most predictive power (Figure
7 (SVM PRED)), as well as in the tree constructed considering
the actual classes (Figure 6 (RESP NONRESP)). For all that
was presented here, we can conclude that codon rt184 needs
special treatment in the models, since, although it is associated
to the anti-HIV drug resistance, it may also induce the preditors
to errors.

Table IV presents the distribution of patients by class. From
the patients that started treatment for having (CD4+ > 350),
86.3% did not present a good response to therapy, while 13.7%
responded satisfactorily (with considerable reduction in their
viral load). That could be explained by a number of reasons.
Such patients have average viral load of 3.85, versus 4.62, for
the others. Since the immunologic system of those patients
were normal and with low viral load, the reason to start the
anti-HIV treatment was not to strike out the virus directly, but
to prevent an injury of the immune system, or an infection from
mother to son, for instance. Since they are healthy, the CD+
and VL values remain unchanged, and they are considered as
non-responders.

The goal of the anti-HIV therapy is to reduce the viral
load, thus decreasing the aggression to the immune system,
enabling it to recover and increase the amount of CD4+ cells.
When the viral load is very high it causes damages that are
difficult to repair. A very low CD4+ value is evidence that the
immune system is highly beaten. Thus, it would be logical to
think that the higher the VL value, the greater the chances of
the patient not responding to the treatment, as well as patients
with low CD4+ measures. But our analysis of the data points
in another direction (Figures 4 and 5).

The response to the virus therapy is immediate, since the
virus lasts about 48 hours, and the decrease in the VL is used to

determine whether the patient had or not a good response to the
treatment. On the other hand, the immune response (increased
CD4+) is slower. A patient with low CD4+ may have had a 10-
fold reduction of VL at 16 weeks, but his CD4+ may never
recover due to the high aggression that the immune system
may have suffered. This scenario is not analyzed in our study,
since the available data are old, from a time that survival was
limited, so there is no information regarding for a long period
of patient follow up.

Figure 4 shows that the lower the CD4+ (values less than
or equal to 151), the greater the chance of viral load reduction
(responders); the average VL for responders with CD4+ ≤ 151
was 5.029, while for patients with CD4+ > 151 the average
reduction was 4.617.

Figure 5 tells us that the higher the viral load, the higher
chances of it being reduced. Responders with CD4+ ≤ 151
had higher viral loads than those with higher CD4+.

We hypothesize that the greater the amount of virus, the
greater the chances of them being reduced at 16 weeks, re-
gardless of the state of the patient’s immune system, however,
this reduction means just a chance for the immune system
to recover, which may or may not happen. We note that in
our data there is a considerable proportion of deaths among
patients who entered late in therapy (very low CD4+). For
example, from 2003 to 2006, Brazil recorded a total of 50.358
patients late in their health system. Of those, 14,457 (28.7%)
died within 20 days, and 3,299 (6.55%) had symptoms of
developing AIDS [28].

We believe that the insights provided by our analysis can
be used for a more effective choice of models, and can also
be explored in the design of better approaches for prediction
of patients’ response to anti-HIV therapies.
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