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Abstract—This paper introduces a new local feature de-
scription method to categorize scene images. We encode local
image information by exploring the pseudo-Wigner distribution
of images and the Local Binary Patterns (LBP) technique and
make four major contributions. In particular, we first define
a multi-neighborhood LBP for small image blocks. Second, we
combine the multi-neighborhood LBP with the pseudo-Wigner
distribution of images for feature extraction. Third, we derive
the innovative WLBP feature vector by utilizing the frequency
domain smoothing, the bag-of-words model and spatial pyramid
representations of an image. Finally, we perform extensive ex-
periments to evaluate the performance of the proposed WLBP
descriptor. Specifically, we test our descriptor for classification
performance using a Support Vector Machine (SVM) classifier on
three fairly challenging publicly available image datasets, namely
the UIUC Sports Event dataset, the Fifteen Scene Categories
dataset and the MIT Scene dataset. Experimental results reveal
that the proposed WLBP descriptor outperforms the traditional
LBP technique and yields results better than some other popular
image descriptors.

I. INTRODUCTION

Content-based image classification, search and retrieval is
an active and growing research area due to the presence of
an increasingly large volume of uncategorized user-generated
images over the Internet. The area of scene image classification
in particular, has seen a steady series of improvements in the
recent years [1], [2], [3], [4]. Since the advent of the bag of
visual words model [5], there have been notable contributions
to enhance recognition performance by developing new and
robust image descriptors as well as effective classification
frameworks that have resulted in reduced quantization loss and
improved recall performance [6].

This paper addresses the problem of recognizing scene
images by encoding local image information. The goal of this
work is to design a new feature descriptor that can lead to
an effective classification performance. To this end, we start
by choosing the computationally efficient Local Binary Pat-
terns (LBP) descriptor that captures the variation in intensity
between neighboring pixels to encode texture from images
[7], [7]. The LBP method has been found suitable for scene
classification tasks [8] and hence has been used alone or
along with other features to develop new image descriptors
[9], [10]. The Wigner distribution has been extensively used
in signal processing. In this paper, we have applied the
pseudo-Wigner distribution of images as a part of our feature
extraction framework and used a multi-neighborhood LBP to
derive the innovative bag-of-words based WLBP descriptor
that significantly improves classification performance.

II. BACKGROUND

This section gives a brief outline of the concepts that have
been used for generating our proposed descriptor.

A. Pseudo-Wigner Distribution

The Wigner distribution, also known as Wigner-Ville distri-
bution is a generalized time-frequency representation proposed
by Wigner [11] and Ville [12] in 1932 and 1948 respectively.
Although it has been extensively used in signal processing
area, its applications in image processing are limited. Jacobson
and Wechsler [13] were the first researchers to apply the
Wigner distribution to solve image processing problems. A
family of Wigner distributions is called the pseudo-Wigner
distribution [14].

In order to use the Wigner distribution function for im-
age processing applications, it needs to be extended to two-
dimensional space. Thus Wigner distribution of a two dimen-
sional image is a four-dimensional distribution function which
has two space domain variables and two frequency domain
variables. The concept of windows is also applied here, which
allows applying a sliding window to the original function in
the time domain.

In this work, we have used pixel-wise pseudo-Wigner
distribution for grayscale images, calculated with a N -pixels-
one dimensional oriented square window where N is the
operational window size. To compute the pixel-wise Wigner-
distribution (W ) of an image X , the algorithm takes an array
of N pixels arranged in direction θ. For our purposes, we have
chosen the function to be periodic which takes the (N + 1)
pixel value to be equal to the value determined by the image
in position N = 1. Hence, for each pixel (i, j) of an image
X, W (i, j, k) is the pseudo-Wigner distribution of that pixel in
the image, where 1 ≤ k ≤ N . We have only chosen the first
plane of W to design our WLBP descriptor.

B. Local Binary Patterns (LBP)

The Local Binary Patterns (LBP) method encodes the
texture features from a grayscale i.e. intensity image by
comparing each pixel with its neighboring pixels [15], [7].
Specifically, for a 3 × 3 neighborhood of a pixel p = [x, y]t,
p is the center pixel used as a threshold. The neighbors of
the pixel p are defined as N(p, i) = [xi, yi]

t, i = 0, 1, · · · , 7,
where i is the number used to label the neighbor. The value
of the LBP code of the center pixel p is calculated as follows:

LBP (p) =

7∑
i=0

2iS{G[N(p, i)]−G(p)} (1)
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Fig. 1. A grayscale image, its LBP image, and the illustration of the computation of the LBP code for a center pixel with gray level 95.

where G(p) and G[N(p, i)] are the gray levels of the pixel p
and its neighbor N(p, i), respectively. S is a threshold function
that is defined below:

S(xi − xc) =
{

1, if xi ≥ xc
0, otherwise (2)

LBP achieves grayscale invariance to a large extent because
only the signs of the differences in intensities between the
center pixel and its neighbors are used to define the value
of the LBP code, rather than their absolute intensities. This is
shown in Equation 1. Figure 1 shows a grayscale image on the
left and its LBP image on the right. The two 3 × 3 matrices
in the middle illustrate how the LBP code is computed for the
center pixel whose gray level is 95.

III. FEATURE DESCRIPTION AND CLASSIFICATION

In this section, we will present the methodology adopted
for developing our WLBP image descriptor.

A. Sampling and Bag of Features

In order to derive the WLBP descriptor, we first start with
sampling the image. Popular descriptors like SIFT [16] use
multiscale keypoint detectors such as Laplacian of Gaussian
or Harris-affine to select regions of interest within the image.
This sampling method is appropriate for object recognition,
but it has been found that dense sampling often outperforms
the keypoint-based sampling methods [17]. This is particularly
true of images with large uniform regions, where SIFT does not
detect any keypoints. Scene images, such as the ones used for
this work, often have such homogeneous regions depicting the
sky or walls. For this purpose, we have used a dense sampling
approach in which the image is divided into a number of equal
sized overlapping square blocks or patches using a uniform
grid and each block is used as a separate region for extracting
features. We have sampled the scene images using 40 × 40
pixel overlapping blocks, each block offset by 10 pixels from
the next. Such patches are extracted from all training images
and then the patches are clustered to form visual words.

B. Multi-Scale WLBP Features for Small Image Patches

We now discuss the feature extraction of the sampled image
regions. First, the pixel-wise pseudo-Wigner distribution for
each of the small image patches is computed as described
in Section II-A in three different directions. For our exper-
iments, we have used the parameter values to be N = 2,

θ = 0, π/4, π/2, and have only retained the first planes of
each of the three Wigner distributions for the image blocks
for subsequent feature extraction.

We then extract multi-neighborhood LBP features from the
image patch and the three images produced as a result of ap-
plying the Wigner-distribution on it. Different researchers have
chosen various neighborhoods of different styles for extracting
LBP features from an image [18], [8], [19]. The conventional
8-neighborhood LBP mask assigns one out of 28 possible
intensity values to each pixel, resulting in a 256-bin histogram.
However, since we are dealing with small image patches, we
have chosen 4-pixel neighborhood LBP masks to reduce the
sparseness of the features. These LBP masks produce a dense
16-bin histogram, and eight such histograms from different
neighborhoods and four sub-images are fused to design the
128-dimensional WLBP feature vector describing each image
block. Figure 2 depicts the two 4-pixel neighborhoods used for
generating the multi-neighborhood LBP descriptor used here.

The Discrete Cosine Transform (DCT) is a well-known
technique of transforming an image to the frequency domain
for various applications like compression, smoothing, etc. [20],
where an image is decomposed into a combination of various
uncorrelated frequency components. Specifically, the DCT of
an image with the spatial resolution of M × N , f(x, y),
where x = 0, 1, · · · , M − 1 and y = 0, 1, · · · , N − 1,
transforms the image from the spatial domain to the frequency
domain [21]. DCT is thus able to extract the features in the
frequency domain to encode different image details that are
not directly accessible in the spatial domain. Due to these

Fig. 2. The two 4-neighborhood LBP masks used for computing the proposed
WLBP descriptor.
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Fig. 3. DCT can be used for smoothing out the image. The original image is
transformed to the frequency domain and the lowest 1/16, 1/4 and 9/16 parts
are used for regenerating the image, respectively, resulting in three output
images with various degrees of smoothing.

specific properties, DCT has been successfully applied to
face recognition [22], [23], [20]. In the proposed method,
DCT is used to eliminate higher frequencies from an image,
resulting in a form of smoothing. To achieve image smoothing
for capturing textures at different scales, we apply DCT to
transform the original image to frequency domain and use the
lowest 6.25%, 25% and 56.25% of frequencies to regenerate
the image. This process is explained in Figure 3. The original
image and the three images thus formed undergo the same
process of dense sampling and WLBP feature extraction. All
these features together form a bag of features, as shown in
Figure 4, that needs to be clustered into distinct visual words
to form a visual vocabulary.

Figure 5 illustrates the complete process of generating the
WLBP features from a grayscale image.

C. Quantization and Pyramid Representation

The next stage is to quantize the bag of WLBP features ex-
tracted from the training images into a visual vocabulary with
discrete visual words. For this step, we have used the popular
k-means algorithm. The vocabulary size used by researchers
vary from a few hundreds [24], [25] to several thousands
[5], [26]. In our work, we have performed experiments with
vocabularies of varying sizes and empirically chose a 1000-
word vocabulary. After the creation of the visual vocabulary,
each scene image is represented by a histogram of visual
words. This is explained in Figure 6(a).

The image pyramid representation proposed by [24] allows
a descriptor to represent local image features and their spatial
layout. Here, at each level, an image is tiled into its succes-
sively smaller blocks and the feature vectors are computed for
each block. These features from each pyramid level are then
weighted accordingly, which are finally concatenated to form a
pyramid histogram. This technique is explained in Figure 6(b).
It should be noted that the histograms shown in Figure 6 are for
illustration purposes only. For this work, only the second level

of this pyramid has been utilized to keep the computational
complexity low. Finally, a 4000 dimensional feature vector is
constructed for each image.

D. Classifier Used

After all training and test images have been processed and
the feature vectors have been generated, an SVM classifier is
used for classification. It is a known fact in texture and other
image classification that for comparing histograms, using χ2 or
Hellinger distance measures usually yields better results than
Euclidean distance [27] . The use of the Hellinger kernel has
been shown to benefit SIFT [27]. Since the proposed WLBP
descriptor is also a histogram, intuitively it seems that it should
yield better classification results with the Hellinger kernel and
it is empirically seen that using the Hellinger kernel does
indeed improve the classification results greatly.

If x and y are n-vectors with unit Euclidean norm (|x|2 =
1), then the Euclidean distance dE(x, y) between them is
related to their similarity (kernel) SE(x, y) as

dE(x, y)
2 = |xy|22 = |x|22 + |y|22− 2xty = 2− 2SE(x, y) (3)

where SE(x, y) = xty, and the last step follow from |x|22 =
|y|22 = 1. The Euclidean similarity/kernel here needs to be
replaced by the Hellinger kernel.

The Hellinger kernel, which is also known as the Bhat-
tacharyya’s coefficient, is defined for two L1 normalized

histograms, x and y (i.e.
n∑
i=1

xi = 1 and xi ≥ 0) as:

H(x, y) =

n∑
i=1

√
xiyi (4)

Arandjelović et al. suggest a simple algebraic manipulation
to compare SIFT vectors by a Hellinger kernel [27]. Since
WLBP vectors are also based on histograms of words, the same
technique can be applied to the WLBP vectors as well. This
can be done in two steps: (i) L1 normalize the WLBP vector
(originally it has unit L2 norm); (ii) square root each element.
It then follows that SE(

√
x,
√
y) =

√
x
t√
y = H(x, y), and

Fig. 4. The features are computed from a large number of image patches from
all training images and form a bag of features from which a visual vocabulary
can be created.
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Fig. 5. The process of computing the proposed WLBP descriptor has been simplified in this schematic diagram.

the resulting vectors are L2 normalized since SE(
√
x,
√
y) =

n∑
i=1

= 1 [27].

The key point is that comparing the square roots of the
WLBP descriptors using Euclidean distance is equivalent to
using the Hellinger kernel to compare the original WLBP
vectors:

dE(
√
x,
√
y)2 = 2− 2H(x, y) (5)

For the classification process, an SVM is trained inde-
pendently for each class (one-vs-all classification). This is
repeated for each category separately and the precision rates
from all the iterations give the average precision which is
the mean classification accuracy. A similar configuration has
been successfully used by other researchers like [28] in recent
works. The SVM implementation used here is the one that is
distributed with the VlFeat package [29].

IV. EXPERIMENTS

In this section, we first briefly introduce the three scene im-
age datasets used for evaluating the classification performance
of the WLBP descriptor, and then we make a comparative
assessment of the classification performances of the LBP and
the WLBP descriptors. Finally we compare the classification
performance of the WLBP descriptor with that of some popular
image descriptors used by other researchers on these datasets.
It should be noted that the results of other researchers are
reported directly from their published work.

A. Datasets Used

Three publicly available and widely used image datasets are
used in this work for assessing the classification performance
of the proposed descriptor.

1) The UIUC Sports Event Dataset: The UIUC Sports
Event dataset [30] contains 1,574 images from eight sports
event categories: 250 rowing, 200 badminton, 182 polo, 137
bocce, 190 snowboarding, 236 croquet, 190 sailing, and 194
rock climbing. The mean image size in this dataset is 966 ×
1156 pixels. These images contain both indoor and outdoor

scenes where the foreground contains elements that define
the category. The background is often cluttered and is similar
across different categories like rowing and sailing, or croquet
and polo. Some sample images from this dataset are displayed
in Figure 7(a).

2) The MIT Scene Dataset: The MIT Scene dataset (also
known as OT Scenes) [2] has 2,688 images classified as eight
categories: 360 coast, 328 forest, 260 highway, 308 inside
of cities, 374 mountain, 410 open country, 292 streets, and
356 tall buildings. All of the images are in color, in JPEG
format, and the size of each image is 256× 256 pixels. There
is a large variation in light, content and angles, along with
a high intra-class variation. The sources of the images vary
(from commercial databases, websites, and digital cameras)
[2]. Figure 7(b) shows a few sample images from this dataset.

3) The Fifteen Scene Categories Dataset: The Fifteen
Scene Categories dataset [24] is composed of 15 scene cat-
egories: thirteen were provided by [1], eight of which were
originally collected by [2] as the MIT Scene dataset, and two
were collected by [24]. Each category has 200 to 400 images,
most of which are grayscale. Figure 7(c) shows a few images
from this dataset.

B. Comparative Assessment of the LBP, the WLBP and Other
Popular Descriptors

We now evaluate the classification performance of our
proposed WLBP descriptor by comparing it with the traditional
LBP feature and some other popular image descriptors on
the three scene image datasets. To that end, we first derive
the WLBP feature vector from each image in the dataset.
To compute the WLBP descriptor, first each color image is
converted to grayscale and then all the training images are
divided into overlapping uniform image patches. Please note
that the large scale images are resized in such a way that their
largest dimension does not exceed 256 pixels. The WLBP
features are extracted from all the image patches generated
from the grayscale image and the three DCT-smoothed images
to generate a bag of features which is quantized using the
k-means algorithm to form a visual vocabulary with 1000
words. Next each training and test image is represented as
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Fig. 6. (a) All images are converted to histograms of visual words using the visual vocabulary created from the training images. (b) For the spatial pyramid
representation, a full image is broken down into multiple spatial tiles. Then histograms of visual words are computed from each tile and concatenated.

a pyramid histogram of these visual words. We use an SVM
classifier with a Hellinger kernel [31], [29] for evaluating the
relative classification performances of the LBP and the WLBP
descriptors.

For the UIUC Sports Event dataset, we use 70 images from
each class for training and 60 from each class for testing both
the LBP and the WLBP descriptors. The results are obtained
using five random splits of data where there is no overlap
between the training and testing images of the same split.
Figure 9 shows the relative average precisions achieved by
the LBP and the WLBP descriptors on this dataset. Note that
here, the horizontal axis shows the two descriptors and the
three datasets, and the vertical axis shows the classification
performance measured by average precision as percentage.
Here, the WLBP descriptor outperforms the LBP by over 14%.
The proposed WLBP vector also produces better results than

other SIFT-based and state-of-the-art methods on this dataset,
which is listed in Table I.

For the MIT Scene dataset, we used the protocol defined
in [2] where 100 images from each class are used for training
and the remaining images for testing the performance. Here
also, the WLBP significantly improves over the LBP feature,
by a margin of 18%, and achieves an average precision of
92.17% (as shown in Figure 9) which is a very good result for
this dataset. Table I shows a comparative evaluation of results
obtained by other methods and by our proposed descriptor on
this dataset.

On the Fifteen Scene Categories dataset, we use 100
training images from each category and rest for testing and
the results are measured from five runs of experiments. Here,
the overall performance of the WLBP is 85.13% which is
again, much better than the traditional LBP as is evident
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(a)

(b)

(c)

Fig. 7. Some sample images from (a) the UIUC Sports Event dataset, (b) the MIT Scene dataset, and (c) the Fifteen Scene Categories dataset.

from Figure 9. In addition, the category-wise classification
performances of the grayscale LBP and the proposed WLBP
features is displayed in Figure 8. Here, the horizontal axis
reveals the fifteen scene categories, and the vertical axis
displays the classification performance. A detailed comparison
of the WLBP and other competitive methods on this dataset
is given in Table I.

V. CONCLUSION

We have presented a new local image descriptor for rec-
ognizing scene images by applying the Wigner distribution
and a multi-neighborhood LBP technique on image patches.
Combined with the DCT-based smoothing technique, the bag-
of-visual words model and the spatial pyramid image rep-
resentation and coupled with the SVM classifier, our new
image descriptor significantly improves image classification

TABLE I. COMPARISON OF THE CLASSIFICATION PERFORMANCE (%) OF THE PROPOSED GRAYSCALE WLBP DESCRIPTOR WITH OTHER POPULAR
METHODS ON THE THREE IMAGE DATASETS

Method UIUC Sports Event MIT Scene Fifteen Scene Categories
SIFT+GGM [30] 73.4 - -
OB [32] 76.3 - -
KSPM [33] - - 76.7
KC [4] - - 76.7
CA-TM [34] 78.0 - -
ScSPM [33] - - 80.3
SIFT+SC [3] 82.7 - -
SE [2] - 83.7 -
HMP [3] 85.7 - -
C4CC [35] - 86.7 -
WLBP+SVM (Proposed) 86.2 92.2 85.1
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Fig. 9. Comparison of the classification performance of the LBP and the
proposed WLBP descriptors using an SVM classifier with a Hellinger kernel
on the three datasets.

performance over LBP. Experimental results on three popular
scene image datasets show that the WLBP descriptor yields
better classification performance than several recent state-of-
the-art methods used by other researchers, such as the popular
nonlinear Kernel Spatial Pyramid Matching (KSPM), SIFT
Sparse-coded Spatial Pyramid Matching (ScSPM) and the
Kernel Codebook (KC).
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