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Abstract— A novel category of theories is proposed, providing
a potential explanation for the representation of complex
knowledge in the human (and, more generally, mammalian)
brain. Firstly, a ”glocal” representation for concepts is sug-
gested, involving localized representations in a sparse network
of ”concept neurons” in the Medial Temporal Lobe, coupled
with a complex dynamical attractor representation in other
parts of cortex. Secondly, it is hypothesized that a combi-
natory logic like representation is used to encode abstract
relationships without explicit use of variable bindings, perhaps
using systematic asynchronization among concept neurons to
indicate an analogue of the combinatory-logic operation of
function application. While unraveling the specifics of the
brain’s knowledge representation mechanisms will require data
beyond what is currently available, the approach presented
here provides a class of possibilities that is neurally plausible
and bridges the gap between neurophysiological realities and
mathematical and computer science concepts.

I. INTRODUCTION

THE human mind is able to represent, generate and
manipulate complex relational knowledge, such as this

sentence. According to our current, standard models of
neurodynamics, however, there is no clear explanation for
how this sort of complex relational knowledge might emerge
from brain matter.

The lack of detailed neural theories in this regard is
certainly understandable, because available neurological data
is not obviously adequate to validate or refute such theories.
If brain imaging tools with high simultaneous spatial and
temporal resolution were available, we could make a much
more straightforward effort at exploring this aspect of the
brain empirically.

On the other hand, sometimes creative experiments are
driven by the existence of specific theories in need of
validation or refutation. With this in mind, it seems worth-
while to explore possible theoretical explanations that might
help us understand how systems like brains could give rise
to the ability to create and manipulate complex, abstract
formal systems. Here we present one possible theory in this
direction.

The theory suggested here synthesizes recent neuroscience
findings from various directions, including concept neurons
, dynamical attractors and temporal phase coherence, with
classical mathematical notions such as combinatory logic.
While it is unlikely that the precise details outlined here
will turn out to be the way the brain works, we present
a somewhat specific theory here largely as a placeholder
indicating a certain kind of theory. Something like this, we
suggest, is reasonably likely to be the way the brain does it.
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Specifically, the hypothesis we explore here is that:
1) The brain represents complex relationships in the style

of illative combinatory logic, in which variables don’t
need to be explicitly represented. In place of variables
one has ”higher order functions”, i.e. functions that
transform other functions. In place of traditional logical
quantifiers one has an XOR type operator.

2) ”Concept neurons” in the Medial Temporal Lobe
(MTL) serve as ”symbols” for cortical activity patterns,
in the sense that individual concept neurons correspond
to particular distributed attractors in the cortex

3) The instruction for one cortical attractor F to transform
another cortical attractor G, is encoded in a relationship
of systematically asynchronous firing [1] between the
concept neuron c(F) corresponding to F and the con-
cept neuron c(G) corresponding to G. That is, a brief
delay between c(G) firing and c(F) firing, encodes the
function application F(G)

4) Relational grouping is implemented via temporal
grouping. That is: the disambiguation between e.g.
F (GH) and (FG)H is implemented via, in effect,
having a longer firing gap between two symbols sepa-
rated by a parenthese.

This is an admittedly speculative model. However, it is rea-
sonably concrete, and utilizes only mechanisms with known
neurological plausibility.

II. THE BINDING PROBLEM

The issue of the neural representation of complex re-
lational, symbolic knowledge, which we consider here is
closely tied to the so-called ’binding problem,” one of the
most enduringly vexing problems in cognitive science. Feld-
man [2] has decomposed the binding problem into several
subproblems:

1) Coordination among disparate brain regions involved
in the same activity (e.g. temporal coherence). .

2) The subjective unity of perception
3) Visual feature-binding
4) Variable Binding
The first of these, coordination, is moderately well un-

derstood at present. There are mechanisms like phase syn-
chronization with the capability to dynamically bind far-
flung neural subnetworks into coherent activity. There are
also specific neural circuits and connectivity patterns that
encourage coordination, which sometimes get short shrift in
the literature with all the focus on phase synchronization

Regarding the subjective unity of perception, one thing that
has become clear as we have understood the brain more fully
in the last half-century, is that there is no specific location in
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the brain where, say, the whole perceived visual (or auditory,
or tactile, or multi-sensory) ”scene” of the currently present
world is stored. The problem of how a physically disparate
collection of neural subnetworks contribute to produce a
subjectively coherent, felt scene, is a sub-case of the overall
problem of consciousness and qualia [3]. If one accepts that,
as Greenfield [4], Christos [5] and many others have pro-
posed, consciousness is associated with distributed attractors
in the brain, then the subjective unity of perception becomes
less mysterious, and is decomposed into

• the neurodynamical problem of how attractors emerge
in the brain

• the philosophical ”hard problem” of qualia
Freeman [6], [7], [8] and others have given detailed

explanations of the emergence of attractors in the brain, using
mathematical, computer-simulation, and neurophysiology-
driven arguments. There is clear evidence for the role of
attractors in some elements of brain function (e.g. olfaction)
and less clear in others; and gathering data about such matters
is difficult due to the lack of any brain scanning technology
combining high spatial and temporal resolution.

The problem of qualia, on the other hand, does not
clearly lie wholly within the scope of science as currently
understood. In prior publications [9] we have addressed
qualia from a panpsychist perspective, which appears to
eliminate any logical contradictions associated with qualia,
but is sometimes perceived as counterintuitive. In any case
we will not explore this aspect further here.

Finally, variable binding is generally recognized as the
most difficult aspect of the overall ”binding problem.” Pro-
totypical examples involve relational reasoning such as

owns(z, y)&gives(z, x, y)→ owns(x, y)

A modest-sized literature has arisen, focused on the con-
ception of mechanisms via which variable binding might be
realized in ”connectionist” systems with purely distributed
representations. van der Velde and de Kamps [10] survey
much of the literature as of 2006.

Temporal phase synchrony plays a large role in many
of these theories, such as Shastri’s influential work with
SHRUTI [11], [12]. For instance, it has commonly been
proposed that when the neuron or neural subnetwork rep-
resenting a function and the neuron or neural subnetwork
representing an argument are firing in-phase together, this
may connote the function taking the argument as an input.
This kind of phase coherence is relatively slow, so seems
not that likely to be the key mechanism binding together,
say, the disparate visual features of a scene into a coherent
perceived whole. However, variable binding is arguably a
slower process, hence phase coherence remains a plausible
candidate here.

A related, alternative approach posits systematic asychrony
rather than synchrony as the basis of binding between a func-
tion and its argument. Love [1] points out that the function-
argument relationship is basically asymmetric, so that it
might make sense to posit that the neural representation of

f(x) involves the f neural subnetwork firing systematically
slightly before the x neural subnetwork.

The work of Hummel et al [13], which has been oriented
largely toward understanding the neural basis of relational
inference in the context of analogy reasoning, also relies on
the notion of temporal phase relationships in a broad sense,
though it could arguably be reconciled with either synchrony
or systematic asynchrony based accounts.

Signature propagation approaches like that of Browne and
Sun [14], on the other hand, suggest that each variable in an
expression corresponds to its own neural group; and each
concept to which a variable may be bound, corresponds
to a particular ”signature” that a neural group can output.
In essence, a signature serves as a name for a concept. A
shortcoming of this approach is that, in its simplest form, it
requires a unique signature for every representable object so
a new signature must be created for each new item encoun-
tered. There are modified versions of the approach in which
signatures are allocated dynamically only to those concepts
being currently thought about – so that the signature used for
”chair” at one moment, might be re-used for ”aardvark” later,
depending on which concepts are currently being focused on
and hence in need of signatures [15]. Overall, this approach
feels very computer-sciency and has not been closely tied to
neurological structures or detailed observations about brain
dynamics.

These various theories are interesting and likely have
value in various ways. They point to various ingredients of
neural representation and behavior. However, recent discov-
eries regarding the occurrence of localized representation in
the brain would seem to suggest that the various lines of
thinking regarding the neural foundations of variable binding
proposed in the literature should be revisited, reinterpreted
and perhaps heavily revised.

III. GLOCAL MEMORY IN THE BRAIN

The naive notion that the brain stores its knowledge like
a semantic network – with neurons or localized neuronal
groups representing individual concepts, and related concepts
interlinked by bundles of synapses – was refuted long ago.
Classic examples of ”holographic” memory storage in the
brain point out that sometimes the brain goes to the opposite
extreme – knowledge can be stored across a wide area of
the brain, so that when any chunk of that brain region
is removed, the knowledge still remains, at least in an
approximative form. This sort of distributed memory can
be modeled mathematically using Hopfield type associative
memory networks [16], [17], and studied using methods of
nonlinear dynamics.

On the other hand, the ”semantic network” type model of
neural knowledge representation has more meat to it than
early advocates of distributed, holographic neural memory
realized. The notion of a ”grandmother cell” – a neuron
representing an individual concept like one’s grandmother
– was dismissed and even mocked by a subset of the
scientific community for quite some time, yet has recently
been definitively resurrected via striking experimental results.

2588



It is now clear that the human brain – in particular, the MTL
– does possess individual cells that respond differentially to
very particular concepts [18], [19] – though the literature
has focused on neurons firing differentially in response to the
actresses Jennifer Aniston and Halle Berry, rather than grand-
mothers per se 1. The precise extent and importance of this
”concept cell” phenomenon remains to be determined, but at
very least this is a highly thought provoking development. It
seems unlikely there is a single Jennifer Aniston cell exists
in anyone’s brain; rather, it seems that a concept like this is
represented by a very sparse, distributed network of ”concept
neurons.” Exactly how many Jennifer Aniston neurons an
individual’s brain is likely to contain remains unknown –
”thousands” might be a reasonable guess at present.

However, the existence of concept cells in the MTL does
not obviate the importance of distributed representations in
the brain. For one thing, obviously, if there are 1000 Jennifer
Aniston neurons that somehow synchronize together, then
we still have a distributed representation, just a sparse one.
Secondly, it seems clear that these concept neurons are not
the whole story. While the whole story of neural knowledge
representation remains largely unknown, one highly plausible
perspective, given all the data available, is that localized
representations in MTL are coupled and coordinated with
distributed, nonlinear attractor based representations in the
cortex. This would be an instance of what I have called
”glocal memory” [20] – a term describing memory structures
in which each memory item stored has both a distributed
(”map”) aspect and a localized (”key”) aspect. Glocal mem-
ory has certain advantages in an AI context, because it allows
an AI system to exploit the facility of local representations
for explicit symbolic reasoning, alongside the facility of
distributed Hopfield-net style representations for associative
memory and creative concept-generation. It may provide
brains with similar advantages.

IV. COMBINATORY LOGIC

Combinatory logic started with a paper by Moses Schon-
finkel [21], written with the aim of figuring out how to do
logic without bound variables. In one of the ultimate acts
of mathematical reduction, he reduced logic to a simple
language consisting of one constructor (function application)
and some primitive constants. This work was continued by
Haskell Curry [22] who introduced modern combinatory
logic notation and developed a body of related theory. At
about the same time, Alonzo Church introduced the lambda-
calculus as a new way to study the concept of rule. Originally
his purpose was to provide a foundation for mathematics.
Combinatory logic and lambda-calculus, in their type-free
versions, generate basically the same algebraic and logic
structures. Today combinatory logic lives on primarily among
those developing and theorizing about functional program-
ming languages such as Haskell.

1In time these actresses may become grandmothers themselves, providing
the neuroscience literature with greater metaphorical coherence.

The notation of combinatory logic relies on the notion of
currying, in which adjacency indicates function application
and binds to the left, so that e.g.

Sfgx ≡ ((S(f))(g))(x)

One introduces a set of combinators, and then expresses
general logical relationships via combining them in complex
expressions. Some standard combinators are:

S f g x => ( f x ) ( g x )
K x y => x
I x => x
B f g x => f ( g x )
C f x y => f y x
W f x => f x x
D f => f f
Y f => Y (Y f )

It is a well known, simply proved theorem that the S and
K combinators form a complete set, and can be used to
generate any other combinator. Schonfinkel also gave a single
combinator which possesses this completeness property. The
Y combinator is famous as the simplest archetypal form of
recursion.

Theoretical computer scientists should note that, by
adding an extensionality rule to combinatory logic – i.e.
∀x {(F x) = (Gx)} ⇒ F = G – one obtains an equational
theory that corresponds exactly to βη-equivalence. ”Illative
combinatory logic” involves the augmentation of the basic
combinators with simple rules such as this, enabling combi-
natory logic to do everything that ordinary formulations of
logic do, but without explicit manipulation of variables.

A. An Example of Variable Elimination

For a concrete example of how combinators enable
variable-free expression of symbolic structures, let us turn
to the OpenCog AI framework [23], [24], whose knowledge
representation features (among many other things) logical
relations such as

AND
I n h e r i t a n c e L i n k $X c a t
e a t s $X mice

This would be expressed in a more standard notation as

i n h e r i t a n c e ( $X , c a t ) & e a t s ( $X , mice )

However one phrases it, though, this example involves the
variable $X. How can we get rid of the $X?

The easiest route here involves the C combinator, defined
above by

C f x y = f y x

Using this tool,

I n h e r i t a n c e L i n k $X c a t

becomes

C I n h e r i t a n c e L i n k c a t $X
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and

( e a t s $X ) mice

becomes

C ( e a t s ) mice $X

so that overall we have

AND
C I n h e r i t a n c e L i n k c a t
C e a t s mice

where the C combinators essentially give instructions as to
where the ”virtual argument” X should go.

In this case the variable-free representation is basically just
as simple as the variable-based representation. This won’t
always be the case – sometimes, in a computer science
context, execution efficiency will be significantly enhanced
by use of variables.

Conceptually, though, the elimination of variables provides
a dramatic simplification. One no longer has the peculiar
constructs of variables that need to be assigned to values.
The ”variable binding problem,” as such, simply goes away!
In the place of variables bound to values, what one gets in
return are higher-order functions – functions that take other
functions as arguments, and so on.

B. Neural Realization of Combinators

How might combinators, or something like them, be
expressed in the brain? Suppose that mathematical functions
are to be represented as neural subnetworks. Then, the main
”trick” that needs to be carried out is to have neural subnet-
works manipulate each other. Note that this is fundamentally
different than having one neural subnetwork pipe its output
into another neural subnetwork. Rather, in some sense, neural
subnetwork A must act on neural subnetwork B, producing
neural subnetwork C as the result of this activity.

To see how this formal notion might be relatively sim-
ply instantiated in the brain, consider a neural subnetwork
which contains a subset of neurons interpretable as ”control
parameters”, and then other neurons serving as input, output
and internal state. The state of the control parameters is
viewed as determining which mathematical function the sub-
network computes. In this framework, what would it mean
for neurally-implemented function A to act on neurally-
implemented function B, producing neurally-implemented
function C as output? One possible meaning would be for a
subnetwork computing A to spread activity into the control
parameters of a subnetwork computing B, thus causing this
latter subnetwork to change and start computing C instead.

Note that the same brain could potentially contain many
different subnetworks redundantly computing B, so that the
transformation of one of these into a subnetwork computing
C instead is no great loss. This kind of redundancy doesn’t
seem difficult to achieve neurally; the same activation pattern
needed to cause one subnetwork to start computing some
particular function, could also be sent to other subnetworks

simultaneously, causing them to start computing the same
function.

So, for instance, a neural subnetwork playing the role
of the C combinator, could act on the control parameter
subset of a neural subnetwork playing the role of ”eats”,
transforming the latter into a subnetwork that carries out
a certain other transformation T involving ”eats” on other
subnetworks. In particular, this other transformation T would
transform a subnetwork Y into a subnetwork Z that would
map its argument X into : the output of applying the result
of ”eats” to Y , to X .

Yes, this looks a bit convoluted when you write it down in
English. But so would the spreading of activation in any rea-
sonably complicated recurrent neural network. The point is
that all this complication can, mathematically, be instantiated
by neural subnetworks spreading activation into each other’s
control-parameter subsets, and taking each others’ control-
parameter subnetworks as inputs. Neurons acting as control
parameters for subnetworks, together with control-parameter
neurons acting as inputs to neural subnetworks, enable sets
of neurons to act implicitly as functions acting on functions
on neural subnetworks, functions acting on functions acting
on functions on neural subnetworks, and so forth.

V. AN HYPOTHESIS REGARDING THE REPRESENTATION
OF COMPLEX SYMBOLIC KNOWLEDGE IN THE BRAIN

Now we have articulated all the ingredients needed to posit
a fairly concrete hypothesis regarding the neural representa-
tion of complex symbolic knowledge.

Firstly, the variable binding problem is bypassed, via
hypothesizing that the brain represents complex relationships
in the style of illative combinatory logic, in which variables
don’t need to be explicitly represented. In place of variables
one has ”higher order functions”, i.e. functions that trans-
form other functions. Eliminating bound variables doesn’t,
in itself, solve the problem of neural-symbolic knowledge
representation, but it casts the problem in a more tractable
form.

The actual transformations indicated via combinatory logic
are proposed to be carried out by neural subnetworks that
”act on each other” via modifying neurons within each
subnetwork that play the role of control parameters (de-
termining what mathematical function the subnetwork com-
putes). These neural subnetworks will generally be physically
distributed throughout the brain, and are likely to maintain
their activity over time due to complex ”strange attractor”
and ”strange transient” style dynamics.

”Concept neurons” in MTL are suggested to serve as
”symbols” for cortical activity patterns, in the sense that in-
dividual concept neurons correspond to particular distributed
attractors in the cortex. Patterns of synaptic connectivity
between concept neurons are hypothesized to encode instruc-
tions for actual transformations enacted by corresponding
cortical attractors upon each other.

Finally, we suggest that the instruction for one cortical
attractor F to transform another cortical attractor G, is
encoded in a relationship of systematically asynchronous
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firing [1] between the concept neuron c(F) corresponding
to F and the concept neuron c(G) corresponding to G. That
is, a brief delay between c(G) firing and c(F) firing, encodes
the function application F(G).

The question then arises: How does the brain disambiguate
between e.g. F (GH) and (FG)H? One obvious possibility
is that this is implemented via, in effect, having a different
firing gap associated with each parenthetical grouping. In
other words: the logical grouping denoted syntactically by
parentheses, in the standard combinatory logic notation,
might be represented in the brain via temporal grouping.
This would mean that in an expression involving 10 levels of
nested parentheses, 10 different gradations of timing would
be required. However, it’s clear that human brains are not
capable of arbitrarily complex logical manipulations, without
aid of external devices like paper and pencil or computers. So
the fact that a certain mechanism would become increasingly
awkward as the logical expressions involved become more
complicated, seems not a counterargument against neural or
psychological plausibility.

This is an admittedly speculative model. However, it is rea-
sonably concrete, and utilizes only mechanisms with known
neurological plausibility. There seems little likelihood that
the brain handles symbolic knowledge exactly as proposed
here, with no variations or added complications. However,
there also seems no good reason, based on the available data,
why something like this couldn’t be the true story.

VI. CONCLUSION

Detailed understanding of how the brain realizes complex
symbolic representations and manipulations remains for the
future, when brain imaging has advanced further. Whether
this future will come in years or decades remains to be seen.
In the meantime, however, we can seek to understand what
kind of theory might appropriately bridge the gap between
neurons and symbols. Here I have presented one relatively
concrete hypothesis in this regard.

In this hypothesis, combinatory logic is used to bypass
the variable binding problem. Concept neurons are used to
avoid the need to make all representations purely distributed,
but are proposed to work together with distributed attractor
representations. Concept neurons and their interrelationships
are posited to encode combinatory logic style representations,
while the correlated attractor subnetworks actually execute
the transformations implied by the combinators. Systematic
asynchrony is hypothesized as a tool for neural realization of
function applications, including parenthetically nested ones.

These various notions, put together, provide a plausible
explanation how a system like a brain could plausibly give
rise to complex symbolic structures such as one sees in logic
and mathematics, and such as humans appear to utilize when
carrying out deliberative reasoning about their everyday lives.
The next challenges along the path blazed here would be to
implement the ideas suggested in a computational simulation,
and to seek explicit neuroscience evidence in favor of the
ideas given.
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