
 

 

 

  

 

Abstract—In this paper, we propose a statistical approach to 

reconstruct the brain neuronal activity based only on recorded 

EEG data. The brain zones with the strongest activity are 

expressed at a macro level by a few number of active brain 

dipoles. Normally, for solving the EEG inverse problem, fixed 

dipole locations are assumed, independently of the different 

stimuli that excite the brain. The proposed particle filter (PF) 

framework presents a shift in the current paradigm by 

estimating dynamic brain dipoles, which may vary from one 

location to another in the brain depending on internal/external 

stimuli that may affect the brain. Also, in contrast to previous 

solutions, the proposed PF algorithm estimates simultaneously, 

the number of the active dipoles, their moving locations and their 

respective oscillations in the three dimensional head geometry.  

 

 

I. INTRODUCTION 

lectroencephalography (EEG) is a widely used 

technology for brain study because it is non-invasive, 

relatively cheap, portable and has an excellent temporal 

resolution [1]. However, the full potentiality of EEG has not 

yet been exploited, mainly owing to the complexity of EEG 

data analysis. The main issue in EEG investigation is the 

solution of the inverse problem of determining the 

spatio-temporal evolution of the neural currents from the 

dynamic EEG measurements at different locations outside the 

skull. This problem is difficult for many reasons. First, it is 

ill-posed and numerically unstable problem. Second, the 

problem has to be solved at many different time points and this  
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makes computational effectiveness a crucial issue in the data 

analysis process. Third the EEG data is characterized by a 

very low signal to noise ratio (SNR), the row signal is 

contaminated by both neural background and sensor’s noise 

[2].  

Most brain source reconstruction techniques belong to one of 

the two approaches, [3] : i) imaging models (distributed 

source) which explain the data with thousands of equivalent 

current dipoles and ii) dipole models (point source models) 

which use a small number of dipoles.  

The imaging techniques are by far more researched, they 

provide a detailed map of the brain neuronal activity. 

However, these are computationally heavy procedures, it is 

difficult to explain the data by the obtained complex models 

and to make inter-subject statistics. Moreover there are other 

imaging technologies like Magneto-encephalography (MEG) 

Magneto Resonance Images (MRI), functional MRI that 

provide the same brain models.  

The few-dipole models obtained less attention. Their main 

advantage is that they represent a direct mapping from scalp 

topology to a small number of parameters. Dipole solutions 

provide simple interpretations that explain the data. 

Furthermore it is easy to report statistics of dipole parameters 

over different subjects. Summarizing distributed brain activity 

with a small number of active dipoles simplifies analysis of 

connectivity among those sources. It is only recently, and due 

to the increase in the available computational power, that 

statistical methods, such as the Kalman filter and the Particle 

Filters, seem feasible as brain source localization tools, [4], 

[5]. However, these techniques are still at a very initial 

explorative stage and further investigations are required. 

Statistical approach for estimation of a few-active-dipole 

model that summarizes the distributed brain activity based 

only on EEG measurements is the focus of this paper and 

recent work by the same authors [6], [7]. We propose a 

particle filter – based (PF) algorithm to reconstruct the brain 

neuronal activity. The brain zones with the strongest activity 

are expressed at a macro level by a few number of active brain 

dipoles.  

Normally, for solving the EEG inverse problem, fixed 

dipole locations are assumed, independently of the different 

stimuli that excite the brain. Recently, Miao et.al., [8] have 

proposed a Bayesian approach to track dynamic dipoles in 

real time and Independent Component Analysis (ICA) 
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technique to define the number of the independent dipoles. 

However, in order to reduce the computational intensity, each 

dipole is tracked by a separate particle filter. In [7], we 

proposed a more general PF framework to track all dynamic 

dipoles assuming their number is known a priori. The present 

work is an extension of [7] where the PF algorithm estimates 

simultaneously, the number of the active dipoles, their moving 

locations and their respective amplitudes in the three 

dimensional head geometry. 

The paper is organized as follows: In section  2 the PF 

framework is outlined. In section  3, based on physiological 

specifications, the EEG state-space model is defined. A novel 

approach for estimation of the number of active brain dipoles 

is introduced in section 4 based on information theoretic 

criteria. The major contribution of this work, namely the PF 

algorithm for dynamic EEG source estimation is detailed in 

section 5. In sections 6 and 7 the feasibility of the proposed PF 

method is demonstrated on generated and real EEG data. 

Section 8 concludes the paper. 

II. PARTICLE FILTER 

Many problems in statistical signal processing can be stated in 

a state space form. A system transition function describes the 

prior distribution of a hidden Markov process according to the 

model: 

( ) .1 ,k k k kf
+

=x x w
 (1) 

 

Here, kf  is the system transition function and kw  is a 

zero-mean, white noise sequence of known pdf, independent 

of past and current states. Measurements kz  are available at 

discrete times k, relating to the state vector kx  via the 

observation equation:  

 

( ) ,,k k k kh=z x v
 (2) 

 

where kh  is the measurement function and kv is another 

zero-mean, white noise sequence of known pdf, independent 

of past and present states and the system noise. 

Within a Bayesian framework, all relevant information about 

the state vector, given observations up to time k, can be 

obtained from the posterior distribution ( ) ,1:k kp x z  where 

{ }.1: 1 , ,k k=z z zL  This distribution may be obtained 

recursively in two steps: prediction and update. Suppose that 

the posterior distribution at the previous time index 1k − , 

( ) ,1 1: 1k kp
− −

x z is available. Then, using the system transition 

model, we can obtain the prior pdf of the state at time k as 

follows: 

 

( ) ( ) ( ) .1: 1 1 1 1: 1 1k k k k k k kp p p d
− − − − −

= ∫x z x x x z x  (3) 

 

When a measurement kz , at time step k, is available, the prior 

is updated via Bayes rule: 
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where the denominator is a normalizing factor and the 

conditional pdf of kz  given kx  is defined by the 

measurement model in (2). 

The recurrence equations in (3) and (4) constitute the solution 

to the Bayesian recursive estimation problem. If the functions 

kf  and kh  are linear and the noises kw  and kv  are Gaussian 

with known variances, then an analytic solution to the 

Bayesian recursive estimation problem is given by the 

well-known Kalman filter. In the EEG inverse problem, 

however, the measurement function kh  is non-linear, because 

the EEG measurements kz  are non-linear functions of the 

source locations. 

In order to deal with the non-linear and/or non-Gaussian 

realities, two main approaches have been adopted: parametric 

and non-parametric. The parametric techniques are based on 

extensions of the Kalman filter by linearizing non-linear 

functions around the predicted values. The non-parametric 

techniques are based on sequential Monte Carlo methods and 

particularly the particle filter (PF). Unlike the Kalman filter, 

which propagates the mean and covariance of the Gaussian  

posterior density, the PF uses a set of random samples, called 

particles, to estimate the posterior distribution of the state. 

Specifically, the posterior is approximated by a set of 

weighted particles (hence the name particle filter) as: 

 

( ) ( ),
( ) ( )

1:

1

N
l l

k k kk k

i

p π δ

=

≈ −∑x z x x  (5) 

 

Here, N is the total number of particles, 

( ) ( ) ( )

1
/

Nl l l
k k kl

w wπ
=

= ∑  is the normalized weight for particle l 

at time k. Ideally, the particles are required to be sampled from 

the true distribution ( )1:k kp x z , which is not available. 

Therefore, another distribution, referred to as the importance 

distribution, or the proposal distribution 1(x | x , y )n n nq
−

, is 

used. Theoretically, the only condition on the importance 

distribution is that its support includes the support of the 

posterior distribution. In practice, the number of particles is 

finite and the importance distribution should be chosen to 

approximate the posterior distribution. The importance 

weights are given by: 

 

( ) ( )

( )

−

−

−

= ,

( ) ( ) ( )
1

( ) ( )
1

( ) ( )
1:1 ,

l l l
k k k k

l l
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l l
kk k

p p
w w

q
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 (6) 

2593



 

 

 

For instance, if the importance distribution is given by the 

prior density,  

( ) ( )( ) ( ) ( ) ( )
1:1 1,l l l l
kk k k kq p

− −
=x x z x x ,  (7) 

 

then Eq. (6) reduces to:  

 

( )−
= .

( ) ( ) ( )
1

l l l
kk k kw w p z x  (8) 

 

Given a discrete approximation to the posterior distribution, 

one can then proceed to a filtered point estimate such as the 

mean of the state at time k: 

 

.
( ) ( )

1

ˆ
N

l l
k k k

l

π

=

=∑x x  (9) 

 

The main advantage of the particle filter is that no restrictions 

are placed on the functions kf  and kh , or on the distribution 

of the system and measurement noise.  

III. EEG STATE-SPACE MODEL 

In order to apply the particle filtering framework, described in 

Section 2, we need to define the state-space model of the EEG 

source localization problem based on physiological 

constraints. 

A. EEG measurement model  

The main source of EEG potentials, measured at the scalp, 

derive from simultaneous postsynaptic current flows (i.e., 

graded synaptic activity) of many neighboring neurons with 

similar orientations. In particular, these clusters of similar 

oriented neurons are mainly found in the cortical areas of the 

brain associated with the pyramidal cells. The total electric 

current in an activated region is often modeled by a 

mathematical current dipole with an adequate dipole moment. 

Furthermore, many of those current dipoles representing 

microscopic current flows with the same orientation are 

replaced by an equivalent current dipole [1]. In this paper, it is 

assumed that the electric activity of the brain at any given time 

can be modelled by only a small number of dipoles having 

arbitrary location and orientation within the source volume. 

The focal current models seem particularly suitable in BCIs 

where strong assumptions about the areas involved in a 

specific mental task are available (e.g., is well-known that the 

components of the EEG used for discriminating imaginary 

movements originate in the motor cortex).Assuming that the 

brain electrical activity has been originated by M active 

dipoles, the observation vector kz that represents the EEG 

measurements collected from all sensors at time k (the forward 

EEG model) [1] can be expressed by  

 

( ) kkkk vsdLz +=  (10) 

 

Where for each dipole [ ]tzkykxkk dddd ,,=  is a three 

dimensional coordinate vector at time k, [ ]tzkykxkk ssss ,,=  is 

the source oscillation amplitude in the space at the same time 

and t is the transpose operator. L is the lead field dipole matrix 

at time k, and kv  is a white Gaussian noise with variance 2
vσ . 

From Eq. (10), the likelihood of each measurement can be 

obtained:  

 

( )
( ) ( )

,

1( ) ( )
( , ) exp

2
k

t

k k k z k k k
k k k

− 
− −

 ∝ −
 
  

z L x s R z L x s
z x sL

 (11) 

where 
kz

R  is the covariance matrix of the measurement 

vector ,kz ∝ denotes “proportional to”. The goal is to 

estimate 
kd and 

ks and given kz  (the multichannel EEG 

signal).  

B. EEG state transition model  

In the PF framework of the dipole localization problem, the 

states 
kx  that have to be estimated are the geometrical 

positions and neural activity signals of M dipoles. That is, for 

one dipole, we have six state variables: 

[ ]tzkykxkzkykxkk sssdddx ,,,,,= . In the adopted scenario, we 

have no a priori knowledge of the dipole locations or signals. 

Such a model is valid in practice, especially for characterizing 

brain sources of atypical brain activity like seizure in epilepsy. 

We therefore assume the state transition to be a random walk 

(first-order Markov chain) in the source localization space [9], 

 

kkk wxx +=  (12) 

 

where kw  is a zero-mean, Gaussian white noise with 

covariance Iw

2
σ , where I denotes the identity matrix. The 

process kw  is assumed to be independent of past and current 

states. Thus, the complete state-space model of the dipole 

reconstruction problem is the following: 

 

( )

state transition model

observation model.

1k k k

k k k k

−
 = +


= +

x x w

z L x s v
  (13) 

 

C. State-space dynamics 

In the above section, the number of active brain dipoles M 

is assumed to be known a priori. In this section, we include the 

estimation of the number of active dipoles within the PF 

framework. We therefore consider the vector { }kkk mxy ,= , 

where 
km is the number of active dipoles at time k. 

km  is 

modeled by the following birth-death process [10], 

 

mkkk mm ε+=
−1  (14) 
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where mkε is a discrete process having the following 

probability 
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−−==
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ε

 (15) 

 

where [ ]1,0, ∈db pp are, respectively, the probability of birth 

and death of a source. Observe that the model in Eqs. (14) and 

(15) implies that the number of sources can change by no more 

than one at a given time. Assuming that the dipoles move 

independently, we have the following joint dynamics for the 

dipoles’ location, amplitudes and number 

 

( ) ( )

( ) ( )111

111

,,

,,

−−−

−−−

=

==
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mmpmmxxp

mxmxpyyp
 (16) 

 

The prior dynamics for 
kx  is therefore given by 
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where ( ))(0 kk mxp is the distribution of the new  dipole and  

*
m is the dipole to be removed. 

IV. SOURCE NUMBER ESTIMATION 

We propose to estimate the number of uncorrelated brain 

dipoles by analyzing the structure of the covariance matrix of 

the observations. We assume an array of nz electrodes sensing 

signals from m dipoles. The EEG recordings span T time 

points to form a spatio-temporal data vector 

( ) ( )[ ]
tt

T

t
z,....zVL(X)SZ 1=+= . The covariance matrix of the 

observations can be decomposed as 

 

IRRRR vsns

2
σ+=+=  (18) 

 

where sR and IR vn

2
σ=  are the covariance of the source 

signal L(X)S and the noise V. We assume that the 

observations are generated from m uncorrelated dipoles; thus 

the rank of sR  is m. Since sR  is also positive semi-definite, 

sR has m non-zero positive eigenvalues 0≥sλ . The 

eigenvalues of R can be written as 2

vs σλλ += and can be 

ordered as 
znmm λλλλ ≥≥≥≥≥

+
........ 11 . Hence, the 

problem of estimating the number of independent dipoles 

reduces to the problem of finding the smallest eigenvalues of 

the observation covariance matrix. In practice, however, the 

covariance matrix R is unknown. Instead, an estimate of the 

covariance matrix is available from a finite sample set. In this 

case, determining the smallest eigenvalue may not be 

straightforward. Information theoretic criteria (IC) methods 

[11] offer a better alternative to determining the smallest 

eigenvalues by using a penalized likelihood function of the 

data. The IC criteria for determining the number of signals can 

generally be expressed as 

 

( )
ff PTCmZfIC )()(log +Θ−=  (19) 

 

where f is a family of conditional probability density 

functions, m is the assumed number of signals, )(mΘ  is a 

system function of m parameters, 
fP  is the number of free 

parameters in Θ , and )(TC f  is the penalty function, which 

depends on the number of sample points T .  

The likelihood function in (19) is based on the minimum 

descriptive length (MDL) criterion proposed by Wax and 

Kailath [12]. The IC value derived by Wax and Kailath can be 

obtained from the eigenvalues of the observation covariance 

matrix R as follows [11], [12] 

 

)log()12(2)log(

1
log)()(

1

1

TmnmT
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mnTmIC

z
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i

n

mi
i

z

z

z

z

+−+

−
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−=

∑

∑

+=

+=

λ

λ

 (20) 

 

where m is the number of assumed independent active dipoles 

and zn is the number of the EEG channels. The number of 

dipoles with minimum IC is selected as the estimated number 

of active brain dipoles. 

 

IC-based estimation algorithm of independent active dipoles 

 

The IC algorithm to estimate the number of independent brain 

dipoles with strong neural activity can be summarized in the 

following steps: 

 

1. Calculate the covariance matrix R from the measurement 

data matrix Z. 

2. Use SVD to compute the eigenvalues of the covariance 

matrix R, 
znmm λλλλ ≥≥≥≥≥

+
........ 11 . 

3. Use the eigenvalues of R to compute the information 

criterion IC(m) in Eq. (20) for different values of m. 

4. The number of dipoles with minimum IC is selected as the 

estimated number of active dipoles. 
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V. PARTICLE FILTER ALGORITHM 

The PF algorithm for estimating the number of active dynamic 

(moving) dipoles and their locations is described below, 

where N denotes the total number of particles. 

 

PF algorithm for reconstruction of dynamic brain dipoles  

 

I. Initialization 

 

1. Estimate the initial number of active dipoles using the IC 

algorithm described in Section 4 for max,...1 Mm = , where 

maxM  is the expected maximum number of active brain 

dipoles. The initial number ( 0m ) corresponds to the minimum 

of IC. 

 

2. ,0k =  

generate Nl ,...1=  samples ( )
( )

00 ~l px x and set initial 

weights N
l

/1
)(

0 =π .  

 

II. Estimation for k = 1, 2, . . . , 

 

1. Prediction Step 

Generate )( l

km samples according to the prior in Eq. (17) the to 

track ( ) ( ) ( )( )l

k

l

kk

l

k mxxpx ,~~
1−

= . 

 

2. Measurement Update 

 

• Compute the lead field matrix )( kxL  by solving the 

Maxwell equations in [1]. 

• Evaluate the particle weights: 

(a) for Nl ,...1= , on the receipt of a new measurement, 

compute the weights 

( )( ) .( ) ( ) ( ) ( ) ( )
1 , ,l l l l l

kk k k k kw w s
−

 
=  

 
z x L xL                                (21) 

The likelihood ( )( )( ) ( ) ( ), ,l l l
k k k ks

 
 
 
z x L xL  is calculated 

using Eq. (10).  

 

(b) for Nl ,...1= ,  normalise the weights, 

.
( ) ( ) ( )

1
/

Nl l l
k k kl

w wπ
=

= ∑  

3. Evaluate the posterior mean as the estimate of the state at 

time k:  

[ ] [ ]{ } )(

1

)(

:1:1 ,|~ l

k

N

l

l

kk

t

k

t

kkkk yzmxEzyEy ∑
=

=== π  

(22) 

4. Compute the effective sample size ( )∑ =
=

N

l

l
keffN

1

2)(
/1 π . 

 

5. Selection step (resampling) if tresheff NN < : Multiply/ 

suppress samples { })(l
ky  with high/low weights )(l

kπ , in order 

to obtain N new random samples approximately distributed 

according to the posterior state distribution. 

 

III. Estimate the # of active dipoles (for k = k + epoch) 

 

Estimate periodically (once per epoch) the number of active 

dipoles as 

( ) ( ) ( ){ }1,,1minargˆ
111 +−=

−−− kkkk mICmICmICm ,              (23) 

where epoch is the number of time samples over which it is 

assumed the number of active dipoles does not change, e.g., 

during a focused brain activity, as described in Section 6. 

 

Birth (of a new active dipole):  

• Increment the number of dipoles to 11 +=
−kk mm  

• Initialize the particles for the new dipole, ( ) ( )00
~~ xpx

l
≈ , 

Nl ,...1= .  

• Insert the new particles to form an augmented state 

vector ( ) ( )( ) ( )( )[ ]tlti

k

l

k xxx 011
~,~

−−
=   

 

Death (of an active dipole):  

• Decrement the number of dipoles to 11 −=
−kk mm . 

• Remove the dipole corresponding to the smallest average 

weight, m
*
, and all its particles, i.e.,  

•  

( ) ( )( ) ( )( ) ( )( ) ( )( )[ ]
tti

km

ti

km

ti

km

ti

k

l

k l
k

xxxxx
1,1,11,11,11 )(

1
** ,....,,....~

−−+−−−−
−

=  

 

Maintenance (keep the same number of active dipoles): 

Keep 1−
= kk mm  and generate samples according to the prior 

in Eq. (17). 

 

 

The PF resampling step is necessary in order to avoid the 

degeneracy of the algorithm, where the variance of the 

particles’ weights can only increase over time, [13]. In 

practice, after a certain number of iterations, all but one of the 

normalized weights are very close to zero. The purpose of 

resampling is to eliminate estimates which have small 

normalized weights and to concentrate on estimates with large 

weights. A suitable measure of degeneracy of the algorithm is 

the effective sample size ( )∑ =
=

N

l

l
keffN

1

2)(
/1 π , [13]. When 

effN is below a fixed threshold treshN , the resampling 

procedure is used. 

Remark: The IC criterion (20) is used as an initial guess for the 

number of active independent dipoles. In the course of the PF 

algorithm, each epoch, this number can increase or decrease 

smoothly only with one dipole.  

VI. RESULTS ON SIMULATED EEG DATA  

The simulated EEG data is based on the following 

assumptions:  
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• The scalp electrodes record the superposition of both 

brain sources and non-brain sources related to, for example, 

movements of muscles. 

• The reference has a zero potential. 

• The distribution of the electrodes on the scalp follows the 

standard 10/20 International system. An array of 

30-electrodes is assumed (Fp1, AF3, F7, F3, FC1, FC5, C3, 

CP1, CP5, P7, P3, Pz, PO3, O1, Oz, O2, PO4, P4, P8, CP6, 

CP2, C4, FC6, FC2, F4, F8, AF4, Fp2, Fz, Cz). 

The coordinates of a grid of 21012 dipoles uniformly 

distributed inside a spherical head model, with radius R = 10 

cm, represent the discrete dipole state-space. A small number 

of moving dipoles (from 2 to 20) is randomly chosen from this 

grid. The neural activity in the dipoles is simulated by a sine 

wave with constant amplitude 0.1 and varying frequencies 

[10, 15, 20, 25]Hz. For the moving dipoles, the waves 

propagate along the moving directions of each dipole. EEG 

data, as a result of the neural activity in the chosen active 

dipoles and artificially added noise with varying SNR, is 

generated using the forward model (Eq. 8). The number and 

location of the active dipoles change in a piecewise mode, 

from one epoch to another. Over one epoch (which 

corresponds to 40 msec/20 samples in our simulations) they 

are kept constant. One epoch corresponds to a static (focused) 

period in the neural activity.  

 

A. Estimation of the number of active dipoles 

We first assess the performance of the information theoretic 

criterion (Eq. 20) in estimating the number of active dipoles. 

Fig. 1 shows the IC values computed for EEG generated by 4, 

12 and 20 dipoles, in the presence of temporal correlation 

between some of the dipoles.  

The temporal correlation , ( )i jM f  of a pair of ( ),i j  dipoles 

is quantified by the magnitude-squared cross spectrum 

, ( )i jS f
 
divided by the power spectra of the dipole waveforms 

, ( )i iS f  and , ( ) :j jS f   

 

.

2

,

,
, ,

( )
( )

( ) ( )

i j

i j
i i j j

S f
M f

S f S f
=  (24) 

 

The correlation is bounded between 0 and 1, where 

, ( ) 1i jM f =  indicates a perfect linear relation between 

dipoles id  and jd  at frequency f. The minimum of the four IC 

curves depicted on Fig.1 correspond to the number of 

uncorrelated dipoles ( 0)(, =fM ji ). Therefore we empirically 

confirm the theoretical proofs in [12] that IC can reliably infer 

only uncorrelated dipoles.  

 

B. Particle filter (PF) results 

For the moving dipoles, the initial and the final locations are 

selected. We simulated four sequential location stages 

(epochs) across 80 samples (20 samples per epoch). The 

dipoles move with constant speed between the initial and the 

final locations. PF reconstruct the dipole coordinates within 

the head geometry as described in Section 5. We consider the 

estimation of moving: (i) two uncorrelated dipoles, (ii) three 

uncorrelated dipoles, (iii) four uncorrelated dipoles and (iv) 

four (two by two) correlated dipoles. Very noisy EEG data 

was generated ( SNR= 1 dB). Fig. 2 shows the Mean Square 

Distance Error (MSDE) over 100 Monte Carlo runs for the 

four cases, where 

 

MSDE= ( ) ( ) ( )
2 2 2

ˆ ˆ ˆx x y y z z
 

− + − + − 
 

 (25) 

 

For uncorrelated dipoles over each subsequent moving stage 

(20 samples), the MSDE decreases. This is expected because 

the posterior at the previous stage is transferred as a prior for 

the next location. Only at the beginning of the first stage, an 

uninformed (flat) prior is assumed. The case of two by two 

correlated dipoles is more challenging and longer time is 

required to correctly localize the dipoles. 

 
Fig. 1. Estimation of the # of active dipoles using the IC in Eq. (20) 

 

 
Fig. 2. MSDE of moving dipole localization, SNR=1dB (100 MC runs) 
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VII. RESULTS ON REAL EEG DATA 

In this section, we validate the estimation accuracy of the 

proposed algorithm with real EEG data. The data corresponds 

to EEG Visually Evoked Potentials (VEP) extracted from 

thirteen female subjects (20- 28 years old). All participants 

had normal or corrected to normal vision and no history of 

neurological or psychiatric illness. Different facial 

expressions (neutral, fearful and disgusted) of 16 individuals 

(8 males and 8 females) were selected, giving a total of 48 

different facial stimuli. Images of 16 different house fronts 

were superimposed on each of the faces. This resulted in a 

total of 384 grayscale composite images (9.5 cm wide by 14 

cm high) of transparently superimposed face and house. 

Participants were seated in a dimly lit room, where a computer 

screen was placed at a viewing distance of approximately 80 

cm coupled to a PC equipped with software for the EEG 

recording. The images were divided into two experimental 

blocks. In the first, the participants were required to attend to 

the houses (ignoring the faces) and in the other they were 

required to attend to the faces (ignoring the houses). The 

participant’s task was to determine, on each trial, if the current 

house or face (depending on the experimental block) is the 

same as the one presented on the previous trial. Stimuli were 

presented in a sequence of 300 ms each and were preceded by 

a fixation cross displayed for 500 ms. The inter-trial interval 

was 2000 ms.EEG signals were recorded from 20 electrodes 

(Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2; F7, F8, T3, T6; P7, 

P8, Fz, Cz, Pz, Oz) according to the 10/20 International 

system. Electrooculogram (EOG) signals were also recorded 

from electrodes placed just above the left supra orbital ridge 

(vertical EOG) and on the left outer canthus (horizontal 

EOG). VEP were calculated off-line averaging segments of 

400 points of digitized EEG (12 bit A/D converter, sampling 

rate 250 Hz). These segments covered 1600 ms comprising a 

pre-stimulus interval of 148 ms (37 samples) and 

post-stimulus onset interval of 1452 ms. The EEG signals 

were visually inspected, prior to processing, and those 

segments with excessive EOG artifacts were manually 

eliminated. Only trials with correct responses were included in 

the data set. The experimental setup was designed by Santos et 

al. [14] for their study on subject attention and perception 

using VEP signals.  

Our goal is to reconstruct the principal brain zones (expressed 

by the location of the most active dipoles) that have originated 

the positive EEG peaks in the range of 80-120 milliseconds, 

known as P100. P100 corresponds to the perception of the 

sensory stimulus, a brain activity that is known to happen in 

the primary visual cortex. Therefore, we expect to localize the 

most active dipoles in the visual cortex and also that the 

occipital channels (O1, 02, Oz) and the parietal channels ( Pz, 

P3, P4), located around the visual cortex, will respond with 

stronger VEPs. 

 

A. Estimation of the number of active dipoles 

First the number of dipoles with strongest neural activity that 

may have produced the recorded EEG data is estimated 

following the IC in Eq. (20). Fig. 3 depicts the overlapped IC 

curves computed from the EEG data for all 148 trials. Each 

trial corresponds to the EEG data recorded while one subject 

was repeating the same experiment described above 148 

times. It is intriguing to observe that the minimums of the IC 

are obtained for a range of 2 to 9 (uncorrelated) dipoles .  

This variation in the number of the active dipoles, when 

apparently the subject was doing the same task, can be 

explained by the fact that the patient may not have been 

completely focused on the repetitive task at hand (the patient 

may get bored and think of other issues while performing the 

same task), or that the presented images bring up some 

personnel memories, experiences or feelings to the patient 

(e.g., if a face looks familiar or the patient likes a particular 

house, etc). The human brain, far from being stiff and rigid, is 

flexible and adaptable; and thus, even a focused brain activity 

may stimulate different neuronal sources each time it is 

performed. For 18 of the trials (the bottom plot of Fig.3) the 

IC minimum is obtained for 2 dipoles that we consider as the 

dipoles (d1 and d2) with the strongest neuronal activity.  

 

 
Fig. 3. Estimation of the # of active dipoles by IC criterion (Eq. 20) for real 

EEG data: 148 trials, min IC for 2 to 9 dipoles (top); 18 trials, min IC for 2 

dipoles (bottom).  

 

B. Particle filter (PF) results 

We apply the proposed PF framework to estimate the two 

strongest dipoles that may have produced the P100 peak. The 

filtering is repeated 100 runs starting from randomly selected 

particles. The results of the averaged estimation are 

summarized in Fig. 4. It is very promising to see that the 

estimated coordinates d1 (3.6 mm,-5.5 mm, -1.03 mm) and d2 

(-3.3 mm, -2.2 mm, -1.02 mm) correspond to the zone of the 

primary visual cortex.  

These biologically plausible results for real EEG data 

encourage us that the proposed statistical framework for 

reconstruction of dynamic brain dipoles is feasible and can be 

extended for more complex brain processes.  

 

2598



 

 

 

Fig. 4. Estimation of the coordinates of the strongest dipoles d1 and d2 that 

originated P100 wave in the occipital channels. (100 MC runs) 

 

VIII. CONCLUSION 

In this paper, we propose a particle filter (PF)-based algorithm 

to simultaneously estimate the number of the most active 

dipoles that originated recorded EEG data, their locations and 

corresponding oscillations in the 3D head geometry. Our main 

contribution is that the PF algorithm explicitly considers 

dynamic (moving) dipoles. The dipole localization problem is 

formulated as the estimation of the probability density 

function of the state vector (moving over time-space 

coordinates and the respective amplitudes of the dipole 

signals) based on all available observations (EEG 

measurements). This framework takes into account the 

non-linear relationship between the state vector and the 

observations as well as the noisy nature of the signals. 

Computer simulations, based on generated and real EEG data, 

show that the proposed PF approach is feasible to estimate the 

most active uncorrelated brain dipoles which move over time 

to new space locations in the brain.  

Current research is focused on implementing the proposed 

technique to more complex applications, i.e. EEG data with 

more affected brain zones and respectively higher number of 

active dipoles (more than two). Moreover, we are aware that 

the assumption of uncorrelated brain dipoles is too strong, 

therefore the algorithm is under modifications to explicitly 

consider possible correlations between the dipoles.  
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