
 
 

 

  

Abstract—The induction motor is considered one of the most 
important elements in manufacturing processes. The use of 
strategies based on intelligent systems capable to classify the 
presence or absence of failures and also to determine its origin 
for the diagnosis and faults prediction is widely investigated in 
three phase induction motors. Thus, the aim of this paper is to 
present a methodology of bearing failures classification based 
on artificial neural networks, by using voltage and electric 
currents values in the time domain. Experimental results 
collected at real industrial process are presented to validate this 
proposal.  

I. INTRODUCTION 
HE  three-phase induction motor is frequently used in the 
most diverse industrial sectors. Brazilian industrial sector 
consumes 47% of the country's electricity, and 50% of 

this energy is used in rotating electrical machines [1], which 
highlights the importance of three-phase induction motor in 
several industrial applications.  

In Brazil, during the past nine years, the application of 
resources with predictive maintenance has averaged 17.42%, 
as for the corrective maintenance it was reached 28.8%, and 
estimated total cost of maintenance due to the gross sales was 
3.95% [2]. 

Aiming to maximize process efficiency and also 
productivity, electric motors, and other equipments at 
industrial premises, require maintenance plans aligned with 
predictive techniques of diagnosis and prevention of failures 
that can lead to unwanted process stops [3].  

Thus, it can consider that the profitability of a process is 
related to the availability of its equipments, environmental 
preservation and also keeping people and processes integrity. 

The continuous search for cost reduction requires the 
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development of plans and strategies that can be used to 
predict and eliminate potential failures and unwanted 
machinery breaks, among others, reducing costs caused by 
unscheduled shutdowns. 

Hence, it can be employed various types of maintenance, 
such as predictive maintenance. This technique allows 
evaluating the real operating conditions of machines through 
the analysis of the data collected directly from the machine, 
allowing to minimize the occurrence of  unexpected  failures 
[4]. 

According to [5], reports concerning induction motor 
reliability shows that bearing faults are the major cause of 
failure in asynchronous motors. In the event of failure, the 
induction motor shows signs of defects in various ways, 
allowing its proper identification still under evolution.  

In this context, intelligent systems have been used for the 
identification and also resolution of several issues related to 
the control and actuation of electrical machines being able to 
address the failure source still in its early stage [6]-[7]-[8]-[9]. 

Intelligent systems applied to machines diagnosis are based 
on Artificial Neural Networks (ANN), Fuzzy Logic and also 
Hybrid Systems [10]-[11]-[12]-[13].  

The works of [14]-[15], deals with the evaluation of two 
types of incipient faults in a single-phase squirrel-cage 
induction motor: stator winding fault and bearing wear under 
constant load torque conditions. 

Thus, following the structure proposed by [14], the original 
input space was composed by effective values of current and 
speed {I, W}, and it was expanded to 5 dimensions {I, W, I2, 
W2, WxI} to achieve better network accuracy and to reduce 
training time. 

The objective of this paper is investigate a low cost 
alternative strategy to detect bearings faults in induction 
motors by using current (I) and voltage (V) signals in the time 
domain by combining the structures of the network inputs 
based on [14]. 

A comparative study between two neural structures is also 
presented in this paper. The first network consider as input 
only {I, V} while the second network is composed by {I, V, I2, 
V2, IxV}. 

This paper is organized as follows: Section 2 presents a 
description of the main faults in induction motors. In Section 
3, ANN data applied in this work are described. In Section 4, 
methodology proposed to evaluate the performance of 
networks and also present the results obtained from 
experimental data. Finally, in Section 5, the final conclusions 
of this work are presented. 
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II. ASPECTS RELATED TO FAULTS IN INDUCTION MOTORS 
The monitoring of the operating conditions of an induction 

motor enables fault diagnosis and also estimating its 
operation conditions attracting attention of many researchers 
in the recent years [16].  

This is due to the considerable influence of induction motor 
on the continuity of many industrial processes. 

The early detection and accurate diagnosis of incipient 
faults minimizes the occurrence of process damage, increases 
equipment availability and consequent maintenance of 
financial results.  

Electric motors are subject to various types of failures, 
which can be divided into two distinct groups: i) electrical 
faults and ii) mechanical faults.  

The main fault types in which electrical faults are 
highlighted problems relating to stator winding, rotor 
winding, which are present in some models of motors; broken 
bars in the rotor, broken rotor rings; connections among 
others.  

Moreover, the mechanical failures may be derived from 
problems of bearings, eccentricity, wear coupling 
misalignment among others as reported by [16]-[17].  

According to the failures described in the literature 
[16]-[17]-[18]-[19], it is estimated that the bearings are 
responsible for approximately 40% of the unwanted stops in 
the induction motors, as can be followed in Fig. 1. 

Thus, this paper addresses investigation related with 
bearings faults, since this refers to the type incipient failure 
more common in the induction motors.  

Bearings are subject to deterioration caused by inadequate 
or contaminated lubrication, misalignment and mainly to 
incorrect assemblies. 

According to [20], the deterioration of bearings can also 
occur due to common mode currents that move through the 
same due to electrostatic charge induced on the motor shaft.  

Other factor to be considered is related with the torque 
pulsations caused by the existence of low-order harmonics in 
power or for possible broken bars. 

Traditional methods consider the monitoring of 
temperature and bearings vibration to estimate its operating 
conditions. The cost of sensors for monitoring vibration 
devices associated with signal processing also restricts its 
large use at industrial scale.  

 

 
Fig. 1. Distribution of induction motor faults 
 

In this work, voltages and currents were measured in three 
induction motors of 1, 7.5 and 12.5 HP respectively. The 1 
HP motor is used in the laboratory, in perfect operating 
condition, and the other ones used in the heating and milling 
sugar cane processes, both with bearing faults. 

Initially, data was collected at motors on failure conditions 
in normal process operation. After corrective maintainability, 
new measures of both mechanical vibration and current were 
taken and no vibrations were noticed.  

As an example, Figure 2 (a) shows the normalized currents 
measured in a motor applied to the heating process operating 
with bearing fault. This problem has been detected by the 
conventional method of analysis of mechanical vibration.  

Even the machine showing such disturbances, still in 
operation, there was collections of data and can be observed 
in detail that distortion exists between the motor currents. 

Thus, as showed in Fig. 2 (b), it can be inferred the proper 
operation of the machine by restoring the standard current 
signal, as it was not observed distortions. Figure 2 (c) presents 
the motor under analysis in the industrial process. 

 
 

 
Fig. 2. (a) Current before maintenance (b) Current after maintenance (c) 
Motor under analysis. 

III. ARTIFICIAL NEURAL NETWORKS 
Identification using artificial neural network has shown 

promise for the solution of a series of problems involving 
power systems [21].  

More specifically, the use of ANN has provided alternative 
schemes to handling problems related to electrical machines 
[12]-[18]. In this study, ANNs were applied to bearing fault 
identification in TIM. 

For such purpose, a multilayer perceptron network was 
used, which was trained with a backpropagation algorithm. 
This training algorithm has two basic steps: the first one, 
called propagation, applies values to the ANN inputs and 
verifies the response signal in its output layer [21]-[22].  
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This value is then compared with the desired signal for that 
output. The second step occurs in the reverse way, i.e., from 
the output to the input layer. The error produced by the 
network is used in the adjustment process of its internal 
parameters (weights and bias) [21]. 

The basic element of a neural network is the artificial 
neuron (Fig. 3), which is also known as the node or 
processing element. 

Fig. 3.  Representation of the artificial neuron. 
 
The artificial neuron illustrated in Fig. 3 can be modeled 

mathematically as follows: 
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where: 
n is the number of input signals of the neuron; 
Xi is the i-th input signal of the neuron; 
wi is the weight associated with the i-th input signal; 
b is the threshold associated with the neuron; 
vj(k) is the weighted response (summing junction) of the 
 j-th neuron with respect to the instant k; 
ϕj(.) is the activation function of the j-th neuron; 
yj(k) is the output signal of the j-th neuron with respect to 
the instant k. 

 
The adjust of the network weights (wj), associated with the 

j-th output neuron, is done by computing of the error signal 
linked to the k-th iteration or k-th input vector (training 
example). This error signal is provided by: 
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where dj (k) is the desired response to the j-th output 
neuron. Adding all squared errors produced by the output 
neurons of the network with respect to k-th iteration, we have: 
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where p is the number of output neurons. 
 
For an optimum weight configuration, E(k) is minimized 

with respect to the synaptic weight wji. Therefore, the weights 
associated with the output layer of the network are updated 
using the following relationship: 
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where wji is the weight connecting the j-th neuron of the 
output layer to i-th neuron of the previous layer, and η is a 
constant that determines the learning rate of the 
backpropagation algorithm. 
 
The adjustment of weights belonging to the hidden layers of 
the network is carried out in an analogous way. The necessary 
steps for adjusting the weights associated with the hidden 
neurons can be found in [21]. 

The objective of the backpropagation algorithm is 
minimizing E(k) and Em through the adjustment of wi and b.  

To achieve the objective of reducing the error, the training 
algorithm presents the input data set to the neural network and 
the output is then computed as described in (1) and (2).  

The error calculated in each iteration is used as a parameter 
to the weight adjustment.  

After presentation of all training data set to the network, the 
mean error can be calculated using (5).  

The parameter Em estimates the convergence of the 
algorithm and determines if the algorithm should stop when it 
reaches the mean desired error. 

The backpropagation algorithm is based on the Least Mean 
Square (LMS) method and it applies a correction in the 
synaptic weights, called ∆wji(k), to the synaptic weight wji(k). 
 This correction is proportional to the partial derivative 
∂E(k)/∂wji(k) as described in [21]-[22]. Using the chain rule, it 
is possible to express this gradient in the following form: 
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This partial derivative is called “sensitivity factor” and 
indicates the search direction with respect to weight wji(k) 
[21]. The terms in equation (6) are given by: 
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Equation (8) is calculated through the derivative of (4) with 
respect to ej(k). The derivative of the error function in (3) with 
respect to the j-th output, i.e. yj(k), results in (9).  

The derivative of (2) with respect to vj(k) results in (9). 
Equation (10) is the result of the derivative of (1) considering 
wji the weight connecting the j-th neuron of the output layer to 
i-th neuron of the previous layer. 

Equation (11) is the result of the grouping of (7)-(10) and it 
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is described as follows: 
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The synaptic correction ∆wji(k) with respect to the weight 
wji(k) is described through the delta rule as described in (6), 
i.e.: 
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The use of the negative signal in (12) indicates the 
descendent gradient in relation to the search of synaptic 
weights to reduce E(k). The substitution of (11) in (12) results 
in the following equation: 
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where δj(k) is the local gradient defined by: 
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The local gradient shows the direction of the synaptic 

weights in order to reduce E(k). 

IV. THEORETICAL APPROACH AND RESULTS 
The purpose of this work is the usage of the induction 

motor currents and voltage signals in the time domain 
presented to an ANN capable to classify the existence or 
absence of bearing failure. Figure 4 illustrates acquisition and 
processing data routine. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

 
 

 
 
 
Fig. 4. Acquisition and processing data routine 

 
Differently from traditional methods of mechanical 

vibration analysis, which requires specific sensors for data 
acquisition, and even the method proposed by [14] which 
uses the effective values of current in each sample and speed, 
this proposal is based on data collected by a digital 
oscilloscope of four isolated channels Model TPS 2014 
Tecktronix® with current ferrules A622 100 Amp AC/DC.  

This unit has a memory card to storage the signals viewed 
on screen, where samples are stored as a datasheet of 2500 
points. 

The sampling rate is variable according to the selector 
sec/div which is adjusted as a function of the signal displayed 
on the screen.  

The signals are separated by a half cycle and normalized by 
its peak value to hold then in the time domain disregarding 
machine scale. 

Based on the collected data and with a proper import 
routine, information is evaluated and manipulated in the 
MATLAB software. 

A. Input Treatment Data 
In order to proper classify the bearing functioning, voltage 

and currents signals were sampled in the three-phase for 
analysis. The signals were divided into 50 points per 
semi-cycle, resulting in a periodic sampling rate, and the 
amplitude value of each point presented as the ANN input, as 
per [23]. 

This method considers the input signal of a sinusoidal 
waveform in continuous time. In this way, each semi-cycle is 
divided into a number of samples required for the 
composition of input vectors which will be presented to the 
ANN thus making linear signal discretization, as per Fig. 5. 

 

 
 

Fig. 5. Linear signal discretization 
 
Using a sampling of 10 ms/div on the oscilloscope, it is 

possible to obtain a total of 12 semi-cycles of sampled 
waveform each half-cycle of the signal. Thus a subsampling 
of 50 points is capable of translating the necessary 
information without spoiling the waveform.  

Another processing aspect is the fact that the signals are the 
currents (Ia, Ib, Ic) and voltages (Va,Vb, Vc) of a three-phase 
induction motor. Hence, it is just necessary to create a column 
vector with points of each phase of the collected system, 
subsequent from each other. 

Since the purpose of this work is still the combination of 
five input structures vectors of voltage and current replicated 
for each condition {I, V, I2, V2, IxV} assembled from the 
previous conditions, thus creating an array of 750 entry points 
by the amount samples of each phase. 
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In terms of signals usage, collected from real industrial 
processes, currents and voltages of motors from different 
power and different functional states, it is necessary to 
perform the normalization of these data. Then, it was 
recognized the maximum voltage and current value of each 
sample for this purpose. 

The analyzes are performed for each wave semi-cycle, then 
it is considered the absolute values of the sampling signals 
having only the positive semi-cycle signals, as showed in Fig. 
6, which presents the experimental curves normalized for the 
unit amplitude.    

 
Fig. 6. Positive signals semi-cycles 
 

B. Neural Structure 
ANN has been efficiently used to solve problems of 

engineering. In this case specifically, ANN were used to 
identify the existence or not of bearing faults in induction 
motors. 

To work with the proposed networks of machines only 
within formation in real applications without simulation 
results, divide up the vectors of samples randomly collected 
from the engines into two classes, one for training and one for 
validation, and were divided according to Table I.  

 
TABLE I 

DIVISION OF COLLECTED DATA 

Classes (%) Samples 

Training samples 68 17 
Validation samples 32 8 

 
Thus, the data used in network training are not presented 

for validation, allowing the evaluation of their ability to 
generalize and actual response of the system. 

In this work, it was considered a Multilayer Perceptron 
network with supervised training composed by two neurons 
in both hidden and output layers. For activation of the hidden 
layer, it was used the hyperbolic tangent function with a range 
varying from -1 to 1. 

Evaluation were focused on the incipient bearing fault 
under conditions of constant load torque. Entries for Network 
1 were defined as the stator current (I) and voltage (V). 

For the second network, the voltage and current signals 
were combined into five different structures and it were 
presented to the network, the electric current (I), motor supply 
voltage (V), the square of the current (I2), the square of the 

voltage (V2) and the product of these two quantities (IxV). The 
desired outputs are the qualitative conditions (with and 
without fail), which were classified by the ANN as per Fig. 4. 

The training algorithm applies the gradient based on the 
method of least square for nonlinear models which, when 
incorporated into the training process, enhancing the 
efficiency of the synaptic weights adjustment. The 
characteristics and topologies of both networks are described 
in Table II. 

 
TABLE II 

NETWORK PARAMETERS 

Type Network 1 Network 2 

Architecture MLP MLP 
Training S S 
Number of layers 2 2 
Neurons in the 1º layer 2 2 
Neurons in the 1º layer 2 2 
Training Algorithm  LM LM 
Network function - 1º layer HT HT 
Network function - 2º layer HT HT 
Output network function Linear Linear 

 (S) Supervised; (LM) Levenberg-Maquardt; (HT) Hyperbolic Tangent 
 

C. Classification Results 
The proposed networks were subjected to training within 

input signals as described in the Input Treatment Data 
section, with a learning rate η=0.01. As stopping criterion was 
established the mean squared error (MSE) of 5.10-5.  

Network 1 reached the stopping criterion with 10 epochs, 
achieving 75% of accuracy. Network 2 has the same neural 
structure as the first network, however; it reached the 
stopping criterion with 8 epochs.  

In validation, it was obtained 100% of accuracy, 
confirming the generalization capability of the network, as 
showed in Table III. 

 
TABLE III 

NETWORK RESULTS 

Type Network 1 Network 2 

Training samples 17 17 
Validation samples 8 8 
AQE 5.10-5 5.10-5 
Learning coefficient 0,01 0,01 
Epochs 10 8 
Positive false 0 0 
Negative false 2 0 
Classification error 2/8 0/8 
Accuracy percentage  75 100 

V. CONCLUSION 
This work presents a comparative study between two 

neural structures used to classify, from the current and 
voltage signals in the time domain, the occurrence of 
incipient bearings faults.  

This proposal provides an indication of faults allowing 
proper decisions in real time without the need to resort to 
conventional methods of analysis. 

Combination of the input data allows to increase the 
computational efficiency, enhancing detectability as the 
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results obtained by using this artifice increased reliability and 
accuracy in 100% of cases, which can be considered 
satisfactory in real applications.  

As for a possible hardware implementation, proposed 
structure can be implemented in low-cost processors, and 
mainly, it can be used in induction motors of varied potencies 
and in different regimes of operation. 
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