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Abstract— When the problem of learning from data is solved
through a regression tree estimator, the quality of the available
observations is an important issue, since it influences directly
the accuracy of the resulting model. It becomes particuarly
relevant when there is freedom to sample the input space
arbitrarily to build the tree model or, alternatively, when we
need to select a subsample to train the tree estimator on a
computationally feasible input set, or to evaluate the goodness
of the estimation on a test set. Here the accuracy of estimation
based on regression trees is analyzed from the point of view of
geometric properties of the available input data. In particular,
the concept of F-discrepancy, a quantity that measures how
well a set of points represents the distribution underlying the
input generation process, is applied to derive conditions for
convergence to the optimal piecewise-constant estimator for
the unknown function we want to learn. The analysis has a
constructive nature, allowing to select in practice good input
sets for the problem at hand, as shown in a simulation example
involving a real data set.

I. INTRODUCTION

Regression trees are widely popular models for learning,
by which the output of the model is computed through a
binary partition of the input space and piece-wise contant
approximation in the resulting partitions. Due to their ro-
bustness and simplicity, such models have been employed
with success in many learning contexts, and have fostered a
large amount of research focusing on various theoretical and
practical aspects. For an introduction of the main properties
of regression trees, their applications, and their more ad-
vanced versions such as, e.g., random forests and multivariate
adaptive reression splines (MARS), the reader can consult,
e.g., [1]–[3] and the references therein.

The basic algorithm to build a regression tree starting from
a set of available input-output pairs involves an iterative pro-
cedure in which a split of the input space is decided according
to the minimization of a performance criterion (generating
two new “leaves” of the tree), and then a constant output
estimated value is assigned to the new leaves, corresponding
to the average of the observed output values therein. The
procedure ends when some stopping criterion is met, such
as, e.g., when the tree has reached a predefined maximum
number of leaves. Then, in order to avoid overfitting, this
maximal tree is often pruned according to some regularization
cost (for details see, e.g., [3]).

In general, when tree-based regression methods are em-
ployed, issues of various kinds arise related to both imple-
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mentation and theoretical aspects, regarding, e.g., sampling,
pruning, regularization cost, etc.

An important part of the algorithm is related to the
observation data. In fact, since the estimator is based on the
available sampling points, the way the input space is repre-
sented by the training set directly affects the accuracy of the
estimation. This is particuarly relevant when there is freedom
to sample the input space arbitrarily (a condition referred to
as design of experiments in statistics) or, alternatively, when
we have too many data at our disposal and we need to select
a subsample to train the tree estimator on a computationally
feasible input set. A further question related to sampling that
arises when tree estimators are used is how to choose a subset
of test points to evaluate the goodness of the estimation, as
an alternative to cross-validation (see, e.g., [4]).

In [5] sufficient conditions are given for i.i.d. data to ensure
consistency of a tree estimator depending on properties of
the underlying probabilities, related to the structure of the
partitioning induced by the data. Then, in [6] the results are
extended to consider the case in which subsamples of the
original data are considered, introducing conditions on the
sampling weights used to define the probability of choosing a
given point of the original data. The reference above provides
asymptotic convergence results that are limited to partition
schemes where pruning is not applied. In particular, it does
not provide accuracy results for finite size samples. Still, the
analysis points out the importance of including information,
through weighted sampling, related to the distribution of the
data points.

In this paper the accuracy of piecewise contant estimators
based on a tree structure is analyzed from the point of
view of geometric properties of the available input data.
In particular, the concept of F -discrepancy (see, e.g., [7])
will be applied to derive conditions under which conver-
gence of the tree built from a set of data to the optimal
piecewise-constant estimator for the function we have to learn
can be guaranteed. In this study we consider the maximal
tree obtained by an iterative splitting algorithm, yet the
results can be generalized to more complex algorithms where
pruning and regularization are involved. F -discrepancy is
a generalization to arbitrary probability distribution of the
discrepancy, a measure commonly employed in quasi-Monte
Carlo integration and number theoretic methods to evaluate
the uniformity of a sequence of points in a bounded set [8],
[9]. Sequences based on such uniform measure have been
proved to be useful for learning and optimization problems
(see, e.g., [10]–[13]). As said, here the more general notion
of F -discrepancy has to be considered given the nature of
the addressed learning context. Loosely speaking, a set of
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points with smaller F -discrepancy represents in a better way
the distribution underlying the input generation process with
respect to another set with higher F -discrepancy.

Here it is proved that the accuracy of estimation can be
related directly to the F -discrepancy of the set of points
used to build the tree estimator, provided some regularity
assumptions on the involved functions are satisfied. A key
feature of this analysis is that, since F -discrepancy can be
actually estimated, it is possible to apply it constructively in
practice to derive procedures to improve the accuracy. This
turns out to be useful whenever the issue of choosing an
efficient set of input points arises, either because we need to
sample the input space from scratch or because we need to
choose a subsample of the original set of data.

A simulation example is provided to illustrate the theory
developed throughout the paper, involving regression estima-
tion using real test data coming from a biological system. In
the example it is shown how controlling the F -discrepancy
of the input samples allows to improve accuracy of the tree
estimator, confirming in practice the theory presented in the
paper and its constructive nature.

The paper is organized as follows. In Section II a descrip-
tion of the considered regression tree estimatorss and the
notion of F-discrepancy are provided, while the convergence
issues of the learning procedure are discussed in Section III.
Section IV provides some suggestions on how to employ
in practice the notion of F-discrepancy in combination with
regression trees, while Section V contains simulation results
concerning a case of study.

II. REGRESSION TREES AND DISCREPANCY

The problem we address consists in learning an unknown
map g : X → Y , X ∈ Rn and Y ∈ R, starting from a set
of samples ΣN = {x1, . . . ,xN } where the target function
g is observed. The observations are in general noisy, i.e., for
the j-th input point we have the output yj = g(xj) + ηj
for j = 1, . . . , N , where ηj is the realization of a random
variable with probability density q having zero mean and
bounded values (i.e., |ηj | 6 ηmax).

A regression tree estimator consists in a piecewise constant
function over a suitable partitioning T =

⋃K
k=1Bk of the

input domain, where the Bk (named leaves) are subsets of
X with the sides parallel to the coordinate axes; the reason
for which the partitioning T is called “tree” is that the leaves
are added recursively to form conceptually a tree structure.
More specifically, we first split the entire domain X in two
regions by means of a hyperplane parallel to the coordinate
axes; then, these partitions are split recursively into two more
regions, and the procedure is continued until some stopping
criterion is reached.

From a notational point of view, given a regression tree T ,
the number of leaves (i.e., regions in which X is subdivided)
is denoted by |T |, while Bk, for k = 1, . . . , |T |, indicates
the k-th leaf of the tree. Nk is the number of points of ΣN

contained in Bk, while Ik is the set of indices j such that
xj ∈ Bk. Then we have N = N1 + · · ·+N|T |. The indicator
function of the set Bk is denoted by χBk

.

The estimator built on the tree T is denoted by fT , and is
defined by

fT =

|T |∑
k=1

ȳkχBk
, (1)

where
ȳk =

1

Nk

∑
j∈Ik

yj .

Loosely speaking, fT is a piecewise constant function,
whose value in a generic leaf Bk is the average of the values
yj such that xj ∈ Bk for every j.

Now, define the empirical error corresponding to a generic
f , computed over a set ΣN as

Remp(f) =
1

L

L∑
l=1

(yl − f(xl))
2.

The learning procedure to build a tree aims at finding,
inside the class of regression trees, the function fT∗

N
that

minimizes Remp. However, it can be easily proved [4] that,
given a structure T , fT is actually the piecewise constant esti-
mator that minimizes Remp, i.e., fT = arg minf∈F c

T
Remp(f),

where F c
T is the set of piecewise constant functions defined

on the tree T . Therefore, we have only to find the optimal
tree T ∗N , being the optimal function fT∗

N
established by (1).

The determination of the optimal tree T ∗N can be obtained
performing a greedy algorithm that considers at every iter-
ation a splitting variable j and a split point s, defining the
pair of half-planes

E1(j, s) = {x | xj 6 s } and E2(j, s) = {x | xj > s } .

Then, we find the splitting variable j and the split point s by
solving

min
j,s

[
min
c1

∑
xi∈L(j,s)

(yi − c1)2 + min
c2

∑
xi∈R(j,s)

(yi − c2)2

]
.

The numerical implementation of the algorithm is fast and
efficient; the reader interested in the optimization procedure
to find the minimum of Remp can consult, e.g., [14]. Notice
that, after this step, often a pruning procedure is implemented
to reduce the number of leaves according to some regulariza-
tion criterion. Even if we do not treat this case explicitly, the
analysis in the following can be considered as a basis also
for a training procedure involving pruning.

In order to proceed with the analysis of the performance,
we introduce the concept of F -discrepancy of a sequence
ΣN , that measures its distribution properties with respect
to the measure F on X . The following notations are
adopted. For u,v ∈ X , we denote by [u,v] the subinterval∏n

i=1[ui, vi] and by A([u,v],ΣN ) the number of points of
ΣN belonging to [u,v].

Definition 1: The F -discrepancy of the sequence ΣN =
{x1, . . . ,xN } is defined as

DF (ΣN ) = sup
u,v∈X

∣∣∣∣A([u,v],ΣN )

N
− F ([u,v])

∣∣∣∣ .
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By the definition we can see that, if a set of points has
small F-discrepancy, the fraction of points belonging to a
given subinterval of X must be as close as possible to
the measure of the subinterval according to F . In the next
section the notion of F -discrepancy will be widely used to
prove the convergence results of the learning procedure, while
in section IV some guidelines on the practical use of the
discrepancy will be discussed.

III. CONVERGENCE ANALYSIS

We analyze in this section the convergence properties of
the learning procedure when the regression tree estimators
are employed.

Assume at first that the unknown function g is observed
without noise, i.e., that yi = g(xi) for all xi ∈ ΣL.
We also denote by TK(X) the set of piecewise constant
function defined on a tree partioning of X with at most
K leaves; the choice of looking for the optimal function in
TK(X) is justified by the fact that if the number of leaves
is not bounded the learning procedure can lead to overfitting
(see [14]).

For a given piecewise-constant function fT ∈ TK(X)
define the integral error

R(fT ) =

∫
X

(g(x)− fT (x))2p(x)dx,

which measures the performance of the estimator over the
whole input domain. Ideally, this is the error that we want to
minimize. Define R◦ = minf∈TK(X)R(f) as the best error
R that can be obtained with a piecewise constant estimator
built over a tree T with at most K leaves and f◦T as the
argument of the minimum.

Now, for each vertex of a given subinterval B =∏n
i=1[ai, bi] of X assign a binary label ‘0’ to every ai and ‘1’

to every bi. Given a function ϕ : X → R, denote by ∆(ϕ,B)
the alternating sum of ϕ computed at the vertexes of the B,
i.e.,

∆(ϕ,B) =
∑
x∈eB

ϕ(x)−
∑
x∈oB

ϕ(x),

where eB is the set of vertexes with an even number of ‘1’s in
their label, and oB is the set of vertexes with an odd number
of ‘1’s.

Definition 2: The variation of ϕ on X in the sense of Vitali
is defined [8] by

V (n)(ϕ) = sup
℘

∑
B∈℘
|∆(ϕ,B)|, (2)

where ℘ is any partition of X into subintervals.
For 1 6 k 6 n and 1 6 i1 < i2 < · · · < ik 6 n, let

V (k)(ϕ; i1, . . . , ik) be the variation in the sense of Vitali of
the restriction of ϕ to the k-dimensional face {(x1, . . . , xn) ∈
X : xi = 1 for i 6= i1, . . . , ik}.

Definition 3: The variation of ϕ on X in the sense of
Hardy and Krause is defined [8] by

VHK(ϕ) =
n∑

k=1

∑
16i1<i2<···<ik6n

V (k)(ϕ; i1, . . . , ik).

Fig. 1: Left: |∆(fT , B)| = |b − b + c − c| = 0. Right:
|∆(fT , B)| = |a− a+ c− b| = |c− b|.

As a first result of the section, needed for the analysis
of the performance of the learning procedure, we show
that the variation in the sense of Hardy and Krause of
piecewise-constant functions built over binary tree structures
is bounded.

Theorem 1: Assume the target function is such that both
g+ = maxx∈X g(x) and g− = minx∈X g(x) are finite.
Then, we have supfT∈TK(X) VHK(fT ) <∞.

Proof: From the definition of fT given in (1) we have
trivially that g− 6 fT 6 g+ for every fT ∈ TK(X).

To prove that the supremum of the variation in the sense
of Hardy and Krause is finite, it is sufficient to show that the
supremum of the variation in the sense of Vitali V (j)(fT ) is
finite for any j 6 n.

To do so, according to the definition we need to consider
every possible partition ℘ of X into subintervals and make
sure that the supremum of the sum of |∆| terms in (2) over
these subintervals is finite.

To this purpose, consider the generic subinterval B from
a partition ℘ of X and notice that any group of even number
of vertices of B falling into a single leaf will contribute 0 to
the alternating sum ∆(f,B), due to the fact that the value of
fT is a constant over a leaf (see Figure 1 for an illustration
in the 2-dimensional case).

This means that, due to the fact that both the tree leaves and
the subintervals in ℘ are hyperrectangles with faces parallel
to the axes, the only terms that can actually contribute to
∆(fT , B) are of the form fB1

T −f
B2

T , where fB1

T and fB2

T are
the function values in leaves containing two adjacent vertices
of B, in such a way that each leaf contains only one vertex
(see Figure 1 right).

Call active gradient a difference term of the kind |fB1

T −
fB2

T | corresponding to a pair B1, B2 of adjacent vertices of
B ∈ ℘ that appears in the sum |∆(fT , B)|. From what said
above, an active gradient can appear in the alternating sum
|∆(fT , B)| only when B1 and B2 are lone vertices in the
leaves that contain them.

Notice that the two vertices of B above mentioned, namely
B1 and B2, do not necessarily need to belong to adjacent
leaves of the tree. However, due to the triangular inequality,
it is always possible to write
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Fig. 2: Left: |∆(fT , B)| = |a − c + e − d|. Right:
|∆(fT , B1)| = |a−b|, |∆(fT , B2)| = |e−d|, |∆(fT , B3)| =
|b− c|.

Fig. 3: Left:
∑

B∈℘ |∆(fT , B)| = |∆(fT , B1)| +
|∆(fT , B2)| = |b− c|+ |c− d|. Right:

∑
B∈℘ |∆(fT , B)| =

|∆(fT , B
′
1)|+ |∆(fT , B

′
2)| = |b− c|+ |c− d|.

|∆(fT , B)| 6 . . .+ |fB1

T − fB2

T |+

6 . . .+ |fB1

T − fBi1

T + f
Bi1

T − fBi2

T + f
Bi2

T −

· · · − fBiW

T + f
BiW

T − fB2

T |+

6 . . .+ |fB1

T − fBi1

T |+ |fBi1

T − fBi2

T |+

· · ·+ |fBiW

T − fB2

T |+ . . .

where fBi1

T , fBi2

T , . . . , f
BiW

T are the tree values in the W
pairwise adjacent leaves between the leaf containing B1 and
the one containing B2 that give rise to active gradient terms.

Then, to derive an upper bound for V (j)(fT ) it is sufficient
to limit the attention to partitions ℘ in which subsets B span
only adjacent leaves of the tree. See Figure 2 for an illustra-
tion in the 2-dimensional case. In the figure, |∆(fT , B)| =
|a−c+e−d| = |a−b+d−d+b−b+e−d+e−e+b−c| 6
|a − b + d − d| + |b − b + e − d| + |e − e + b − c| =
|∆(fT , B1)|+ |∆(fT , B2)|+ |∆(fT , B3)|.

Also notice that, again due to the fact that both the tree
leaves and the subintervals in ℘ are hyperrectangles with
faces parallel to the axes, all the partitions ℘ character-
ized by the same presence in the leaves of single vertices
of the subintervals forming ℘, lead to the same value of∑

B∈℘|∆(fT , B)|, independently on the exact placement of
the vertex in the leaf. This fact can be illustrated as in Figure
3 in the 2-dimensional case.

In the figure, two very different partitions ℘ of the input
space are depicted. In both partitions, all the subintervals B
different from B1 and B2 (left) or B′1 and B′2 (right) yield
|∆(fT , B)| = 0, and

∑
B∈℘ |∆(fT , B)| turns out to be equal

to |b− c|+ |c− d| in both cases. This illustrates the fact that
the only thing that matters is the inclusion in a subinterval B

Fig. 4: Left:
∑

B∈℘ |∆(fT , B)| = |a − b|. Right:∑
B∈℘|∆(fT , B)| = |a− b|+ |c1 − c2|+ |c1 − c2|.

of the circled zones, independently on the form and position
of the subinterval itself. Loosely speaking, the presence of
a single vertex of a subinterval B “marks” a leaf vertex in
such a way that no other subinterval in ℘ can include it.

Also notice that any j-dimensional subinterval B con-
tributes at most with a number of active gradient terms equal
to half the number of vertices of B, i.e., equal to 2j−1. For an
example in the 3-dimensional case, call b1, . . . , b8 the 8 ver-
tices of the hyperrectangle B. Then, we have |∆(fT , B)| =
|b1−b2+...+b7−b8| 6 |b1−b2|+|b3−b4|+|b5−b6|+|b7−b8|,
which corresponds to 4 active gradient terms.

This means that an upper bound can be found just con-
sidering configurations of possible active gradients between
adjacent leaves given the topology of the tree. Notice that
the number of possible configurations is finite, which already
proves that the variation V (j)(fT ) is finite, due to what said
above.

To actually derive a bound, first notice that, for any active
gradient term of the kind |fB1

T − fB2

T |, the following holds

|fB1

T − fB2

T | 6 g+ − g−.

Then, we can see that each time a cut is performed in the
tree, a finite number of new active gradient terms are added.
Specifically, in the worst case, every vertex of the new (j−1)-
dimensional face that is generated by the cut corresponds to a
new active gradient term that is added to the sum defining the
variation. At the same time, the active gradients that already
existed before the cut are left unchanged. See Figure 4 for
an illustration in the 2-dimensional case.

Summing up, each new cut adds to the total sum a term
C that can is at most equal to

C 6 2j−1(g+ − g−).

Then, starting from the empty tree and considering that K
leaves (remember that K is the maximum number of leaves
of a function in TK(X)) correspond to K − 1 cuts, we end
up with a variation in the sense of Vitali that can be bounded
as

V (j)(fT ) 6 (K − 1)2j−1(g+ − g−).

Then, supfT∈TK(X) V
(j)(fT ) 6 (K − 1)2j−1(g+ − g−)

<∞.
Notice that the bound derived above, while proving the

finiteness of the variation of a piecewise-constant function
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built over a tree structure, actually corresponds to a worst-
case situation. In practice, it is expected that the tree config-
uration is such that the actual number of gradient elements
contributing to the variation is less than the total number of
vertices of the j−1 faces generated by the cuts. In particular,
all the leaves having one or more faces on the border of
X will contribute with a smaller number of active gradient
elements to the total sum. Furthermore, it can be expected
that, most of the times, the active gradient elements will be
smaller than g+ − g−, due to the fact that when K is large
the values of fT in adjacent leaves will tend to be similar.

The following result is a direct consequence of Theorem
1 in [7].

Lemma 1: Assume the target function g has bounded
variation in the sense of Hardy and Krause. Then, we have
|Remp(fT ) − R(fT )| 6 V̄ DF (ΣN ) for all fT ∈ TK(X),
where V̄ = supfT∈TK(X) VHK

(
(g − fT )2

)
<∞.

Proof: Since the function g has bounded variation, the
values g+ = maxx∈X) g(x) and g− = minx∈X) g(x) are
both finite. Then, we can apply Theorem 1 to conclude that
supfT∈TK(X) VHK(fT ) <∞.

Since it can be proved [15] that both the sum and product
of functions of bounded variation in the sense of Hardy and
Krause have bounded variation as well, then, it follows that
supfT∈TK(X) VHK

(
(g − fT )2

)
<∞.

The conclusion follows directly from Theorem 1 in [7].
Notice that Lemma 1 is true in particular for the estimator

fT∗
N

obtained by minimizing the empirical risk and the
minimizer fT◦ of the true integral risk.

Now we can compare the performance given by fT∗
N

with
the performance provided by fT◦ . In particular, we can prove
the following result.

Theorem 2: Assume the target function g has bounded
variation in the sense of Hardy and Krause. Then, we have
|R(fT∗

N
) − R(fT◦)| 6 2V̄ DF (ΣN ), where V̄ is defined as

in Lemma 1.
Proof: The relations R(fT∗

N
) > R(fT◦) and

Remp(fT∗
N

) 6 Remp(fT◦) hold easily by definition of fT∗
N

and fT◦ . Then, we have

|R(fT∗
N

)−R(fT◦)| = R(fT∗
N

)−R(fT◦)

= R(fT∗
N

)−Remp(fT◦)

+Remp(fT◦)−R(fT◦)

6 R(fT∗
N

)−Remp(fT∗
N

) (3)

+Remp(fT◦)−R(fT◦)

6 |R(fT∗
N

)−Remp(fT∗
N

)| (4)

+ |Remp(fT◦)−R(fT◦)|
6 V̄ D∗(ΣN ) + V̄ D∗(ΣN ), (5)

where (4) derives from the triangle inequality (by noting
that (3) is nonnegative), while (5) is an application of
Lemma 1.

Theorem 2 therefore establishes that the performance of
the function estimated by minimizing the empirical risk tends
to the performance of the true optimal function provided
the F-discrepancy of the set ΣN decreases to zero. More

in general, it can be seen that the performance is directly
influenced by the rate of the F-discrepancy of the set of
sampling points. Since this property is purely geometric,
this result to suggests that we can use F-discrepancy to
help choosing good sets of points ΣN to train the tree. In
Section IV this will be discussed in detail.

A. Extension to the case of noisy observations

We consider here the more general case in which the obser-
vations come from a noisy output. In particular, consistently
with typical regression settings, we assume that the observed
output for a point xi in the set ΣN = {x1, . . . ,xN } is the
sum of the target function g and a random noise, i.e., that
yi = g(xi) + ηi, i = 1, . . . , N . Recall that the noise ηi is
distributed according to a probability density function q and
has zero mean and bounded values, i.e., |ηi| 6 ηmax.

Now the cost R(f) takes on the form

R(f) =

∫
X×E

(y − g(x))2p(x)q(η) dxdη.

In order to investigate the effect of a noisy output, it is
sufficient to analyze the behavior of the difference |Remp(f)−
R(f)| in Lemma 1. To this purpose, notice that since the
random noise has zero mean, we can easily decompose the
cost R(f) as

R(f) =

∫
X

(g(x)− f(x))2p(x) dx +

∫
E

η2q(η) dη. (6)

In a similar way, the empirical cost Remp(f) can be written
as

Remp(f) =
1

N

N∑
i=1

(g(xi)− f(xi))
2 +

1

N

L∑
i=1

(ηi)
2 (7)

+
2

N

L∑
i=1

ηi(g(xi)− f(xi)).

The first terms in equations (6) and (7) do not depend
on the random term. Then, the same analysis carried out
in Lemma 1 can be applied to derive a bound for this
deterministic part of the error, noting that g+ and g− are
still finite due to the boundedness of η.

Concerning the other terms, we have that both
|
∫
E
η2p(η)dη − 1

N

∑N
i=1(ηi)

2| and 2
N

∑N
i=1|ηi||g(xi) −

f(xi)| converge (in probability) to zero as N → ∞, due
to the law of large numbers and the fact that η has zero
mean.

Eventually, the error bound in Theorem 2 must be
corrected by adding the term eN = |

∫
E
η2p(η)dη −

1
N

∑N
i=1(ηi)

2|+ 2
N

∑N
i=1|ηi||g(xi)− f(xi)|.

To derive a bound for eN it is sufficient to apply, for
instance, Hoeffding’s inequality [16] characterized by a con-
vergence rate that is quadratic in terms of N .

Then, the difference |R(fT∗
N

)−R(fT◦)| is now composed
by a deterministic part, analyzed in Theorem 2, that decreases
to zero if supfT∈TK(X) VHK

(
(g − fT )2

)
< ∞, with a rate

of convergence that depends on the F-discrepancy, and by a
probabilistic part that tends to zero quadratically.
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IV. ON THE USE OF THE F-DISCREPANCY IN PRACTICE

One of the main reasons to carry out an analysis based
on geometric properties of the data is that the concept of
discrepancy can be used in a constructive way. In particular,
there are at least two practical cases in which this can be
useful.

The first case occurs when we want to learn an unknown
function throgh a regression tree, and we are free to observe
the function at desired points, i.e., data points are not given
by an external source and how to choose them is part of the
learning problem. Thise may occur, for instance, when we
need to learn the value function of an approximate dynamic
programming scheme, or when we want to model a system
that we are free to control.

In this framework it is reasonable, in general, to employ a
uniform distribution F in the definition of the risk R. Then,
it is possible to employ a family of deterministic sequences,
such as the Sobol’, the Halton, the Niederreiter sequence
[9] that are aimed by construction at providing points with
small uniform discrepancy. In particular, (t, n)-sequences [8],
a kind of sequences introduced in the literature to outperform
the classic Monte Carlo algorithms for numerical integration,
are characterized by a discrepancy that converges to zero as
1/N , leading to a very efficient covering of the input space.

The second case in which the concept of discrepancy can
be used in a constructive way is when we need to choose a
subsample from a large amount of data, and build the tree
estimator using that subsample. This can possibly occur when
assigning an output value yk to a given input xk is costly
and, in general, to reduce the computational burden of the
tree building process. In this case, the problem is that of
selecting a subset ΣN from a full set of the available input
data ΣM , with N � M , in such a way that the accuracy
of the tree estimator built using ΣN is not far from that of
ΣM . The main difference with the previous case is that here
in general the assumption of uniformity of the input samples
does not hold.

Then, to apply the theory presented in the previous sections
in practice we have to estimate the F -discrepancy DF (ΣN )
of a given subset ΣN , so that it is possible to choose the
one with the lowest value when a pool of many subsamples
are drawn. Two scenarios may occur. In the first one the
probability F generating the input samples is known. In
this case it is possible to estimate the F -discrepancy of the
subsample by a Monte Carlo evaluation over a large number
L of randomly selected subintervals, i.e., use the following
quantity

D̂F (ΣN ) = max
j=1,...,L

∣∣∣∣A([uj ,vj ],ΣN )

N
− F ([uj ,vj ])

∣∣∣∣ ,
where the lower and upper vertices uj and vj are drawn
randomly in X .

In the second scenario F is unknown, as in most real cases
in which the samples are given by an external source over
which we have no control. Then, we can still estimate the F -
discrepancy by approximating the probability F empirically
using the original full set ΣM of the available input data. This

leads to estimating the F -discrepancy through the following
quantity

D̃F (ΣN ,ΣM ) = max
j=1,...,L

∣∣∣∣A([uj ,vj ],ΣN )

N

− A([uj ,vj ],ΣM )

M

∣∣∣∣ . (8)

Remark. It must be noticed that this subsample selection
does not actively take into account the response of the
output variable y. However, the analysis based on discrepancy
presented in the paper can be considered as a basis also for
the development of adaptive algorithms in which we use
the information collected on y to elaborate information on
the variation of the unknown function g and sample the
various tree leaves accordingly. Obviously this would lead
to an increase in the computational burden of the tree-build
process.

V. SIMULATION TESTS

In this section simulation tests are presented to verify in
practice the theoretical properties derived in the previous
sections. In particular, a regression problem involving a
real data set, specifically the “Physicochemical properties of
protein tertiary structure data set” available from the UCI
Machine Learning Repository [17] has been considered. The
set is characterized by a 9-dimensional input. The aim of this
test is to analyze how a discrepancy measure can be used as a
tool to choose good subsamples of the full available training
data to build a regression tree. The setup of the test is the
following. First, define ΣM = {x1, . . . ,xM} as the full 9-
dimensional input data set, with M = 45730 points. To each
xm ∈ ΣM there corresponds an output value ym, for a total
of M input/output pairs (xm, ym).

From the set ΣM , 20 different subsets ΣN,i, i = 1, . . . , N
of size N have been selected randomly and, for each subset,
the corresponding F-discrepancy has been evaluated through
the empirical estimate D̃F (ΣN,i,ΣM ) defined in (8) (using
a number of evaluation subintervals L equal to 10000).

Then, the 20 sequences have been used again to build a tree
estimator as defined in the previous sections. Define T ∗i , i =
1, . . . , 20 as the tree obtained using the i-th subset ΣN,i, and
fT∗

i
as the corresponding estimator for the unknown function.

According to the result in Theorem 2, ideally the perfor-
mance of a given estimator fT∗

i
is measured in terms of how

close the integral error R(fT∗
i

) is to the optimal error R(fT◦),
which means that, since the latter is constant, to compare the
performance of two estimators fT∗

i
and fT∗

j
it is sufficient

to compare R(fT∗
i

) with R(fT∗
j

). However, since the true
integral error R cannot be evaluated in practice, we define
an approximation R̃ based on the large set ΣM of all available
data as

R̃(f) =
1

M

M∑
k=1

(f(xm)− ym)2.

Then, to test the performance of a given estimator fT∗
i

, the
error ei = R̃(fT∗

i
) is taken.
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Fig. 5: Errors for subsets with M = 2000 (a) and M = 5000 (b).

Two different sizes N have been considered, namely N =
2000 and N = 5000. Figure 5 illustrates the results for
both subset sizes. In the figures, the costs ei are reported
for increasing values of the corresponding estimated F-
discrepancy D̃F (ΣN,i), reported in the horizontal axis of the
plot.

The results show that it is possible to see clearly a trend,
for both N = 2000 and N = 5000, that indicates how
increasing the discrepancy of the subsample leads to worse
results. This confirms in practice that F-discrepancy, even
through an empirical estimate through a few available data
points, can be used as a constructive tool to choose efficient
subsets of data for regression trees.

VI. CONCLUSIONS

The performance of regression trees has been analyzed in
the context of function learning according to the concept of F-
discrepancy, a geometric measure of uniformity (with respect
to the distribution F ) of a set of points. The theoretical analy-
sis has pointed out that convergence of the learning procedure
can be guaranteed, under suitable regularity conditions on the
involved functions, when the F-discrepancy of the input data
set converges to zero as the number of points grows. This
allows to provide constructive suggestions for an efficient
way to sample the input space, particularly when the choice
of a suitable set of data is part of the learning problem.
The proposed approach was successfully tested in simulations
involving a real a data set, that have confirmed in practice the
theoretical analysis. The application of the results to training
algorithms involving regularization on the number of leaves
of the tree (such as the CART algorithm) is a matter of further
investigation.
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