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Abstract—Forecasting a time series multiple-step-ahead is a
challenging problem for several reasons: the accumulation of
errors, the noise, and the complexity of the dependency between
past and far future which has to be inferred on the basis of
a limited amount of data. Traditional approaches to multi-step-
ahead forecasting reduce the problem to a series of single-output
prediction tasks. This is notably the case of the Iterated and the
Direct approaches. More recently, multiple-output approaches
appeared and stressed the multivariate and structured nature
of the output to be predicted. This paper intends to go a step
further in this direction by formulating the problem of multi-
step-ahed forecasting as a problem of conditional multivariate
estimation which can be addressed by a Monte Carlo importance
sampling strategy. The interesting aspect of the approach is
that this probabilistic formulation allows a natural integration
of the traditional Iterated and Direct approaches. The extensive
assessment of our algorithm with the NN5, NN3 and a synthetic
benchmark shows that this approach is promising and competitive
with the state-of-the-art.

I. INTRODUCTION

Forecasting the continuation of an observed time series
multiple steps forward is a relevant and challenging problem
in data mining. The complexity of this problem is due to
several aspects: the potential nonlinearity of the dependency
between the past and the future, the lack of a priori knowledge,
the large noise and the small amount of samples. Two well-
known strategies are commonly used to tackle such task: the
Iterated (also known as recursive) strategy which iterates a
one-step-ahead predictor but suffers of error accumulation and
the Direct strategy which decomposes the prediction in a set
of independent tasks [1].

In order to improve the accuracy of forecasting strategies, a
specific aspect of time series has been recently pointed out: a
time series is the realization of a sequential set of random
variables with a specific structure deriving by a complex
pattern of temporal dependencies [2], [3]. As a consequence
such pattern of dependencies can be exploited as an inductive
bias to regularize the estimation process and better adapt to
the data distribution.

The exploitation of structure in data to impose constraints
to the learning process and obtain improved generalization is
nowadays common in regression and classification (see for
instance the work in multi-task learning [4] or prediction of
structured data [5]) but only scarcely adopted in time series
prediction.

Also, so far, the use of the data structure in time series
prediction has been limited to multi-response regression strate-
gies like the Joint method based on multiple output neural
networks proposed by [6] or the LL-MIMO method based
on Lazy Learning proposed by [2], [3]. Here we propose an
alternative to the multi-response regression approach which is
based on the use of a Monte Carlo strategy. The rationale
is to use Monte Carlo importance sampling to sample the
conditional distribution of the multivariate vector representing
the continuation of the time series in a a way that takes
into account the structural dependency of the series. What
results is a multi-step-ahead forecasting method which could
be considered as a probabilistic combination of the Iterated
approach and the Direct approach. This is due to the fact that
the outcome of the Monte Carlo importance sampling strategy
reweighs the set of bootstrap predictions obtained by the Direct
method by taking into consideration the constraint represented
by the one-step-ahead predictor.

Note that the use of importance sampling in graphical
models is well-known, for instance as a way to perform ap-
proximate inference [7] or sequential filtering [8]. However in
those cases the technique is used for computing the conditional
probability of a probabilistic model (e.g. a Bayesian Network)
whose structure and parameters are known. In our paper,
importance sampling is used instead as a way to enforce a
probabilistic constraint (or bias) in a learning algorithm.

After motivating and presenting the algorithm in Section II
and III, we perform in Section IV an assessment of its accuracy
by means of three common benchmarks in multiple-step-
ahed forecasting. The experimental comparison relies on local
learning techniques to estimate the conditional distributions.

II. THE MULTIPLE-STEP-AHEAD FORECASTING PROBLEM

In probabilistic terms a time series is the realization of
a stochastic process, that is a sequence of random variables
indexed by a variable t. A stochastic process is completely
determined by the joint distribution of all the variables

{. . . ,y1,y2, . . . ,yt+1,yt+2, . . . }

This distribution summarizes all the dependencies between the
past and the future values of the series. In the case of a strictly
stationary process the joint distribution of two variables yt and
yt+h depends only on h and not on t. Forecasting at time t
the next h > 0 values of the time series is then possible since
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the observed data {y1, . . . , yt} can provide information about
the stochastic dependencies between the past and the future
realizations and these dependencies are preserved with time.

A well-known family of forecasting approaches represents
the dependency between the value of a series at time t + h
and a finite set of p previous values by using the nonlinear
autoregressive NAR(p) notation

yt+h = Fh(yt, yt−1, . . . , yt−p+1) + wh = Fh(q) + wh

where p is the order of the model and the vector q of
length p is commonly denoted as the embedding vector. This
model implies that the stochastic process is a Markov process,
that means that, once the embedding vector is known, the
variable yt+h is conditionally independent of more ancient
measures. This model induces two properties of the conditional
distribution of yt+h given the observed values: the expected
value of yt+h is given by

E[yt+h|yt, yt−1, . . . , ] = E[yt+h|yt, . . . , yt−p+1] =

= Fh(yt, yt−1, . . . , yt−p+1)

and wh denotes the conditional distribution of yt+h −
E[yt+h|yt, . . . , yt−p+1].

In case of linear F and h = 1 this formulation boils down
to the conventional linear autoregressive model AR(p) for
one-step-ahead prediction. The same formalism underlies the
two most common techniques for multistep-ahead forecasting
where the goal is to forecast the next H > 1 values of a series
observed up to time t: the Iterated and the Direct approach. In
the Iterated approach the data are used to infer the one-step-
ahead dependency

yt+1 = F1(yt, yt−1, . . . , yt−p+1) + w1

and the estimated model F̂1 is used iteratively to provide the
set of H predicted values ŷt+1, ŷt+2, . . . , ŷt+H .

In the Direct approach the multiple-step-ahead forecasting
task is decomposed in a set of H independent single-output
tasks

yt+h = Fh(yt, yt−1, . . . , yt−p+1) + wh, h = 1, . . . , H.

A detailed discussion of the pros and cons of these two
approaches is presented in [2], [3]. To resume, we can say
that if on one hand the Iterated approach is more exposed to
the accumulation of errors, on the other the Direct approach
ignores the conditional dependency between the future values
of the series.

In other terms, the two approaches tend to ignore the
structured property [5] of a multi-step-ahead forecasting task:
indeed when we want to predict the next H values of a time
series we aim to solve a learning problem where the nature
of the stochastic process implies a dependency between inputs
(i.e. the terms of the embedding vector), between outputs (i.e.
the H future values to be predicted) and between inputs and
outputs.

A way to deal with such dependency is to include a term
either in the parametric fitting or the hyperparameters selection
of the learner. Examples of how to incorporate correlations
into linear regression and SVM are discussed in [9]. The

proposed techniques were used in tasks of mass spectrometry
prediction and image transformation. In a time series task, the
use of structural information to improve the selection of hyper
parameters in a nearest neighbor approach has been discussed
in [2]. This led to the definition of a multiple input multiple
output (MIMO) strategy for long term prediction which has
been validated in several contexts [10], [3].

These techniques rely in modifying the conventional cost
functional related to prediction accuracy by including a quan-
titative terms encoding some prior knowledge about the struc-
ture of the problem. Such generalization of existing learning
techniques demands a sufficiently detailed knowledge about
the structure of the dependency in order to introduce it in the
learning process.

In the following section we propose an original strategy
based on sampling to take into consideration the structural
dependencies of a time series in the forecasting procedure.

III. THE STRUCTURED MONTE CARLO FORECASTING

METHOD

In a NAR(p) setting, the prediction of a time series H
steps forward demands the estimation of the H conditional
expectation terms

E[yt+h|q] =

∫

yt+hp(yt+h|q)dyt+h, h = 1, . . . , H (1)

where the H variables are distributed according to the condi-
tional and multivariate distribution

p(yt+H , . . . , yt+1|yt, yt−1, . . . , yt−p+1) =

= p(yt+H , . . . , yt+1|q) (2)

Among the H variables the following structural relation
holds for each h = 2, . . . , H and j = 1, . . . , h− 1

p(yt+h|q) =
∫

p(yt+h|yt+j , . . . , yt+1, q)p(yt+j , . . . , yt+1|q)dyt+j . . . dyt+1,

(3)

Note that if the time series is NAR(p) the expression can be
simplified because of the conditional independence properties.
For instance if p = 1, h = 3 and j = h− 1 = 2

p(yt+3|q) =
∫

p(yt+3|yt+2)p(yt+2|yt+1)p(yt+1|yt)dyt+2 . . . dyt+1,

(4)

The complexity of the estimation problems (1) in real settings
is due to several elements: the complex dependency pattern
(see for instance the graphical model associated to a NAR(2)
in Figure 1), the large dimensionality of the input, the large
dimensionality of the output, the potential nonlinearity of the
dependencies, the lack of a priori knowledge, the noise and
the small amount of samples with respect to the dimensions.

In the Direct approach the estimation of the H terms
in (1) is done without taking into account the relation (3).
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The Iterated approach instead approximates the relation (3)
for j = h − 1 by assuming naively that the predictions
ŷt+1, . . . , ŷt+h−1 return an accurate estimation of the distri-
bution of yt+1, . . . , yt+h−1 for each h = 1, . . . , H .

In the multi-response approach (e.g. MIMO [2]) the struc-
tural constraint (3) is taken implicitly into consideration by
fitting a multi-response model and returning a vectorial pre-
diction.

What we propose here is to take explicitly into consid-
eration such constraint by adopting a Monte Carlo sampling

strategy. If we were able to generate R samples y
(r)
t+h according

to the conditional distribution p(yt+h|q), the estimation of the
quantities (1) would be easy:

E[yt+h|q] ≈ ŷt+h =
1

R

R
∑

r=1

y
(r)
t+h

Unfortunately the distribution p(yt+h|q) is unknown and
we cannot generate samples directly from it. However a
possible estimator could be provided by using the Direct
strategy. Though such estimator disregards some aspects of the
conditional distribution, like the probabilistic constraint (3), we
could try to adjust its estimation accordingly in order to take
into account the missing information.

The idea of adjusting samples drawn from a proposal dis-
tribution in order to obtain samples from a target distribution,
potentially known but impossible to be sampled directly, is
the core of the importance sampling approach [11]. Suppose
we have a target distribution p(y) for which we would like
to estimate the expectation by Monte Carlo sampling. Given
the impossibility to sample it directly we generate samples
from a different proposal distribution p̂(y). In general the
proposal distribution can be arbitrary with the only require-
ment that the support of p̂ contains the support of p, i.e.
∀y, p(y) > 0 ⇒ p̂(y) > 0. Since the samples drawn from
p̂ are incorrect we cannot simply average them to obtain the
estimator. The best way to use these samples is to weight them
according to the importance they have in representing p, or
in other terms, according to their compatibility with p. The
resulting normalized importance sampling estimator [7] is

E[y] ≈ ŷ =

∑R
r=1 w(r)ŷ(r)

∑R
r=1 w(r)

(5)

where w(r) is the importance weight of the rth sample gener-
ated according to the proposal distribution p̂. Note that this
formulation does not require a complete knowledge of the
density p but simply a knowledge up to a normalizing constant.

The original idea of this paper is to have recourse to an
importance sampling strategy to adjust the Direct approach in
order to incorporate the structural constraint (3). So, though
in our case p(yt+h|q) is not known, we generate approximate,
yet incorrect, samples by the Direct approach (that plays here
the role of proposal distribution generator) and adjust them
by weighting according to their satisfaction of the structural
constraint (3). Note that if we consider the two factor terms
inside the integral in (3), the first one represents the structural

constraint since it imposes that the samples at time t+h and the
samples at the previous time instants satisfy the dependency

p(yt+h|yt+h−1, . . . , yt+h−p) (6)

in accordance with the NAR(p) setting.

So, if we are able to estimate the conditional distribu-
tion (6), as typically done in the Iterated strategy, we can im-
pose a structural constraint by weighting the samples obtained
with the Direct method. Once each sample has been weighted
accordingly we obtain a structured prediction by computing the
weighted average. Note that any supervised learning algorithm
(e.g. feedforward neural networks) can be used to estimate (6)
from historical data. In Section IV we will have recourse to a
local learning algorithm to perform the estimation.

A. The SMC algorithm

Our proposed algorithm, denoted by SMC (Structured
Monte Carlo) and detailed in Algorithm 1 is composed of three
main parts.

In the first part (lines 3-7) we draw R samples ŷ
(r)
t+h

by sampling the conditional distribution p(yt+h|q) for each
horizon h = 1, . . . , H . This is made possible thanks to a Direct
estimator p̂(yt+h|q) which works here as the generator of
the proposal distribution and which is learned from historical
data with a conventional learner (e.g. linear model or nearest-

neighbour). The samples ŷ
(r)
t+h of the conditional distributions

are obtained by sampling with replacement (lines 5-6) the
original dataset and retraining the Direct estimator.

In the second part (lines 13-29), we loop over an increasing

horizon h = 2, . . . , H . For each horizon h each sample ŷ
(r)
t+h

is weighted by a term measuring how much this value is
compliant with the constraint (3) by computing (line 25) the
quantity

w
(r)
t+h =

J
∑

j=1

p(ŷ
(r)
t+h|ŷ

(j)
t+h−1, . . . , ŷ

(j)
t+h−p) =

J
∑

j=1

p(ŷ
(r)
t+h|q

(j)) (7)

Such computation requires the sampling of J embedding

vectors q(j) = [ŷ
(j)
t+h−1, . . . , ŷ

(j)
t+h−p] composed by observed

values if h ≤ p and by estimated values otherwise (lines
17-22). Note that the sampling at the horizon h is done

proportionally to the weight w
(r)
t+h (line 22).

In accordance with (5), the last phase (lines 30-32) as-
sembles the Direct samples and the importance weights by
returning for each horizon h the forecast

ŷt+h =

∑R
r=1 w

(r)
t+hŷ

(r)
t+h

∑R
r=1 w

(r)
t+h

, h = 1, . . . , H

The SMC algorithm relies on the availability of an es-
timator of the conditional probability p(tt+h|q), which is
implemented by the function DIR. This estimator is the one
required to perform the Direct strategy and can be implemented
by a conventional linear or nonlinear regression technique. In
the following section we will use a local learning regression
technique based on [14].

855



Algorithm 1 SMC

Require: Observed time series Y = {y1, . . . , yt}, order p,
horizon H , number J of embedding vectors

1: q ← [yN , . . . , yN−p+1]
2: Put the series in input/output form X(N,p), O(N,H)

3: for h = 1 to H do
4: for r = 1 to R do
5: I(r) ← sample(1:N )

6: ŷ
(r)
t+h ← DIR(X [I(r), ], O[I(r), h], q)

7: end for
8: end for
9: for r = 1 to R do

10: w
(r)
t+1 ← 1/R

11: for h = 2 to H do
12: w

(r)
t+h ← 1

13: end for
14: end for
15: for h = 2 to H do
16: for j = 1 to J do
17: q(j) ← []
18: for k = t + h− p to t + h− 1 do
19: if k ≤ t then
20: q(j) ← [yk, q(j)]
21: else
22: s← sample(1 : R, wk)

23: q(j) ← [ŷ
(s)
k , q(j)]

24: end if
25: for r = 1 to R do
26: p(y

(r)
t+h|q

(j))← DIR(X, O[, 1], q(j)))

27: w
(r)
t+h ← w

(r)
t+h + p(y

(r)
t+h|q

(j))
28: end for
29: end for
30: end for
31: end for
32: for h = 1 to H do

33: ŷt+h =

∑

R

r=1
w

(r)

t+h
ŷ
(r)

t+h
∑

R

r=1
w

(r)

t+h

34: end for

Algorithm 2 DIR

Require: Training set (input matrix X , output vector O),
query point q

Ensure: posterior density p(o|q), E[o|q]

IV. EXPERIMENTS

The performance of the SMC method was assessed on three
benchmarks and compared to six alternative strategies.

The three benchmarks are: the NN5 dataset, the NN3
dataset and a set of 12 NAR time series (Table I).

The NN5 dataset contains the 111 time series of the NN5
Competition (complete dataset) [12]. These time series are all
the same length and contain the daily retirement amounts from
independent cash machines at different, randomly selected
locations across England. They show different patterns of
single or multiple overlying seasonality, including day of the
week effects, week or month in the year effects, and calendar
effects. In our forecasting experiments, we adopt five predic-
tion windows with the horizons H = 50, 70, 90, 100, 200.

y
t

y
t+1

y
t+2

y
t-1

y
t+3

Fig. 1. Graphical model of the dependencies in a NAR(2) stochastic process

The NN3 Dataset [13] is made of 111 monthly time series
starting at January, with a variable number of points (from 50
to 126). All series are drawn from homogeneous population
of empirical business time series. For each time series, the
competition required to forecast the values of the next H = 18
months based on the given historical data points. Here we
consider also the horizon H = 10.

The third benchmark consists of a set of 1080 series
obtained by simulating 90 times (different random seeds and
increasing noise variances) the 12 series in Table I.

We compared the SMC algorithm to an Iterated (IT) algo-
rithm, a Direct (DIR) algorithm, an Averaged (AVG) version
of the Direct Algorithm, a LL-MIMO algorithm [2], a linear
AR and a Random Walk estimator. All the forecasters uses the
same embedding order p ≤ 12 which is calculated for each se-
ries by considering the highest (and smaller than 12) significant
delay in the partial correlation function. The SMC, IT, DIR and
AVG algorithms rely on a locally constant estimator with an
adaptive number of neighbors ranging between 3 and 15 and
selected on the basis of the PRESS leave-one-statistic [14].
Though the estimation could have been performed also with
other algorithms (e.g. neural networks) we adopted a local
learning estimator since in litterature this approach is known to
be extremely effective for short and long term forecasting [15],
[16]. The MIMO algorithm implements the multiple output
algorithm proposed in [2] with a number of neighbors ranging
between 3 and 15. The AVG algorithm returns the average of
R = 100 DIR estimations obtained by resampling each time
two thirds of the training set. The same resampling strategy
and the same number R of repetitions (line 5 of Algorithm 1)
is used by the SMC algorithm in the Direct phase. The use of
the same resampling strategy allows a paired assessment of the
benefit deriving from the adoption of the structured prediction
procedure with respect to a simple averaging approach. The
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AR forecast is implemented by the R forecast package[17].

The forecasting accuracy results are reported in Table II
in terms of average Symmetric Mean Absolute Percentage of
Error (SMAPE) defined as

SMAPE =
1

H

H
∑

h=1

|ŷ − yh|

(ŷh + yh)/2
× 100

where yh is the target output and ŷ is the prediction. The
reported values are obtained by averaging over 5 different
starting points for the NN5 and the NAR series and over 3
starting points for the NN3 series. The bold notation is used
to denote an average SMAPE significantly different from the
SMAPE of SMC according to a paired t-test (pv < 0.05).
Table III reports a Win/Losses count of the number of times
that a specific technique returns a SMAPE superior (SMC
wins) or inferior (SMC loses).

Some considerations can be made on the basis of the
results:

• the SMC strategy is competitive with state-of-the-art
approaches,

• the effectiveness of the method is not simply due to
its averaging nature as shown by the comparison with
the AVG approach. It appears indeed that SMC has
all the times (and 7 times significantly) better average
SMAPE than AVG,

• the improvement of SMC with respect the iterated
strategy becomes more evident as the forecasting
horizon increases,

• SMC is also consistently significantly better than the
Direct method and the MIMO approach.

• In the NN3 competition benchmark the linear AR
outperforms, yet not significantly, SMC. On this mat-
ter, we should however remark that neither model
nor feature selection is performed in our experiments
and that it is known that conventional forecasting
approaches performed very well in NN3.

V. CONCLUSION

The comparative analysis of Iterated and Direct strategies
is a hot topic in computational intelligence as well as in
related domains [18], [19]. This paper advocates that these two
methods can be properly integrated for the sake of accuracy
and robustness. If on one side Direct strategies are able to
provide good approximation of the marginal distribution of
future values of the time series, on the other side Iterated
methods are more effective in modeling the conditional de-
pendency between forecasts. The Monte Carlo strategy we
presented aims to preserve the best of both techniques by
having recourse to an importance sampling paradigm. At the
same time by introducing a resampling aspect, it is able to deal
with noisy configurations. Future work will focus on related
domains where the introduction of structural dependency can
represent an effective inductive bias in the learning process,
like spatio-temporal and vector autoregressive forecasting.
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yt+1 = −0.4
(3 − y2

t
)

(1 + y2

t
)

+ 0.6
3 − (yt−1 − 0.5)3

1 + (yt−1 − 0.5)4
+ wt+1

yt+1 = (0.4 − 2 exp(−50y2

t−5
))yt−5 + (0.5 − 0.5 exp(−50y2

t−9
))yt−9 + wt+1

yt+1 = (0.4 − 2 cos(40yt−5) exp(−30y2

t−5
))yt−5 + (0.5 − 0.5 exp(−50y2

t−9
))yt−9 + wt+1

yt+1 = 2 exp(−0.1y
2

t
)yt − exp(−0.1y

2

t−1
)yt−1 + wt+1

yt+1 = −2ytI(yt < 0) + 0.4ytI(yt < 0) + wt+1

yt+1 = 0.8 log(1 + 3y2

t
) − 0.6 log(1 + 3y2

t−2
) + wt+1

yt+1 = 1.5 sin(π/2yt−1) − sin(π/2yt−2) + wt+1

yt+1 = (0.5 − 1.1 exp(−50y2

t
))yt + (0.3 − 0.5 exp(−50y2

t−2
))yt−2 + wt+1

yt+1 = 0.3yt + 0.6yt−1 +
(0.1 − 0.9yt + 0.8yt−1)

(1 + exp(−10yt))
+ wt+1

yt+1 = sign(yt) + wt+1

yt+1 = 0.8yt −
0.8yt

(1 + exp(−10yt))
+ wt+1

yt+1 = 0.3yt + 0.6yt−1 +
(0.1 − 0.9yt + 0.8yt−1)

(1 + exp(−10yt))
+ wt+1

TABLE I. NAR TIMES SERIES

Dataset No. series SMC IT DIR AVG MIMO AR RW

NN5 (H = 50) 111 4.24 4.27 4.38 4.29 4.45 5.98 10.98

NN5 (H = 70) 111 4.52 4.67 4.60 4.55 4.67 6.38 8.67

NN5 (H = 90) 111 6.04 7.02 6.07 6.09 6.19 11.83 13.22

NN5 (H = 100) 111 5.91 6.1 5.96 5.93 6.08 8.53 12.83

NN5 (H = 200) 111 13.31 14.25 13.6 13.4 13.6 19.22 20.68

NN3 (H = 10) 111 3.18 3.28 3.25 3.20 3.32 3.00 4.39

NN3 (H = 18) 111 8.70 8.87 8.89 8.72 8.94 8.23 11.46

NAR (H = 10) 1080 1.46 1.54 1.49 1.46 1.48 1.65 2.08

TABLE II. AVERAGE SMAPE: THE BOLD NOTATION IS USED TO DENOTE THAT A TECHNIQUE HAS AN AVERAGE SMAPE SIGNIFICANTLY DIFFERENT

(PAIRED T-TEST P-VALUE < 0.05) FROM THE ONE OF SMC.

Dataset IT DIR AVG MIMO AR RW

NN5 (H = 50) 59/52 98/13 95/16 92/19 107/4 111/0

NN5 (H = 70) 54/57 78/33 91/20 84/27 105/6 108/3

NN5 (H = 90) 79/32 64/47 82/29 91/20 109/2 111/0

NN5 (H = 100) 67/44 79/32 83/28 90/21 107/4 108/3

NN5 (H = 200) 67/44 99/12 90/21 85/26 107/4 107/4

NN3 (H = 10) 62/49 72/39 61/50 54/57 43/68 65/46

NN3 (H = 18) 65/46 72/39 65/46 67/44 52/59 75/36

NAR (H = 10) 658/422 680/400 646/434 583/497 583/497 731/349

TABLE III. NUMBER OF SMC WIN-LOSSES: THE NOTATION W/L MEAN THAT SMC HAS A BETTER SMAPE THAN THE CONSIDERED TECHNIQUE W
OUT OF (W+L) TIMES.
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