
Learning from Combination of Data Chunks for
Multi-class Imbalanced Data

Xu-Ying Liu1,2 and Qian-Qian Li1
1 Key Laboratory of Computer Network and Information Integration, MOE

School of Computer Science and Engineering, Southeast University, Nanjing, China
2 National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

Email: {liuxy, liqianqian}@seu.edu.cn

Abstract—Class-imbalance is very common in real-world ap-
plications. Previous studies focused on binary-class imbalance
problem, whereas multi-class imbalance problem is more general
and more challenging. Under-sampling is an effective and efficient
method for binary-class imbalanced data. But when it is used for
multi-class imbalanced data, many more majority class examples
are ignored because there are often multiple majority classes, and
the minority class often has few data. To utilize the information
contained in the majority class examples ignored by under-
sampling, this paper proposes a method ChunkCombine. For
each majority class, it performs under-sampling multiple times to
obtained non-overlapping data chunks, such that they contain the
most information that a data sample of the same size can contain.
Each data chunk has the same size as the minority class to achieve
balance. Then every possible combination of the minority class
and each data chunk from every majority class forms a balanced
training set. ChunkCombine uses ensemble techniques to learn
from the different training sets derived from all the possible
combinations. Experimental results show it is better than many
other popular methods for multi-class imbalanced data when
average accuracy, G-mean and MAUC are used as evaluation
measures. Besides, we discuss different evaluation measures and
suggest that, a multi-class F-measure Mean F-Measure (MFM)
is unsuitable for multi-class imbalanced data in many situations
because it is not consistent with the standard F-measure in binary-
class case and it is close to accuracy.

I. INTRODUCTION

Class-imbalance problem exists in many real-world appli-
cations, that is, some classes have much smaller populations
than the other classes, and the examples of the smaller classes
are more important. The smaller classes are called the “mi-
nority classes” and the larger classes are called the “majority
classes”. For example, in face detection problem, an image
normally contains about 105 windows with different locations
and scales, and the non-face windows are about 104 times more
than the face-windows, where the latter are targets. Standard
machine learning methods assume that all examples have the
same importance and tend to overlook the minority class
examples to achieve high accuracy. In the above example, the
accuracy of the classifier always predicting non-face window
is 99.99%, but obviously it is useless since it cannot detect
any face. Therefore, accuracy is not an appropriate evaluation
measure for class-imbalance problem, and instead, F-measure,
G-mean and AUC [1] are used for evaluation.

Class-imbalance learning has been considered as one of the
most challenging problems in machine learning and data min-
ing [2], whereas previous studies mainly focused on binary-
class data [3], [4], [5], [6], [7], [8], [9]. It is noteworthy that

multi-class imbalance is more general and more challenging
than binary-class imbalance. The difficulty of multi-class im-
balance problem includes but not limited to the following
aspects: multi-class imbalance is multilateral, which is more
complicated than the bilateral imbalance in binary-class case;
the degree of concept complexity is much higher; there are
more overlapping areas among classes; the imbalance rates
(the size of a majority class divided by the size of the smallest
class) maybe very high; and the smallest class may has very
few data. However, the studies on multi-class imbalance are
relatively limited, which will be briefly reviewed in Section II.

Sampling, including over-sampling and under-sampling, is
one of the most popular and effective methods for binary-
class imbalance. Random over-sampling samples from the
minority class to make data balanced. It takes the risk of
over-fitting since it replicates the minority class examples. For
multi-class imbalance, all the classes except the largest class
are over-sampled to achieve balance, which greatly increases
the chance of over-fitting. Efficiency is important to multi-
class classification, while over-sampling is inefficient. Under-
sampling samples from the majority classes to make data
balanced. Obviously, it is much more efficient. But it ignores
too many majority class examples, especially when there are
multiple majority classes, and when the smallest class has very
few data, so the performance would be very poor, and quite
unstable for different training sets since the sampled data is a
small fraction of the original data. Therefore, it is important to
utilize the information contained in the majority class examples
ignored by under-sampling to effectively handle multi-class
imbalanced data.

Since the performance of under-sampling would be very
poor, it is nature to assume that the trained classifier is a
weak learner, that is, its performance is just slightly better
than random guess [19], [20]. Ensemble techniques [20] have
shown their successes in improving the generalization ability
of weak learners. In this paper, we use ensemble techniques
to utilize the information contained in the ignored majority
class examples. Ensemble methods not only can reduce the
bias which measures how closely the average estimate of
the learning algorithm is able to approximate the target, but
also can reduce the variance which measures how much the
estimate of the learning algorithm fluctuates for different
training sets of the same size [21]. It is well known that
Boosting, such as AdaBoost [22], primarily reduces the bias
[23], [24], and Bagging has tremendous variance reduction
effect [25]. Thus, both of Boosting and Bagging will help

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1680

improving under-sampling to handle multi-class imbalanced
data.

Our proposed ChunkCombine method utilizes both of
Boosting and Bagging-like ensemble techniques to utilize the
information contained in the majority class examples ignored
by under-sampling. For each majority class, it performs under-
sampling multiple times to obtained non-overlapping data
chunks, such that they contain the most information that a
data sample of the same size can contain. Each data chunk has
the same size as the minority class to achieve balance. Then
every possible combination of the minority class and each data
chunk from every majority class forms a balanced training set.
ChunkCombine learns a set of multi-class AdaBoost classifiers
from the different training sets derived from all the possible
combinations. Finally, all the weak learners are combined
by hard voting. Experimental results show ChunkCombine
is better than many other popular methods for multi-class
imbalanced data when average accuracy, G-mean and MAUC
are used as evaluation measures.

Besides, we discuss some popular evaluation measures
for multi-class imbalance learning, including G-mean, average
accuracy AvgAcc [26], MAUC [27] and Mean F-Measure
(MFM) [28], and conclude that MFM is not identical to F-
measure in binary-class case, while all the other measures are
consistent with their binary-class versions. Methods having
higher G-mean and AvgAcc values can have much lower
MFM values. It should be cautious to use MFM as evaluation
measure for multi-class imbalance learning, especially when
there are “multi-majority” classes [14].

The rest of the paper is organized as follows. Section II
briefly introduces the related work. Section III describes the
proposed ChunkCombine method. Section IV discusses the
evaluation measures. Section V shows the experiments and
Section VI concludes.

II. RELATED WORK

A. Methods for Binary-class Imbalance

Methods for binary-class imbalance can be roughly
grouped into 5 categories. (1) Balancing the training set via
sampling. Sampling methods include over-sampling and under-
sampling. Besides random over-sampling, SMOTE [3] is a very
popular over-sampling method. To avoid over-fitting of over-
sampling, SMOTE adds synthetic examples to the minority
classes by interpolating between the minority class examples
and their neighbors belonging to the same class. SMOTE takes
the risk of introducing noise, which can be greatly enhanced
when there are multiple classes. (2) Cost-sensitive learning
methods [29], [30]. They assign higher and lower costs to the
minority and majority class examples respectively to convert
a binary-class imbalance problem to a cost-sensitive problem,
and then train a classifier to minimize total cost. (3) Refining
the placement of decision boundary. The most straightforward
way is threshold-moving, which moves the decision threshold
such that the minority class examples are easier to be classified
correctly. (4) Recognition-based methods, such as one-class
SVM [31]. The model is created based on the target class
alone. To classify an instance, the similarity of the instance and
the target class is measured, and the instance will be predicted
as a target class example when the similarity exceeds threshold.

(5) Methods particularly designed for class-imbalance prob-
lem.

There are many ensemble based methods for binary-class
imbalanced data. To improve under-sampling, Chan and Stolfo
[32] splits the majority classes into several data chunks with
size similar to the minority class, and trains SVMs from the
combinations of the minority class and each of the data chunk
of the majority class, then combines the SVMs using stacking
to minimize error rate; EasyEnsemble [7] explores the infor-
mation contained in the majority class examples ignored by
under-sampling by running under-sampling procedure multiple
times independently, in each procedure an AdaBoost classifier
is trained, finally, all the weak learners of all the AdaBoost
classifiers are combined by soft ensemble; BalanceCascade
[7] explores the information contained in the majority class
in a cascade-style, after each under-sampling procedure, the
majority class examples correctly classified by the Adaboost
classifier trained in the latest under-sampling procedure are
considered as redundant and are removed from the majority
class, then like EasyEnsemble, all the weak learners of all the
AdaBoost classifiers are combined by soft ensemble.

SMOTEBoost [33] is proposed to improve SMOTE, in
each boosting round, the weight distribution is adjusted by
SMOTE to focus more on the minority class examples, thus,
the weak learners that could be affected by noise introduced
by SMOTE can be boosted into strong learners. It can not
only be used in binary-class classification, but also in multi-
class classification. There are many other ensemble methods
for binary-class imbalanced data, such as RUSBoost [34], and
cost-sensitive ensemble methods, such as AsymBoost [35].
Please refer to [36] for detailed literature review.

B. Methods for Multi-class Imbalance

There are several work on multi-class imbalanced data
[10], [11], [12], [13], [14], [15], [16], [37]. [11] uses multi-
class cost-sensitive method to handle multi-class imbalanced
data, where the optimal cost vector is determined by a genetic
algorithm. MC-HDDT [13] is a decision tree method which
uses a multi-class splitting criterion in favor of the minority
classes. DyS [16] dynamically samples data for neural network
to update the weights during the learning procedure. [14]
categories the multi-class imbalance problems to the prob-
lems with “multi-minority” and “multi-majority” classes, and
proposes OvNC method which combines boosting and over-
sampling. To find the best factor of cost-sensitive learning
and sampling methods for multi-class imbalanced data, [18]
proposes an effective wrapper framework incorporating the
evaluation measure into the objective function of cost sensitive
learning as well as re-sampling directly. EasyEnsemble.M
[37] extends the EasyEnsemble method to multi-class case.
Like EasyEnsemble, it performs under-sampling multiple times
independently to obtain several balanced training sets, and
trains a multi-class AdaBoost classifier using AdaBoost.M [38]
algorithm from each of them. Finally, all the weak learners of
the AdaBoost classifiers are combined via hard voting.

There are some decomposition-based methods, including
OVA (one versus all) and OVO (one versus one) based meth-
ods, such as [10] uses OVA and OVO reductions and designs
a decision rule to handle the binary-class imbalance in each

1681

subtask. OAHO [12] reduces a multi-class learning task to a
series of binary-class subtasks by grouping the minority classes
together to decrease the imbalance rate. Recently, Liu et al.
proposed an error correcting output codes method imECOC
[17], in each dichotomy, both of between-class and within-
class imbalance are handled; and each dichotomy is assigned
a weight to reflect its importance in decoding stage, a test in-
stance will be classified to the class with the minimal weighted
distance; the optimal weights are obtained by minimizing a
weighted loss function favoring the minority classes by using
large margin method.

III. CHUNKCOMBINE METHOD

The basic idea of our proposed ChunkCombine method is
that, to utilize the information contained in the majority class
examples ignored by under-sampling, for each majority class,
ChunkCombine performs under-sampling without replacement
multiple times to obtained non-overlapping data chunks (data
samples), such that they contain the most information that a
data sample of the same size can contain. Each data chunk
has the same size as the minority class to achieve balance.
Then for every possible combination of the minority class
and each data chunk from every majority class, which forms
a balanced training set, ChunkCombine trains a multi-class
AdaBoost classifier using AdaBoost.M [38]. Finally, a set of
AdaBoost classifiers are obtained, and all the weak learners in
them are combined via hard voting.

Suppose there are 𝑘 classes, 𝐷 = {𝐷1, 𝐷2, . . . , 𝐷𝑘} with
increasing class sizes 𝑛1 ≤ 𝑛2 ≤ ⋅ ⋅ ⋅ ≤ 𝑛𝑘, 𝐷1 is the minority
class, and the other classes are called the majority classes.
For a majority class 𝐷𝑖, 𝑖 ∕= 1, ChunkCombine samples a set
of non-overlapping data chunks 𝐷𝑖𝐶 = {𝐷𝑖𝐶1, . . . , 𝐷𝑖𝐶𝑚𝑖}
by performing under-sampling without replacement multiple
times, where 𝑚𝑖 is the number of data chunks in class 𝐷𝑖.
Thus, all the examples in 𝐷𝑖𝐶 are unique, such that the
data chunks contain the most information that a data sample
of the same size can contain. To achieve balance, all the
data chunks have the same size as the minority class, that
is, ∣𝑄∣ = 𝑛1, ∀𝑄 ∈ 𝐷𝑖𝐶. It is obvious that, 𝑛1𝑚𝑖 ≤ 𝑛𝑖
should hold since all the examples in the data chunks are
unique. To obtain the non-overlapping data chunks, the under-
sampling procedures are dependent, after a data chunk is
sampled from 𝐷𝑖, it is removed from the class, and the
following data chunk is sampled from the remaining examples.
ChunkCombine repeats the above process for every majority
class 𝐷𝑖, 𝑖 = 2, . . . , 𝑘.

The combination of the minority class and a data chunk
from every majority class forms a balanced training set
{𝐷1, 𝑄𝑖, . . . , 𝑄𝑘}, with 𝑄𝑖 ∈ 𝐷𝑖𝐶, 𝑖 = 2, . . . , 𝑘, then
ChunkCombine trains a multi-class AdaBoost classifier from
it using AdaBoost.M. There are altogether Π𝑘𝑖=2𝑚𝑖 different
training sets derived from all possible combinations, that is,
{{𝐷1, 𝐷2𝐶𝑖2 , . . . , 𝐷𝑘𝐶𝑖𝑘}∣𝑖𝑗 = 1, . . . ,𝑚𝑗 , 𝑗 = 2, . . . , 𝑘}, so
we get Π𝑘𝑖=2𝑚𝑖 AdaBoost classifiers. Suppose the multi-class
learning algorithm 𝐿 : 𝑋 → 𝑌 is used to train the weak
learners of AdaBoost, where, 𝑋 is the input space and 𝑌 is the
output space, 𝑌 ∈ {1, . . . , 𝑘}. The AdaBoost classifier trained
from the training set {𝐷1, 𝐷2𝐶𝑖2 , . . . , 𝐷𝑘𝐶𝑖𝑘} is denoted by
𝐴𝑖2,...,𝑖𝑘 . It has 𝑇 weak learners {ℎ(𝑡)𝑖2,...,𝑖𝑘}𝑇𝑡=1 and the corre-

sponding weights {𝛼(𝑡)𝑖2,...,𝑖𝑘}𝑇𝑡=1. Finally, all the weak learners

of the AdaBoost classifiers {ℎ(𝑡)𝑖2,...,𝑖𝑘 ∣𝑖𝑗 = 1, . . . ,𝑚𝑗 , 𝑗 =
2, . . . , 𝑘, 𝑡 = 1, . . . , 𝑇} are combined to form an ensemble
via hard voting, that is,

𝐻(𝑥) = arg𝑦max
∑

𝑖2,...,𝑖𝑘

𝑇∑

𝑡=1

𝐼(ℎ
(𝑡)
𝑖2,...,𝑖𝑘

(𝑥) = 𝑦), (1)

where, 𝐼(𝑥) = 1 if 𝑥 is true and 0 otherwise. The output of
ChunkCombine is a single ensemble though it looks like an
“ensemble of ensemble”. It combines all the weak learners in
all the AdaBoost classifiers instead of the AdaBoost classifiers.
An alternative view of the weak learners is to treat them as
features that are extracted by the ensemble learning method
and can only take discrete values [39]. In this viewpoint,
AdaBoost classifier is simply a linear classifier built on these
features. Features extracted from different training sets thus
contain information of different aspects of the original data set.
Finally, instead of counting votes from the AdaBoost classifiers
{𝐴𝑖2,...,𝑖𝑘 ∣𝑖𝑗 = 1, . . . ,𝑚𝑗 , 𝑗 = 2, . . . , 𝑘}, we collect all the
features {ℎ(𝑡)𝑖2,...,𝑖𝑘 ∣𝑖𝑗 = 1, . . . ,𝑚𝑗 , 𝑗 = 2, . . . , 𝑘, 𝑡 = 1, . . . , 𝑇}
and form an ensemble classifier from them. Hard voting instead
of soft voting is used to form the ensemble because when
under-sampling ignores too many majority class examples,
even the AdaBoost classifier could be unstable, thus its base
learners’ weights which are computed by the function of error
rates are also unstable, so it is better not to use the unreliable
weights for soft voting, and instead to use discrete values for
hard voting. The pseudo code is shown in algorithm 1. It is
worth noting that:

(1) Not all the majority class examples are used in
ChunkCombine, otherwise, it will be extremely time con-
suming and it is unnecessary when the union of all data
chunks are representative enough. In binary-class case, [7]
has shown that it is unnecessary to use all the majority class
examples in the similar methods (ensemble methods trying to
utilize the information ignored by under-sampling), such as
EasyEnsemble [7].

(2) The data chunks of each majority class are non-
overlapping, so all the examples in them are unique, such
that the data chunks contains the most information that a
data sample with the same size can contain. It is different
from EasyEnsemble.M [37], in the latter the under-sampling
procedures are independent, so the samples of a class in
different training sets can have overlaps, which will reduce
the amount of information contained in different training sets.

(3) And it is not like BalanceCascade in binary-class case.
BalanceCascade removes the majority class examples correctly
classified by the AdaBoost classifier after each under-sampling
procedure. So the data distribution changes considerably after
the examples are removed. This maybe the reason that it
is not as good as EasyEnsemble. Though ChunkCombine
also removes some majority class examples after each under-
sampling procedure, the removed data are not biased, they
are randomly sampled data. When there remains much more
majority class examples than the minority class, the change of
the data distribution is mere.

(4) In general, under-sampling ignores much more majority
class examples in multi-class imbalanced data than the binary-
class imbalanced data, especially when there are just few

1682

Algorithm 1 The ChunkCombine algorithm.

1: {Input: Data set 𝐷 = {𝐷1, 𝐷2, . . . , 𝐷𝑘} with increasing
class sizes 𝑛1 ≤ 𝑛2 ≤ ⋅ ⋅ ⋅ ≤ 𝑛𝑘, 𝑘 the number of classes,
𝐷𝑖 the 𝑖-th class, 𝑋 the input space, 𝑌 the output space,
𝑌 ∈ {1, . . . , 𝑘}, 𝑚𝑖 the number of data chunk in the ma-
jority class 𝐷𝑖, 𝑖 = 2, . . . , 𝑘, and 𝑛1𝑚𝑖 ≤ 𝑛𝑖, 𝑖 = 2, . . . , 𝑛
should hold, 𝑇 the number of iterations of AdaBoost,
multi-class learning method 𝐿 : 𝑋 → 𝑌 to train weak
learners}

2: for 𝑖 = 1 to 𝑘 do
3: 𝐷𝑖𝐶 ← ∅ {the set of data chunks of 𝐷𝑖}
4: for 𝑗 = 1 to 𝑚𝑖 do
5: Sample data chunk 𝐷𝑖𝐶𝑗 , with ∣𝐷𝑖𝐶𝑗 ∣ = 𝑛1, from

𝐷𝑖 using under-sampling without replacement
6: 𝐷𝑖𝐶 ← 𝐷𝑖𝐶 ∪𝐷𝑖𝐶𝑗
7: 𝐷𝑖 ← 𝐷𝑖 − 𝐷𝑖𝐶𝑗 {remove the sampled data from

the class}
8: end for
9: end for

10: for 𝑖2 = 2 to 𝑚2 do
11:
12: for 𝑖𝑘 = 1 to 𝑚𝑘 do
13: Learn a multi-class AdaBoost classifier 𝐴𝑖2,...,𝑖𝑘 us-

ing AdaBoost.M algorithm from the balanced training
set {𝐷1, 𝐷2𝐶𝑖2 , . . . , 𝐷𝑘𝐶𝑖𝑘}, which has 𝑇 weak
learners {ℎ(𝑡)𝑖2,...,𝑖𝑘}𝑇𝑡=1 and corresponding weights

{𝛼(𝑡)𝑖2,...,𝑖𝑘}𝑇𝑡=1, i.e,
𝐴𝑖2,...,𝑖𝑘(𝑥) =

arg𝑦max
∑𝑇
𝑡=1 𝛼

(𝑡)
𝑖2,...,𝑖𝑘

𝐼(ℎ
(𝑡)
𝑖2,...,𝑖𝑘

(𝑥) = 𝑦),
where, 𝐼(𝑥) = 1 if 𝑥 is true and 0 otherwise.

14: end for
15:
16: end for
17: Output: An ensemble
𝐻(𝑥) =

arg𝑦max
∑

𝑖2,...,𝑖𝑘

∑𝑇
𝑡=1 𝐼(ℎ

(𝑡)
𝑖2,...,𝑖𝑘

(𝑥) = 𝑦).

examples in the minority class. So the performance could
be very poor and quite unstable for different training sets.
ChunkCombine uses AdaBoost to train classifiers because it
can effectively reduce the bias. All possible combinations of
the minority class and each data chunk of every majority class
are performed to form different training sets for learning in
order to further reduce the bias and the variance of ensemble. It
is quite different from EasyEnsemble.M [37]. Section V shows
its effectiveness by comparing it with EasyEnsemble.M.

(5) ChunkCombine uses multiple ensemble techniques.
Some previous studies combine different ensemble techniques
and achieve stronger generalization, such as MultiBoost [40]
combines boosting with bagging, Cocktail Ensemble [41], and
EasyEnsemble.

IV. DISCUSSION ON EVALUATION MEASURES

A. Binary-class Evaluation Measures

It is well known that accuracy is not appropriate for
evaluation in imbalance learning no matter there are two or
more classes. F-measure, G-mean and AUC (Area Under the

ROC Curve) [1] are popular evaluation measures for binary-
class imbalance learning methods. F-measure and G-mean are
functions of confusion matrix as shown in Table I, which are
defined as follows. Here, the minority class is the positive class
(or class 1) since it is more important and the majority class
is the negative class (or class 2).

𝐴𝑐𝑐+ =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=
𝑇𝑃

𝑛+
,

𝐴𝑐𝑐− =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=
𝑇𝑁

𝑛−
,

G-mean = (𝐴𝑐𝑐+ ×𝐴𝑐𝑐−) 1
2 , (2)

AvgAcc =
1

2
(𝐴𝑐𝑐+ +𝐴𝑐𝑐−), (3)

where, 𝑛+, 𝑛− is the size of the positive and negative class,
respectively, G-mean is the geometric mean of the accuracy of
each class. We also list the arithmetic mean i.e., AvgAcc here
for extension to multi-class case later.

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
,

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 𝐴𝑐𝑐+,

F1 =
2

1
𝑃 + 1

𝑅

=
2𝑃𝑅

𝑃 +𝑅
, (4)

where, 𝑃 is precision which measures how many examples
in the predicted positives are correctly classified (as true
positives), and 𝑅 is recall which measures how many examples
in the actual positives are correctly classified (as true positives).
F1 is the harmonic mean of precision and recall. And AUC is
defined as:

AUC =
1

𝑛+𝑛−

∑

𝑥+∈𝐷+,𝑥−∈𝐷−
𝐼(𝑓(𝑥+) ≥ 𝑓(𝑥−)), (5)

where, 𝐼(𝑥) = 1 is 𝑥 is true and 0 otherwise, 𝐷+, 𝐷− is
the positive and negative class, respectively, and 𝑓(𝑥) outputs
real values for predicting the positive class. AUC measures the
probability of a randomly drawn positive instance has higher
𝑓 value than a randomly drawn negative instance.

B. Multi-class Evaluation Measures

For multi-class imbalance, suppose there are 𝑘 classes and
they are ordered by increasing class size 𝑛1 ≤ ⋅ ⋅ ⋅ ≤ 𝑛𝑘,
and 𝑐𝑚𝑘×𝑘 is the confusion matrix with 𝑐𝑚(𝑖, 𝑗) indicates
the number of the examples of class 𝑖 predicted to class 𝑗. In
the studies on multi-class imbalanced data, several evaluation
measures are used, including the multi-class G-mean used in
[11], [14], [16], [17], [37], which is the generalization of G-
mean in Eq. (2), and average accuracy AvgAcc [26] used in
[15], which is the multi-class generalization of AvgAcc in Eq.
(3). They are defined as:

𝐴𝑐𝑐𝑖 =
𝑐𝑚(𝑖, 𝑖)

𝑛𝑖
,

G-mean = (Π𝑘𝑖=1𝐴𝑐𝑐𝑖)
1
𝑘 , (6)

AvgAcc =
1

𝑘

𝑘∑

𝑖=1

𝐴𝑐𝑐𝑖, (7)

1683

TABLE I. CONFUSION MATRIX OF BINARY-CLASS CASE (THE MINORITY CLASS IS THE POSITIVE CLASS).

Predicted Positive Class Predicted Negative Class
Actual Positive Class TP (True Positives) FN (False Negatives)
Actual Negative Class FP (False Positives) TN (True Negatives)

TABLE II. EXAMPLE OF COMPARING DIFFERENT EVALUATION MEASURES (BOLD FACE INDICATES THE PERFORMANCE IS BETTER THAN OR EQUAL TO

THE PERFORMANCE OF 𝑐𝑚0).

𝑐𝑚0 𝑐𝑚1 𝑐𝑚2 𝑐𝑚3 𝑐𝑚4 𝑐𝑚5 𝑐𝑚6 𝑐𝑚7[
3 7
10 90

] [
6 4
80 20

] [
6 4
55 45

] [
6 4
40 60

] [
6 4
30 70

] [
6 4
20 80

] [
6 4
13 87

] [
6 4
10 90

]

Acc1 0.3 0.6 0.6 0.6 0.6 0.6 0.6 0.6
Acc2 0.9 0.2 0.45 0.6 0.7 0.8 0.87 0.9
G-mean 0.52 0.35 0.52 0.60 0.65 0.69 0.72 0.73
AvgAcc 0.60 0.40 0.53 0.60 0.65 0.70 0.74 0.75
𝐹1(F) 0.26 0.13 0.17 0.21 0.26 0.33 0.41 0.46
𝐹2 0.91 0.32 0.60 0.73 0.80 0.87 0.91 0.93
MFM 0.59 0.22 0.39 0.47 0.53 0.60 0.66 0.69
Acc 0.85 0.24 0.46 0.60 0.69 0.78 0.85 0.87

where, 𝐴𝑐𝑐𝑖 is the accuracy of class 𝑖. Mean F-measure (MFM)
[28] used in [11], [17], which is defined as:

𝑅𝑖 = 𝐴𝑐𝑐𝑖 =
𝑐𝑚(𝑖, 𝑖)

𝑛𝑖
,

𝑃𝑖 =
𝑐𝑚(𝑖, 𝑖)

∑𝑘
𝑗=1 𝑐𝑚(𝑗, 𝑖)

,

𝐹𝑖 =
2𝑃𝑖𝑅𝑖
𝑃𝑖 +𝑅𝑖

,

MFM =
1

𝑘

𝑘∑

𝑖=1

𝐹𝑖, (8)

and multi-class AUC (MAUC) [27] used in [14], [16], [17],
which is defined as:

𝐴(𝑖, 𝑗) = (𝐴(𝑖∣𝑗) +𝐴(𝑗∣𝑖))/2,
MAUC =

2

𝑘(𝑘 − 1)

∑

𝑖<𝑗

𝐴(𝑖, 𝑗), (9)

where, 𝐴(𝑖∣𝑗) is the probability that a randomly drawn member
of class 𝑖 will have a lower estimated probability of belonging
to class 𝑗 than a randomly drawn member of class 𝑗. It should
be noted that 𝐴(𝑖∣𝑗) ∕= 𝐴(𝑗∣𝑖).

It is easy to see that, when 𝑘 = 2, multi-class G-mean
and AvgAcc are identical to their definitions in the binary-
class case. And when 𝑘 = 2, 𝐴(𝑖∣𝑗) = 𝐴(𝑗∣𝑖) since 𝑝(𝑦 =
2∣𝑥) = 1− 𝑝(𝑦 = 1∣𝑥), where 𝑝(𝑦 = 𝑖∣𝑥) is the probability of
instance 𝑥 belonging to class 𝑖. So MAUC is also identical to
its definition in the binary-class case.

The only exception is MFM. When 𝑘 = 2,𝑀𝐹𝑀 =
1
2 (𝐹1+𝐹2), where 𝐹1 is identical to the definition of F-measure
of the binary-class case in Eq. (4), where the minority class is
the positive class, and 𝐹2 is the F-measure treating the majority
class as the positive class. Thus, 𝐹1 favors the minority class
while 𝐹2 favors the majority class. When the change of 𝐹2
dominates, or the changes of 𝐹1 and 𝐹2 are similar, the MFM
value as the average of 𝐹1 and 𝐹2 will be misleading. For
multi-class imbalanced data, MFM can be unsuitable when
there are “multi-majority” classes [14], for example, a data set
with class sizes {10, 1000, 1000}.

Table. II shows an example of comparing different eval-
uation measures. The minority class has 10 examples and
the majority class has 100 examples. To correctly classify
3 more minority class examples, different methods sacrifice
different numbers of majority class examples. G-mean favors
the minority class most, followed by AvgAcc, then by F-
measure, i.e., the 𝐹1 value of MFM. MFM favors the minority
class least, it is more close to accuracy than to F-measure.
From this example we can see that, methods having higher G-
mean and AvgAcc values can have quite lower MFM values.
It should be cautious to use MFM as evaluation measure for
multi-class imbalance learning methods, especially when there
are “multi-majority” classes.

V. EXPERIMENTS

In the experiments, we compare the proposed ChunkCom-
bine (abbr. as CC) method with 7 Boosting-based methods:
(1) Ada: standard multi-class AdaBoost using AdaBoost.M
algorithm. (2) OAda: over-sampling the minority classes to
obtain balanced training set, then perform AdaBoost.M. (3)
SMAda: over-sampling the minority classes using SMOTE to
obtain balanced training set, then perform AdaBoost.M. (4)
SMB: SMOTEBoosting [33]. (5) OVNC9 [14]: over-sampling
+ AdaBoosting.NC [14], with 𝜆 = 9. AdaBoosting.NC [42]
is a multi-class AdaBoost method utilizing negative corre-
lations. (6) UAda: under-sampling the majority classes to
obtain balanced training set, then perform AdaBoost.M. (7)
EE: EasyEnsemble.M [37], the number of AdaBoost classi-
fiers is 4. All AdaBoost uses CART [43] as base learning
method, and we assume it outputs discrete values. The iteration
numbers of all AdaBoost classifiers are 40. Both SMOTE
procedures in SMAda and SMB use 𝑘 = 5. The number
of data chunks of ChunkCombine is computed as follows:
for 𝐷𝑖, if 𝑛𝑖/𝑛1 = 1, then 𝑚𝑖 = 1, and if 𝑛𝑖/𝑛1 > 1,
𝑚𝑖 = [log2⌊𝑛𝑖/𝑛1⌋ × 10/ log2 100]. We use the original
implementations for OVNC9 and EE.

Eight UCI data sets are used with information shown in
Table V. 10 times random splitting is performed with 50%
and 50% as the training and test set, respectively. The normal
splitting setting for the experiments of standard classification
problems is 70% and 30% data as the training and test
set, respectively. But for class-imbalance problems, especially

1684

TABLE III. THE RESULTS OF AVGACC, G-MEAN AND AUC, WHERE BOLD FACE INDICATES THE BEST METHOD. THE AVERAGE RANKS ARE ALSO

RECORDED. PAIRWISE TWO-TAILED 𝑡-TESTS AND SIGN TESTS BOTH WITH SIGNIFICANCE LEVEL .95 ARE PERFORMED. THE ROW OF “W-T-L” SHOWS THE

WIN-TIE-LOSE COUNTS OF CHUNKCOMBINE VS. EACH METHOD IN COLUMN. THE SIGNIFICANT RESULTS ARE IN BOLD FACE.

AvgAcc Ada OAda SMAda SMB OVNC9 UAda EE CC
abalone .609 ± .034 .619 ± .030 .648 ± .061 .617 ± .040 .579 ± .049 .616 ± .036 .640 ± .065 .631 ± .055
balance .580 ± .030 .553 ± .020 .572 ± .016 .599 ± .012 .547 ± .029 .569 ± .017 .599 ± .031 .609 ± .027

glass .665 ± .070 .670 ± .054 .700 ± .035 .670 ± .077 .609 ± .065 .671 ± .063 .674 ± .042 .700 ± .044
Ecoli .810 ± .035 .814 ± .027 .809 ± .020 .813 ± .028 .716 ± .051 .808 ± .035 .818 ± .025 .828 ± .025

segment .993 ± .009 .996 ± .003 .996 ± .004 .730 ± .341 .995 ± .004 .994 ± .005 .992 ± .008 .992 ± .006
yeast .713 ± .015 .715 ± .026 .719 ± .024 .712 ± .028 .699 ± .022 .715 ± .018 .727 ± .035 .737 ± .030

satimage1 .742 ± .017 .735 ± .020 .766 ± .028 .744 ± .035 .725 ± .054 .739 ± .017 .767 ± .027 .776 ± .027
satimage .888 ± .005 .886 ± .006 .889 ± .007 .880 ± .007 .808 ± .007 .885 ± .005 .895 ± .006 .899 ± .006
avg.rank 5.38 4.50 2.88 5.25 7.38 5.38 2.63 1.88

w-t-l 5-3-0 3-4-1 4-3-1 4-4-0 7-1-0 4-4-0 2-6-0

G-mean Ada OAda SMAda SMB OVNC9 UAda EE CC
abalone .211 ± .274 .259 ± .275 .490 ± .199 .298 ± .259 .208 ± .272 .261 ± .279 .606 ± .087 .631 ± .079
balance .191 ± .208 .180 ± .158 .063 ± .133 .033 ± .103 .436 ± .066 .131 ± .171 .596 ± .032 .571 ± .028

glass .426 ± .305 .427 ± .304 .632 ± .072 .517 ± .282 .557 ± .079 .484 ± .269 .633 ± .046 .653 ± .045
Ecoli .800 ± .039 .804 ± .033 .799 ± .023 .801 ± .033 .696 ± .060 .799 ± .039 .810 ± .026 .812 ± .028

segment .993 ± .010 .996 ± .003 .996 ± .004 .597 ± .513 .995 ± .004 .994 ± .005 .992 ± .008 .993 ± .006
yeast .548 ± .069 .507 ± .193 .633 ± .064 .495 ± .187 .574 ± .060 .548 ± .072 .706 ± .040 .701 ± .036

satimage1 .473 ± .252 .287 ± .304 .672 ± .062 .441 ± .311 .598 ± .226 .406 ± .283 .754 ± .037 .771 ± .034
satimage .878 ± .007 .879 ± .006 .881 ± .008 .864 ± .008 .799 ± .009 .875 ± .007 .891 ± .006 .895 ± .006
avg.rank 5.50 5.13 3.63 6.25 5.25 5.63 2.38 1.75

w-t-l 6-2-0 6-1-1 6-1-1 6-2-0 7-1-0 5-3-0 1-7-0

MAUC Ada OAda SMAda SMB OVNC9 UAda EE CC
abalone .829 ± .033 .829 ± .028 .821 ± .041 .819 ± .035 .693 ± .041 .835 ± .029 .808 ± .040 .819 ± .293
balance .767 ± .020 .746 ± .019 .753 ± .018 .770 ± .019 .720 ± .028 .752 ± .017 .772 ± .020 .780 ± .012

glass .925 ± .016 .924 ± .015 .938 ± .011 .930 ± .013 .765 ± .039 .925 ± .016 .906 ± .012 .921 ± .009
Ecoli .959 ± .008 .957 ± .008 .957 ± .012 .953 ± .012 .823 ± .032 .957 ± .010 .960 ± .010 .963 ± .010

segment .995 ± .007 .997 ± .002 .997 ± .003 .798 ± .257 .997 ± .003 .997 ± .002 .998 ± .002 1.000 ± .000
yeast .893 ± .018 .894 ± .020 .892 ± .012 .892 ± .014 .799 ± .015 .896 ± .015 .895 ± .014 .898 ± .013

satimage1 .945 ± .010 0.947 ± .015 .953 ± .011 .953 ± .011 .828 ± .034 .942 ± .019 .948 ± .009 .955 ± .007
satimage .987 ± .000 .987 ± .000 .988 ± .000 .987 ± .001 .885 ± .004 .987 ± .001 .988 ± .000 .989 ± .000
avg.rank 4.25 4.25 3.38 4.63 7.38 3.75 3.63 2.13

w-t-l 5-3-0 4-4-0 4-3-1 3-4-1 8-0-0 5-2-1 4-4-0

TABLE IV. THE RESULTS OF AVERAGE RANKS WHERE THE BEST METHODS ARE IN BOLD FACE. AND THE RESULTS OF 𝑡-TESTS AND SIGN TESTS. THE

TABULAR SHOW THE WIN-TIE-LOSE COUNTS OF CHUNKCOMBINE VS. EACH METHOD IN COLUMN, WHERE THE SIGNIFICANT RESULTS ARE IN BOLD FACE.

avg.rank Ada OAda SMAda SMB OVNC9 UAda EE CC
AvgAcc 5.38 4.50 2.88 5.25 7.38 5.38 2.63 1.88
G-mean 5.50 5.13 3.63 6.25 5.25 5.63 2.38 1.75
MAUC 4.25 4.25 3.38 4.63 7.38 3.75 3.63 2.13

avg. 5.04 4.63 3.30 5.38 6.67 4.92 2.88 1.92
w-t-l Ada OAda SMAda SMB OVNC9 UAda EE

AvgAcc 5-3-0 3-4-1 4-3-1 4-4-0 7-1-0 4-4-0 2-6-0
G-mean 6-2-0 6-1-1 6-1-1 6-2-0 7-1-0 5-3-0 1-7-0
MAUC 5-3-0 4-4-0 4-3-1 3-4-1 8-0-0 5-2-1 4-4-0

total 16-8-0 13-9-2 14-7-3 13-10-1 22-2-0 14-9-1 7-17-0

when there are very few examples in the minority classes,
such a splitting will result in too few minority class examples
in the test set to obtain reliable estimation of a classifier’s
performance. In other words, the variance of the results of
different runs will be very large. For example, the glass data
set has just 9 examples in the smallest class, when using
70%-30% splitting, there are only 2 or 3 examples in the test
set. Since about half of the data sets have “multi-majority”
classes, such as abalone, balance, segment, yeast, we do not
use MFM as evaluation measure. We record G-mean, AvgAcc
and MAUC results in Table. III. The average ranks are also
recorded. Pairwise two-tailed 𝑡-tests and sign tests both with
significance level .95 are performed. The significant results
are in bold face. The overall results of average ranks and the
overall results of statistical tests are shown in Table. IV.

From the tables we can see that, no matter what evaluation
measure is used, our proposed method CC (ChunkCombine)

TABLE V. DATA SET INFORMATION, WHERE 𝑘 IS THE NUMBER OF

CLASSES, THE COLUMN 𝑛𝑖 INDICATES EACH CLASS SIZE, IN THE COLUMN

OF “ATT.”, “N” AND “C” INDICATES NOMINAL AND CONTINUOUS

ATTRIBUTE, RESPECTIVELY.

𝑘 𝑛𝑖 att. imbalance rates
abalone 3 14/126/391 1N7C 1:9:27.9
balance 3 49/288/288 4N 1:5.87:5.87
glass 6 9/13/17/29/70/76 9C 1:1.4:1.9:3.2:7.8:8.4
ecoli 5 20/35/52/77/143 7C 1:1.75:2.6:3.85:7.15
segment 3 20/165/330 19C 1:8.25:16.5
yeast 4 30/44/163/429 8C 1:1.46:5.4:14.3
satimage1 5 25/50/100/200/400 36C 1:2:4:8:16
satimage 6 626/703/707/ 36C 1:1.12:1.13:

1358/1508/1533 2.17:2.41:2.45

is always the best method since it has the lowest ranks on
AvgAcc, G-mean and MAUC. Though CC is not necessarily
significant better than any of the compared methods when a
single evaluation measure is used, its performance on different

1685

evaluation measures are very stable, such that statistical tests
considering all the results of AvgAcc, G-mean and MAUC
show that CC is significantly better than all the compared
methods. We have discussed the properties of different eval-
uation measures in Section IV. Different measures favor the
minority class with different degrees, and the methods having
higher values of measure A can have lower values of measure
B. For example, EE ranks lower than SMAda on AvgAcc and
G-mean, but it ranks higher on MAUC. And almost all the
other methods except CC have similar phenomenons.

EE is the second best method and it is also quite stable
when different measures are used. The priority of CC over
EE lies in that it explores more majority class information.
The third best method is SMAda, then followed by OAda and
UAda. All of them are better than Ada (standard AdaBoost).
Both of the former methods are over-sampling methods. Since
they use much more majority class examples than under-
sampling, it is not surprise that they are better than UAda. But
obviously, they are very time-consuming than UAda. However,
the performances of UAda and OAda are very close. SMAda is
better than OAda. This is because it can relieve the over-fitting
problem of random over-sampling.

UAda’s performance is also very close to Ada. This is
because it ignores too much information contained in the
majority classes. It is surprise that SMB is slightly worse than
Ada. The reason maybe that it uses AdaBoost.M2 in which
the base learner is required to output real values. While in
AdaBoost.M the base learner is required to output discrete
values. We have discussed before that when many majority
class examples are ignored, even the AdaBoost classifier could
be unstable.

OVNC9 is the worst method in general and CC is always
significantly better than it. OVNC9 is similar to OAda, but it is
always much worse than OAda. The difference mainly lies in
that OVNC9 uses AdaBoost.NC and OAda uses AdaBoost.M
to train multi-class AdaBoost.

It should be noted that, the results also show that AvgAcc,
G-mean, and MAUC are appropriate evaluation measures for
multi-class imbalance learning. In fact, we also use MFM as
measure and the results show that Ada is the best method1. The
results contradict the results of AvgAcc, G-mean and MAUC,
which strongly suggests that MFM is unsuitable for multi-class
imbalance learning in many cases.

We also recode the running time of each method in Table
VI. The CPU is Intel Core2, 2.99GHz, and the memory is
2G. We can see that CC is the most time consuming one,
followed by EE. The time complexity of CC is especially
large when there are many classes, or the imbalance rate
is large, this is one shortcoming of this method. SMB has
larger time complexity than Ada, OAda, SMAda and UAda
because it generates synthetic examples using SMOTE is each
iteration of AdaBoost, which requires the calculation of nearest
neighbours. Ada, OAda, SMAda and UAda have similar time
complexity. OVNC9 has the least time complexity because
it uses AdaBoost.NC instead of AdaBoost in the learning
process.

1Due to page limit, we will show the results of MFM in a longer version
later.

TABLE VI. RUNNING TIME

(seconds) Ada OAda SMAda SMB OVNC9 UAda EE CC
abalone 11.9 12.4 13.2 32.7 1.0 11.8 44.8 364.3
balance 14.5 14.8 14.9 22.0 2.1 14.7 52.9 120.2

glass 4.9 5.1 5.2 12.7 0.7 5.0 17.9 145.5
ecoli 7.3 7.6 7.7 19.2 0.9 7.3 27.4 111.8

segment 0.7 0.3 0.3 1.0 0.8 0.3 1.3 12.1
yeast 14.9 15.9 16.5 40.0 1.5 15.0 55.3 253.1

satimage1 18.1 20.2 20.8 47.9 2.3 18.2 65.0 792.2
satimage 172.4 176.2 181.3 434.1 23.8 172.5 622.0 1272.0

avg. 30.6 31.6 32.5 76.2 4.1 30.6 110.8 383.9

VI. CONCLUSIONS

When under-sampling is used for multi-class imbalanced
data, many majority class examples are ignored because there
are often multiple majority classes, and the minority class often
has few data. To utilize the information contained in the ma-
jority class examples ignored by under-sampling, we proposes
a method ChunkCombine. For each majority class, it performs
under-sampling multiple times to obtained non-overlapping
data chunks, such that they contain the most information that a
data sample of the same size can contain. Each data chunk has
the same size as the minority class to achieve balance. Then
every possible combination of the minority class and each data
chunk from every majority class forms a balanced training set.
ChunkCombine learns a set of multi-class AdaBoost classifiers
from the different training sets derived from all the possible
combinations. Finally, all the weak learners are combined
by hard voting. Experimental results show ChunkCombine
is better than many other popular methods for multi-class
imbalanced data when average accuracy, G-mean and MAUC
are used as evaluation measures.

Besides, we discuss different evaluation measures and
suggest that, a multi-class F-measure Mean F-Measure (MFM)
is unsuitable for multi-class imbalanced learning in many
situations because it is not consistent with the standard F-
measure in binary-class case and it is close to accuracy.

Efficiency is an important issue for multi-class classi-
fication, it is interesting to find ways to further improve
ChunkCombine by avoiding learning from all possible combi-
nations of the data chunks of every majority class. Reducing
the efforts of learning the well separated classes maybe a good
start.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments. This work was supported by
NSFC (61105046), SRFDP (Specialized Research Fund for
the Doctoral Program of Higher Education, by Ministry of
Education, 20110092120029), and Open Foundation of Na-
tional Key Laboratory for Novel Software Technology of China
(KFKT2011B01).

REFERENCES

[1] A. P. Bradley, “The use of the area under the ROC curve in the eval-
uation of machine learning algorithms,” Pattern Recognition, vol. 30,
no. 6, pp. 1145–1159, 1997.

[2] Q. Yang and X. Wu, “10 challenging problems in data mining research,”
International Journal of Information Technology and Decision Making,
vol. 5, no. 4, pp. 597–604, 2006.

1686

[3] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” Journal of
Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[4] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan, “AdaCost: Misclassifi-
cation cost-sensitive boosting,” in Proceedings of the 16th International
Confernece on Machine Learning, Bled, Slovenia, 1999, pp. 97–105.

[5] H. He and E. Garcia, “Learning from imbalanced data,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263–
1284, 2009.

[6] N. Japkowicz and S. Stephen, “The class imbalance problem: A
systematic study,” Intelligent Data Analysis, vol. 6, no. 5, pp. 429–449,
2002.

[7] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for
class-imbalance learning.” IEEE Transactions on Systems, Man, and
Cybernetics, Part B, vol. 39, no. 2, pp. 539–550, 2009.

[8] M. Kubat and S. Matwin, “Addressing the curse of imbalanced training
sets: One-sided selection,” in Proceedings of the 14th International
Conference on Machine Learning, Nashville, TN, 1997, pp. 179–186.

[9] G. M. Weiss, “Mining with rarity: A unifying framework,” ACM
SIGKDD Explorations, vol. 6, no. 1, pp. 7–19, 2004.

[10] A. C. Tan, D. Gilbert, and Y. Deville, “Multi-class protein fold clas-
sification using a new ensemble machine learning approach,” in Pro-
ceedings of the 14th International Conference on Genome Informatics,
Yokohama, Japan, 2003, pp. 206–217.

[11] Y. Sun, M. S. Kamel, and Y. Wang, “Boosting for learning multiple
classes with imbalanced class distribution,” in Proceedings of the 6th
International Conference on Data Mining, 2006, pp. 592–602.

[12] Y. L. Murphey, H. Wang, G. Ou, and L. A. Feldkamp, “Oaho: an
effective algorithm for multi-class learning from imbalanced data,”
in Proceeding of the 2007 International Joint Conference onNeural
Networks. IEEE, 2007, pp. 406–411.

[13] T. R. Hoens, Q. Qian, N. Chawla, and Z.-H. Zhou, “Building decision
trees for the multi-class imbalance problem,” in Proceedings of the 16th
Pacific-Asia Conference on Knowledge Discovery and Data Mining,
2012.

[14] S. Wang and X. Yao, “Multiclass imbalance problems: Analysis and
potential solutions,” IEEE Transactions on Systems, Man, and Cyber-
netics, Part B – Cybernetics, vol. 42, no. 4, pp. 1119–1130, 2012.

[15] A. Fernández, V. López, M. Galar, M. José del Jesus, and F. Herrera,
“Analysing the classification of imbalanced data-sets with multiple
classes: Binarization techniques and ad-hoc approaches,” Knowledge-
Based Systems, 2013.

[16] M. Lin, K. Tang, and X. Yao, “Dynamic sampling approach to training
neural networks for multiclass imbalance classification,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 24, no. 4, pp.
647–660, 2013.

[17] X.-Y. Liu and Z.-H. Zhou, “Learning multi-class imbalanced data with
optimal dichotomy weights,” in Proceedings of the 13th International
Conference on Data Mining, 2013.

[18] P. Cao, D. Zhao, and O. Zaiane, “Measure optimized wrapper frame-
work for multi-class imbalanced data learning: an empirical study,”
in Proceedings of the 2014 International Joint Conference on Neural
Networks (IJCNN’14), 2013.

[19] M. Kearns and L. G. Valiant, “Cryptographic limitations on learning
boolean formulae and finite automata,” in Proceedings of the 21st
Annual ACM Symposium on Theory of Computing, Seattle, WA, 1989,
pp. 433–444.

[20] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms. Boca
Raton, FL: Chapman & Hall/CRC, 2012.

[21] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the
bias/variance dilemma,” Neural Computation, vol. 4, no. 1, pp. 1–58,
1992.

[22] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of Computer
and System Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[23] E. Bauer and R. Kohavi, “An empirical comparison of voting classifi-
cation algorithms: Bagging, boosting, and variants,” Machine Learning,
vol. 36, no. 1-2, pp. 105–139, 1999.

[24] Z.-H. Zhou, J. Wu, and W. Tang, “Ensembling neural networks: Many
could be better than all,” Artificial Intelligence, vol. 137, no. 1-2, pp.
239–263, 2002.

[25] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2,
pp. 123–140, 1996.

[26] C. Ferri, J. Hernndez-Orallo, and R. Modroiu, “An experimental com-
parison of performance measures for classification,” Pattern Recogna-
tion Letters, vol. 30, pp. 27–38, 2009.

[27] D. J. Hand and R. J. Till, “A simple generalisation of the area under the
roc curve for multiple class classification problems,” Machine Learning,
vol. 45, no. 2, pp. 171–186, 2001.

[28] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison Wesley, 1999.

[29] Z.-H. Zhou and X.-Y. Liu, “Training cost-sensitive neural networks with
methods addressing the class imbalance problem,” IEEE Transactions
on Knowledge and Data Engineering, vol. 18, no. 1, pp. 63–77, 2006.

[30] ——, “On multi-class cost-sensitive learning,” Computational Intelli-
gence, vol. 26, no. 3, pp. 232–257, 2010.

[31] D. Tax, “One-class classification: Concept-learning in the absence of
counter-examples,” Ph.D. dissertation, Technical University of Delft,
2001.

[32] P. K. Chan and S. J. Stolfo, “Toward scalable learning with non-uniform
class and cost distributions: A case study in credit card fraud detection,”
in Proceedings of the 4th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY, 1998, pp. 164–
168.

[33] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “SMOTE-
Boost: Improving prediction of the minority class in boosting,” in
Proceedings of the 7th European Conference on Principles and Practice
of Knowledge Discovery in Databases, Cavtat-Dubrovnik, Croatia,
2003, pp. 107–119.

[34] C. Seiffert, T. Khoshgoftaar, J. V. Hulse, and A. Napolitano, “RUS-
Boost: A hybrid approach to alleviating class imbalance,” IEEE Trans-
actions on Systems, Man, and Cybernetics - Part A: Systems and
Humans, vol. 40, no. 1, pp. 185–197, 2010.

[35] P. Viola and M. Jones, “Fast and robust classification using asymmetric
AdaBoost and a detector cascade,” in Advances in Neural Information
Processing Systems 14, 2002, pp. 1311–1318.

[36] X.-Y. Liu and Z.-H. Zhou, Imbalanced Learning: Foundations, Algo-
rithms, and Applications. John Wiley & Sons, Inc., 2013, ch. Ensemble
methods for class imbalance learning, pp. 61–82.

[37] Q.-Q. Li and X.-Y. Liu, “Easyensemble.m for multiclass imbalance
problem,” Pattern Recognition and Artificial Intelligence, accepted.

[38] Y. Freund and R. Schapire, “A desicion-theoretic generalization of on-
line learning and an application to boosting,” in Proceedings of the
Computational learning theory, 1995, pp. 23–37.

[39] J. Wu, S. C. Brubaker, M. D. Mullin, and J. M. Rehg, “Fast asymmetric
learning for cascade face detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 30, pp. 369–382, 2008.

[40] G. I. Webb, “MultiBoosting: A technique for combining boosting and
wagging,” Machine Learning, vol. 40, pp. 159–196, 2000.

[41] Y. Yu, Z.-H. Zhou, and K. M. Ting., “Cocktail ensemble for regression,”
in Proceedings of the 7th IEEE International Conference on Data
Mining, Omeha, NE, 2007, pp. 721–726.

[42] S. Wang, H. Chen, and X. Yao, “Negative correlation learning for
classification ensembles,” in Proceedings of 2010 International Joint
Conference on Neural Networks, 2010, pp. 1–8.

[43] L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees. CRC Press, 1984.

1687

