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Abstract— Due to the intrinsic complexity of real-world
power distribution lines, which are highly non-linear and
time-varying systems, modeling and predicting a general fault
instance is a very challenging task. Power outages can be experi-
enced as a consequence of a multitude of causes, such as damage
of some physical components or grid overloads. Smart grids
are equipped with sensors that enable continuous monitoring
of the grid status, hence allowing the realization of control
systems related to different optimization tasks, which can be
effectively faced by Computational Intelligence techniques. This
paper deals with the problem of faults modeling and recognition
in a real-world smart grid, located in the city of Rome, Italy.
It is proposed a suitable classication system able to recognize
faults on medium voltage feeders. Due to the nature of the
available data, the one-class classication framework is adopted.
Experiments are presented and discussed considering a three-
year period of measurements of fault events gathered by ACEA
Distribuzione S.p.A., the company that manages the smart grid
system under analysis. Results demonstrate the effectiveness
and validity of our approach.

I. INTRODUCTION

THERE are many definitions for a Smart Grid (SG). The
SG European Technology Platform defines a SG as an

“electricity network that can intelligently integrate the actions
of all the connected users – generators, consumers and
those that do both, in order to efficiently deliver sustainable
economic and secure electricity supply” [1]. A SG employs
innovative products and services together with intelligent
monitoring, control, communication, and self-healing tech-
nologies in order to:
• better facilitate the connection and operation of gener-

ators of all sizes and technologies;
• allow consumers to play an active part in optimizing the

operation of the system;
• significantly reduce the environmental impact of the

whole electricity supply system;
• preserve or improve the level of system reliability,

quality, and security;
• efficiently maintain and improve the existing services.
SGs can be considered as an “evolution” rather than

a “revolution” of the existing energy networks [2]. The
evolution is leaded by the symbiotic exchange between power
grid technologies and the Information and Communication
Technologies (ICT). ICT provide instruments, such as Smart
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Sensors (SS) to monitor the network status, wired and
wireless communication network to collect and transport
data, and powerful computational architectures to define
control actions. A SG can be framed, both in the applicative
context and in a theoretical framework, as a complex non-
linear and time-varying system [3], [4], where heterogeneous
elements, including environmental factors, are extremely
interconnected through the exchange of both energy and
information.

Computational Intelligence (CI) techniques offer a solid
framework for “injecting intelligence” into the power net-
work [5], providing to the system the capability of monitor-
ing, decision making, and adaptation. Well-known CI tech-
niques adopted in the SG context include approximate dy-
namic programming [6], neural networks and fuzzy inference
systems for prediction and control [7], swarm intelligence
and evolutionary computation for optimization [8], [9].

An important key issue in SGs is the Decision Support
System (DSS), which is an expert system that provides deci-
sion support for the commanding and dispatching system of
the power grid. It is usually meant for providing forecasting,
early warnings on malfunctions, and also for autonomous
decisions. Such a system analyzes the risk for damage
of crucial equipments, assesses the power grid security,
forecasts and provides warnings about the magnitude and
location of possible faults, and timely broadcasts the early-
warning signals through suitable communication networks
[4]. The information provided by the DSS can be used
for Condition Based Maintenance (CBM) in the power grid
[10]. CBM is defined as “a philosophy that posits repair or
replacement decisions on the current or future condition of
assets”. The objective of CBM is thus to minimize the total
cost of inspection and repair by collecting and interpreting
(heterogeneous) data related to the operating condition of
critical components.

Collecting heterogeneous measurements is of paramount
importance. As an instance, the available measurements can
be used for dealing with various important pattern recog-
nition and data mining problems on SGs, such as event
classification [11]. On the basis of the specific data type,
different problem types could be formulated. In [12] au-
thors have established a relationship between environmental
features and fault causes. A fault cause classifier based on
the linear discriminant analysis (LDA) is propose in [13].
Information regarding weather conditions, longitude-latitude
information, and measurements of physical quantities (e.g.,
currents and voltages) related to the power grid have been
taken into account. In [14], the authors proposed a system
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based on LDA, which processes Phasor Measurement Unit
data, with the aim of recognizing and locating faults on
power lines. As concerns fault diagnosis in power grids, in
[15] is proposed a Support Vector Machine (SVM) based
method to perform the recognition of faults related to high-
voltage transmission lines. The One-Class Quarter-Sphere
SVM algorithm is proposed for faults classification in the
power grid [16]. The reported experimental evaluation is,
however, performed on synthetically generated data only. In
[17] is proposed a genetic algorithm for the optimization
of a neurofuzzy system used to predict faults in cables and
accessories.

This paper presents a study on the problem of modeling
and recognizing fault instances in the real-world SG system
of ACEA. The considered SG feeds the entire city of
Rome, Italy. The problem is faced by a combined approach
involving dissimilarity measures and the so-called one-class
classification paradigm [18]. In Sec. II it is described the
considered SG system and related data. Sec. III provides the
details of the designed recognition system. Results of tests
are shown in Sec. IV, and finally in Sec. V conclusions are
drawn.

II. THE CONSIDERED SMART GRID SYSTEM

The ACEA power grid is the electrical distribution grid of
Rome, the capital city of Italy. It is constituted of backbones
of uniform section exerting radially with the possibility of
counter-supply if a branch is out of order. Each backbone of
the power grid is supplied by two distinct Primary Stations
(PS) and each half-line is protected against faults through
the breakers. Along each line, there is a breaking point
whose position is chosen with respect to the preassigned
constraint of the electric current that flows in each half-
line. The Medium Voltage (MV) power grid consists in lines
(MV feeders) in which the nominal voltage is 20 kV, with
the presence of few “legacy” lines that still work at 8.4 kV.
The MV part of the network covers 10,490 km, while the
Low Voltage (LV) section covers 11,120 km. Cables can be
on air or underground and their sections can vary along the
backbone with the presence of bottlenecks. The MV section
has 1,565 lines in service and it is supplied with 76 PSs,
while LV section is supplied with 13.292 Secondary Stations
(SS).

This study deals with the problem of modeling and recog-
nizing a particular type of MV grid fault, which is commonly
termed as Localized Fault (LF) [19]. Before providing a
precise definition of a LF, it is important to discriminate,
according to the CEI 5160 normative [20], among outages
and faults. An outage (i.e., an interruption of the service) is
the condition in which the voltage on the access point to the
electrical energy of a user is less than 5% of the declared
voltage on all phases of supply [19]. Three types of outage
are considered according to their duration:
• long, if the duration is more than three minutes (long

outages);
• short, if the duration is more than one second and less

than three minutes (short outages);

• transient, if the duration does not exceed one second
(transient outages).

A fault instead is related to the failure of the electrical
insulation (e.g., cables insulation) that compromises the
correct functioning of (part of) the grid. Therefore, a LF
is effectively a fault in which a physical element of the grid
is permanently damaged causing long outages.

III. THE PROPOSED ONE-CLASS CLASSIFICATION
SYSTEM FOR SMART GRID FAULT DETECTION

A. Representation of Fault Patterns

Instances of Fault Patterns (FP) describing LFs occurred in
the SG have been elaborated from a historical database pro-
vided by ACEA. The considered period spans across 2009–
2012. Faults on MV feeders are characterized by hetero-
geneous data, including weather conditions, spatio-temporal
data (i.e., longitude-latitude pairs and time), physical data
related to the state of power grid and its electric equip-
ments (e.g., measured currents and voltages), and finally
meteorological data. As a consequence, a FP is effectively
defined by features of various types, containing categorical
(nominal) data, quantitative data (i.e., data belonging to a
normed space), and also Time Series (TS) describing the
sequence of short outages occurred before a LF. A detailed
description of the considered features characterizing a FP is
provided in Tab. I.

B. Data Preprocessing

Data normalization is a well-known important aspect in
pattern analysis, which becomes even more crucial when
processing patterns characterized by many heterogeneous
features. Data have been normalized using the affine nor-
malization technique:

v =
c−m

(M −m)
∈ [0, 1]. (1)

where c is the original (non-normalized) value; m and M
are, respectively, the minimum and maximum values that the
considered feature can assume.

1) Temporal Data: The “Day start” and “Time Start”
features (Tab. I) have been encoded as integer values.
The former ranges in {0, 1, ..., 364}, and for the latter in
{0, 1, ..., 1439}, which corresponds to the number of minutes
in a year. Normalization of those data follows straightfor-
wardly.

2) Spatial Data: Three types of information regarding the
geographical position of a LF are available: the absolute
position of the PS feeding the element where the LF has
occurred, and the absolute position of the two SSs delimiting
the section of power line where the revealing system detected
the LF. The original coordinates of the geographical position
of the LF have been expressed in WGS84 (decimal degrees),
the same that it is used in the GPS geolocalization system.
Those three features (the PS and the two SS positions) have
been reduced to two features: (i) the distance between the
SS location (“Primary Station fault distance”) and (ii) the
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TABLE I: List of the considered features describing a FP instance.

Feature Data type and features space
label

Description

Day start Quantitative (Integer) FD Day in which the LF was detected
Time start Quantitative (Integer) FT Time stamp (minutes) in which the LF was

detected
Primary Station (PS) code Unique backbone identifier
Protection tripped Type of intervention of the protective device
Voltage line Categorical (String) FC Nominal voltage of the backbone
Location element Element positioning (aerial or underground)
Material Constituent material element (CU, AL)
Primary station fault distance Quantitative (Real) FQ

1 Distance between the primary station and the
geographical location of the LF

Median point Quantitative (Real) FQ
2 Fault location calculated as median point be-

tween two secondary stations
# Secondary Stations (SS) Quantitative (Integer) FQ

3 Number of out of service secondary stations
after the LF

Current out of bounds Quantitative (Integer) FQ
4 The maximum operating current of the back-

bone is less than or equal to 60% of the
threshold “out of bounds”, typically established
at 90% of capacity

Max. temperature Quantitative (Real) FQ
5 Maximum registered temperature

Min. temperature Quantitative (Real) FQ
6 Minimum registered temperature

Delta temperature Quantitative (Real) FQ
7 Difference between the maximum and mini-

mum temperature
Rain Quantitative (Real) FQ

8 Millimeters of rainfall in a period of 24 hours
preceding the LF

Cable section Quantitative (Real) FS Section of the cable, if applicable
Backbone Electric Current Quantitative (Real) FEC Extracted feature from Time Series of electric

current values that flows in a given backbone
of the considered power grid

Interruption (breaker) TS (Integer) FTS
1 Sequence of opening events of the breakers in

the primary station
Petersen alarms TS (Integer) FTS

2 Sequence of alarms detected by the device
called “Petersen’s coil” due to loss of electrical
insulation on the power line

Saving intervention TS (Integer) FTS
3 Sequences of decisive interventions of the Pe-

tersen’s coil which have prevented the LF

middle point among the two SSs (“Median point”); see Fig.
1.

The maximum spatial resolution of the geographical lo-
calization of the LF is therefore defined by the two SS posi-
tions. The preprocessing of original data has been operated
considering that the output power line from the PS has a
radial structure.

Fig. 1: Radial structure of the output power line from the
PS and distance calculation in order to reduce the number of
features.

The distance between two geographical locations is calcu-
lated through the Vincenty’s algorithm [21]. The normaliza-
tion process of the position data is based on the calculation
of the minimum size rectangle that includes all PSs and

SSs. Hence, applying the affine normalization (1), the spatial
positions of the LFs result normalized in [0, 1]. The affine
normalization is applied also for the distance values among
PSs and the positions of the LFs.

3) Physical Data: The data describing the physical power
grid is defined by both categorical and quantitative infor-
mation. As concerns categorical data (“Location element”),
the analyzed dataset has few missing values – less than
5%. However, the missing values of a feature have been
substituted with the most frequent category for that feature.
The normalization of quantitative data (i.e., “# Secondary
station”, “Current out of bounds”, and “Cable Section”) is
implemented by means of (1).

It is well known that a possible cause of faults in dis-
tribution systems affecting cables and joints is the abrupt
change in the current loads, more than the actual amount of
electrical power flowing in the devices. To define a feature
taking this effect into account, current measures sampled
every 10 minutes have been considered in a main window
of 24 hours before the LF occurrence. This time window is
divided in two non overlapping sub-windows, w1 and w2,
each of 12 hours. The feature ”Backbone Electric Current”
is finally computed as the absolute difference between the
average of current values in each sub-window. That values
are normalized with respect to the available minimum and
maximum values recorded in the considered backbone.
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4) Meteorological Data: The meteorological data are ac-
quired by suitable stations located in different areas of Rome.
The “Rain” feature is calculated as the average millimeters
of rain observed in the 24 hours antecedent the LF.

5) Short Outages Sequences (SOSs): Short Outages
Events are automatically registered by the protection sys-
tems as soon as they occur (asynchronous recording); as
a consequence, representing this information as an ordered
set of events in time gives rise to a sparse record (the time
series is not uniformly sampled). The considered TS events
are the Interruption (breaker), the Petersen Alarms, and the
Saving Intervention (see Tab. I) occurred in a time window
of three months before the LF. The short outages events are
represented as variable-length sequences, which contain the
temporal distances (expressed in seconds) from the LF event,
where it is positioned the reference time (see Fig. 2). A SOS
Si of K outage events is defined as follows:

Si =
[
ξi1, ξ

i
2, ..., ξ

i
Ki(n)

]
, (2)

where ξ is the temporal distance from the LF event con-
sidered as the origin, i ∈ {1, 2, 3} is an integer code
distinguishing the three aforementioned types of outages, and
Ki(n) is the number of events for the i-th type of outage (that
depends on the n-th pattern).

Fig. 2: Representation of SOSs of outages recorded before
the occurrence of a LF.

Normalization is computed in two steps: (i) the integer
values are first transformed in real values in the range
[0, 1] by means of (1) where M here is the maximum
length of the considered time window in seconds, (ii) let us
consider a given dissimilarity measure between SOSs (see
Sec. III-C.1.c). First the dissimilarity matrix D, i.e a matrix
containing the pairwise dissimilarity values between SOSs, is
computed considering all the short outages sequences avail-
able. Hence a dissimilarity measure between any given pair
of SOSs is normalized dividing its value by the maximum
entry in D.

C. The Proposed One-class Classifier

As a consequence of the difficulty of modeling useful
instances of non-faults in the considered SG, we designed
an OCC for the purpose of recognizing LFs only. Such
a goal is implemented by building a one-class classifier
relying on clustering techniques. The idea of using a cluster
for modeling a region of the idealized “fault space”, F ,
containing target patterns denoting LFs, is reasonable and
also intuitive. The underlying assumption is that similar

status of the SG have similar chances of generating a LF,
assumption that it is reflected by the cluster model.

Given a dataset of FPs, it is partitioned in k (disjoint)
clusters, where each cluster contains faults having similar
features. As a consequence, the most important component
of the OCC system is the core dissimilarity measure d :
F × F → R+, which assigns dissimilarity values to a pair
of FPs. The partition, as well as other parameters that will be
described in the following, constitute the model of the OCC.

A (one-class) classification problem instance is defined as
a triple of disjoint sets, namely training set (Str), validation
set (Svs), and test set (Sts), all containing FP instances.
Given a specific parameters setting, a classification model
instance is synthesized on Str and it is validated on Svs.
Finally, performance measures are computed on Sts. The
OCC system parameters defining the model are optimized
by means of a standard Genetic Algorithm (GA), which is
guided by a suitable performance measure that includes as
the most important factor the classification accuracy achieved
on Svs.

1) The Dissimilarity Measure Among FPs: A FP x ∈ S
is described as:

x = {F1,F2, ...,Fm} , (3)

where the l-th feature, Fl, 1 ≤ l ≤ m, lies in its specific
feature space Fl. Hence, each x lies on the m-fold product
feature space F = F1 ×F2 × ...×Fm.

Given two FPs x, y ∈ S ⊂ F , the general formulation of
the proposed weighted dissimilarity measure reads as:

d(x, y;W) = ‖x� y;W‖ =
√

(x� y)TWTW(x� y),
(4)

where T denote the transpose operator. The � operator
represents a generic dissimilarity measure among features.
In this paper, W is restricted to be a m × m diagonal
matrix, whose diagonal is used as a weight vector w =
(w1, w2, ..., wm) ∈ [0, 1]m. This results in the following
expression:

d(x, y;w) =

√√√√ m∑
j=1

(wj (xj � yj))2 =

√√√√ m∑
j=1

(wj × dj)2,

(5)
which corresponds to the weighted l2 norm of the vector of
dissimilarity values (dj = xj � yj).

The weights w are optimized during the training phase of
the OCC by means of a GA. The dissimilarity measure (5)
allows to compute the overall dissimilarity value between two
FPs by combining different dedicated dissimilarity measures
for each specific data type.

The following paragraphs describes how it is computed the
dissimilarity between two FP components according to their
type. The specific nature of the feature, Fi, will be specified
using the same notation of Tab. I.

a) Categorical Data: Categorical attributes, also re-
ferred to as nominal attributes, are attributes without a
semantically valid ordering (see Tab. I for the data treated
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as nominal). Let Fc = {η1, η2, ..., ηn} be the set of all the
categorical features of the entire data set, each described by d
categorical attributes: ν1, ν2, ..., νd. Let us define the domain
of the attribute νj , DOM(νj) =

{
Aj1 , Aj2 , ..., Ajn(j)

}
,

where Ajl (1 6 l 6 n(j)) is the set of possible values for
the categorical attribute νj , and n(j) its cardinality. Let us
consider the well-known simple matching distance, defined
as follows:

δ(x, y) =

{
0 x = y,
1 x 6= y.

(6)

Let xc and yc be the projections on the categorical feature
space Fc of two generic patterns x, y. The dissimilarity
measure between the two categorical objects described by
d categorical attributes is implemented as:

dc(xc, yc) =
1

d

d∑
j=1

δ(xcj , y
c
j). (7)

b) Quantitative Data: As concerns the quantitative data
(see Tab. I) we distinguish between (i) “Normal” quantitative
data and (ii) “Special” quantitative data. The former type
includes both numerical and integer values (normalized in
[0, 1]) and the generic difference operator � is implemented
by the absolute difference: dN = |x− y|.

As concerns integer values that rely to temporal informa-
tion, such as the day in which the LF happened and the time-
stamp within that day, it is defined a particular dissimilarity
measure implementing �, called circular difference. Given
an ordered set of integer numbers {0, 1, ..., a}, the circular
difference among any x, y in this set is defined as:

dCD(x, y; a) = min(|x− y| , a− |x− y|). (8)

For “Day start” and “Time start”, which are referred to
the FD and FT features subspaces, the maximum value for
a in (8) is 364 and 1439, respectively. The implementation
of the circular difference is designed to avoid that pairs of
close days or timestamps give raise to high values of the
dissimilarity function.

“Special” quantitative data are normalized in the range
[0, 1], but can assume also a special symbol ε, indicating the
“not applicable” condition. It is the case for the “Cable sec-
tion” feature, since for LFs not related to cables is undefined.
The dissimilarity measure dS : {[0, 1] ∪ ε} × {[0, 1] ∪ ε} →
[0, 1] is defined as follows. Given two special quantitative
values x, y ∈ FS , we have:

dS =

|x− y| (x 6= ε ∧ y 6= ε),
1 (x = ε ∨ y = ε),
0 (x = ε ∧ y = ε).

(9)

c) Time Series Data: Dynamic time warping (DTW) is
a well-known technique to find an optimal alignment between
two sequences of variable length. The use of the DTW as
dissimilarity measure for sequences of generic objects is
increased considerably in many applications, such as biology,
finance, multimedia, and image analysis [22], [23]. An in-
depth description of DTW can be found in [24].

Following the notation introduced in Sec. III-B.5, the data
set consists in three types of TSs, Si, (i = {1, 2, 3}). Each
one represents a vector belonging to the TSs feature vector
subspace, FTSi (i = 1, 2, 3), and thus we compute a DTW
dissimilarity measure between them, separately.

2) Model Definition and Testing of the Classifier: The
most important part of the OCC model is the partition P of
Str, which is obtained through a clustering algorithm – see
Fig. 3 for an overview.

Fig. 3: Model synthesis of the OCC performed by a cluster
analysis of the training set Str.

A hard partition of order k is a collection of k disjoint
and non-empty clusters, P = {C1, C2, ..., Ck}. Each cluster
Ci ∈ P is synthetically described by a representative ele-
ment, denoted as ci = R(Ci); accordingly, with R(P ) =
{c1, c2, ..., ck} it is denoted the set of representatives of the
partition P . The representative of a cluster C is computed in
two ways that will be compared. The first one relies on the
computation of the component-wise mean for the numerical
values and mode for categorical values [25], while the second
one relies on the MinSOD computation [26], that is, the
element ν ∈ C that minimizes the sum of distances:

ν = arg min
Fj∈C

|C|∑
i=1

d(Fj , Fi). (10)

A cluster representative ci can be considered as a prototype
of a typical fault scenario individuated in Str.

3) The Classifier Decision Rule: The information pro-
vided by the cluster Ci as a whole is useful to conceive a re-
gion of the pattern space “around” ci, which describes similar
fault scenarios. By defining δ(Ci) ≥ 0 as a measure of “clus-
ter extent”, it is constructed the decision region associated
to the cluster Cj , used to implement the classification rule.
The cluster extent can be computed as the average/maximum
intra-cluster dissimilarity values or by considering their stan-
dard deviation, for instance. However, in addition to δ(Ci) it
is considered also a tolerance parameter, σi ≥ 0, aiming
to extend the decision region. The decision region of the
cluster Ci is thus defined by the quantity B(Ci) = δ(Ci)+σi.
This choice is motivated by the difficulty of defining precise
decision regions in an OCC problem, due to the absence of
patterns describing meaningful non-target instances.

Fig. 4 provides a schematic overview of a cluster model
and its use in the process of classifying a test pattern x̄.
The classification rule for a test pattern x̄ operates in two
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stages. First, the nearest cluster representative c∗i ∈ R(P ) is
individuated according to the following expression:

c∗i = arg min
cj∈R(P )

d(x̄, cj). (11)

The second step consists in comparing the dissimilarity
value d(x̄, c∗i ) with B(Ci). To this end, it is defined a binary-
valued function f(·) that performs hard classification:

f(x) =

{
1 if d(x̄, c∗j ) ≤ B(Ci),
0 otherwise.

(12)

Fig. 4: Cluster decision region and its parameters.

4) Training of the Classifier: It is proposed a learning
strategy to synthesize the OCC model that is based on
the well-known k-means [27]. The number of clusters is
fixed a priori by setting an integer valued parameter, k. The
dissimilarity measure described in Sec. III-C.1 depends on a
vector of weights w; moreover, the cluster model (III-C.2)
is based on the thresholds σi. Setting those parameters is
of utmost importance, and of course it has a significative
influence on the results produced by k-means. Therefore,
such parameters pj = [wj , σj ] are optimized by means of a
cross-validation technique. The GA minimizes the following
objective function:

f(pj) = αER(Svs) + (1− α)
k∑
i=1

σi. (13)

In (13) ER(Svs) is the recognition rate on Svs (i.e., the
fraction of misclassified validation patterns). The GA is in
charge to find the parameters setting, pj , that minimizes the
l1 norm of the tolerances, while at the same time minimizing
the number of errors. Fig. 5 shows a diagram describing the
optimization stage.

As concerns the learning phase, it is well-known that the
k-means algorithm is sensible to the adopted cluster initial-
ization strategy; in particular, here it is used the randomized
initialization. As a consequence, the current version of the
OCC takes as external parameter the k value and a classifica-
tion model is synthesized for each k in a given user-defined
range kmin, kmax. For each k in this range, three models are
synthesized, considering different random initializations of
cluster’s representatives. The fitness associated to a candidate
solution, pj , is hence the average of the objective function
values (13) computed with respect to each model. In the test
phase, the models are used in “a majority” voting scheme to
reach a final decision (hard decision).

Fig. 5: Block diagram depicting the optimized classification
model synthesis.

It is worth pointing out that it has been conceived also a
soft decision scheme, which provides a way to give also a
measure of reliability of the classification. Such a perspective
is not exploited in this paper.

IV. EXPERIMENTAL EVALUATION

In this section are described the experiments performed on
synthetic and ACEA datasets (see Tab. II).

A. System Benchmarking on Synthetic Data

To first benchmark the OCC in a controlled setting, it
has been prepared a synthetic dataset characterized by five
numerical features. The experiments are conducted in two
stages. The first stage (“true test”) is based on training the
classifier on a dataset with three well-formed clusters, charac-
terized by a normal distribution of known mean and variance.
The test phase is performed with a dataset that presents
similar statistics. The second stage (“random sampling”) is
based on testing the model learned in the first stage on a
dataset that is generated by a uniform random sampling of the
whole domain space. The experiments highlight the intrinsic
difficulties in evaluating the system where the behavior of
power grid status is modeled only with positive instances
(i.e., faults), trying to estimate the classifier capability in
recognizing non-fault patterns, in order to minimize false
alarms.

In Fig. 6 is represented the situation (a) in which the
clustering model obtained with k = 3 reaches a suboptimal
solution, and (b) the comparison between the extent of the
learned decision regions and the “random sampling” distri-
bution tested in the second stage. Choosing the representative
in the middle, a cluster is split in two parts, while the other
decision region is forced to embed the other two clusters.
Consequently, the associated decision region is very large.
In this situation, (Mod. N°3) during the “random sampling”
test, about 15% of test patterns fall in the overall decision
region. Conversely, the other learned models have an optimal
partition (they do not split the clusters) achieving a low
classification rate: 0.4% for the Mod. N°2 and and 0.2%
for the Mod. N°1.

The majority voting scheme proves here its robustness:
the result of the final classification rate over the “random
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TABLE II: Description of the considered datasets and OCC setting.

#Str #Svs # Sts Representative initialization α Cluster extent
Benchmark dataset 300 300 300 random 0.5 mean radius

ACEA S.p.A. dataset 532 470 178 random 0.2 mean radius

(a) “true test” dataset. (b) “random sampling” dataset.

Fig. 6: Scatter plot of the partition computed on the synthetic
dataset (Mod. N°3) with k = 3 in the case of suboptimal
clustering (the representative cj is the mean for numerical
values).

sample” dataset is 0.4%, showing the capability of the system
in finding small and suitable decision regions.

Tab. III shows the performance comparison between two
variants of the OCC system, relying on different ways to
represent clusters (i.e., average–median and the MinSOD; see
III-C.2) As concerns the use of MinSOD as representative,
increasing the number of clusters (see Tab. III) the classifi-
cation rate on the “random sample” is stable and low as we
expect, and on the “true test” it denotes good performances.

B. Tests on the ACEA Data

As regards the tests performed on the ACEA dataset, we
set the α weight of fitness function to 0.2, giving more
importance to the minimization of the tolerances of the
decision regions compared to the recognition rate of true
LF. The cluster extent measure is computed as the average
dissimilarity among the patterns and the representative of
the cluster, while the threshold σ can be different for each
cluster. The search range for the k parameter is kmin = 2,
kmax = 15.

In Fig. 7 is shown the normalized classification rate for
each of the three models versus the number of clusters (i.e.,
the k value). The best results, in term of classification rate,
are achieved with k∗ = 7 – see Tab. IV. For this k value, each
partition shows good compactness and separability values,
which are measured with the Davies–Bouldin index [28].
It is important underlying also that the tolerances are very
small, denoting that the extent of the LF decision region
is just a small fraction of the whole input domain. The
second best result (data not shown) is obtained with a model
formed by k = 10 clusters with 91.3% of test set patterns
correctly classified. In this last case, performance degrades
for what concerns compactness and separability (the lower,
the better), where the value of the Davies–Bouldin index is

34.700, 92.094, and 95.922 for the three models (Mod. N°1,
2, and 3, respectively).

Fig. 7: Classification rate achieved during the OCC test phase
(ACEA dataset).

V. CONCLUSIONS

In this study, it has been faced the problem of modeling
and recognizing fault instances in a real-world SG. The
considered SG feds the entire city of Rome, Italy. This work
is not an end-point but rather a starting point for the develop-
ment of a complex system for the management and control
of faults in the ACEA power grid. From the computational
viewpoint, it has been faced the problem by following the
one-class classification framework. In fact, pattern instances
denoting conditions of “non-fault” are not available for the
dataset at hand. The designed one-class classifier has been
conceived by clustering techniques, modeling the whole fault
decision region as the union of elementary decision regions,
each one defined by a cluster. Since the considered SG data
is characterized by very heterogeneous features, it has been
defined a suitable dissimilarity measure, which is in charge
of providing effective dissimilarity values among the input
fault patterns. Experiments have been carried out on both
synthetic (controlled) and real-world data (ACEA). Results
on synthetic data prove the effectiveness of the system in
defining appropriate and compact decision regions. Test set
results achieved on the ACEA dataset show an interesting
generalization capability of the classification system in a real-
world situation.

The designed classifier is modular, with the possibility to
employ several different dissimilarity measures and cluster-
ing algorithms. This represents a next step in which we will
evaluate a faster clustering algorithm which does not require
the a priori definition of the partition order. So far, classifi-
cation is performed by means of Boolean decision functions.
An important improvement concerns the possibility to define
a measure of classification reliability. Each decision region
will be equipped with a suitable “membership function”

1955



TABLE III: Comparison among MinSOD and mean cluster representative on the benchmarking dataset.

MinSOD mean representative
k Random Sampling True Sts Random Sampling True Sts

2 0.9 % 61.3 % 11.2 % 100 %
3 0.1 % 97.6 % 0.4 % 99.6 %
4 0.1 % 98.3 % 0.7 % 100 %
5 0.1 % 96.6 % 1.2 % 99.8 %
6 0.1 % 97.0 % 1.3 % 100 %

TABLE IV: Summary test set results achieved with best k∗ value for the ACEA dataset.

k∗ = 7 Mod. 1 Mod. 2 Mod. 3
σ∗ 0.0801, 0.0703, 0.0571, 0.0662, 0.0948, 0.0877, 0.0993

δ(Ci)
0.2287, 0.2361,
0.2169, 0.2128,
0.2432, 0.2532,

0.2287

0.1884, 0.2106,
0.2268, 0.1998,
0.1982, 0.2325,

0.2749

0.2353, 0.2122,
0.2222, 0.2257,
0.2244, 0.2263,

0.2327
Davies–Bouldin index 21.684 17.333 16.648

Classification rate 92.7 % 94.2 % 95.6 %
Voting result 95,6 %

that will be used to provide the user with an additional
information regarding the decision. We stress the importance
of this fact, which assumes paramount importance in the
particular setting of one-class classification, where non-target
pattern instances are not available during the training stage.
Finally, future works will focus on the design of a non-
fault patterns generator (possibly not trivial), exploiting the
available data, in order to better evaluate the possibility to
employ such a system in a CBM procedure.
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