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Abstract—Recent advances in cluster analysis highlight the
importance of finding multiple meaningful partitions and point
out to the need for approaches to evaluate them. They also suggest
that the evaluation should consider knowledge of a domain expert.
In this paper, we present a visualization method, called PVis1

(Partition’s Visualizer), that allows the integrated visualization
of a collection of partitions. PVis allows to compare the content
of a set of partitions. The comparison can be done with respect
to priori knowledge provided by an expert. PVis can be useful
in the discovery of relevant information to the domain experts
performing cluster analysis. In order to illustrate our approach,
we give an example of how to perform an exploratory analysis of
collections of partitions. In order to do so, we use a well-known
dataset from the Bioinformatics domain, regarding molecular
classification of cancer.

I. INTRODUCTION

Clustering techniques are suited to explore and verify
structures that are present in the data, by grouping the objects
according to some sort of similarity [1], [2], [3]. The idea is
to reveal the hidden intrinsic structures with great potential of
practical utility for the domain experts.

A great number of applications of cluster analysis can
be found today in both academic and commercial areas. The
solutions can range from application of traditional clustering
algorithms to the use of the more recent approaches in cluster
analysis, which encompasses the ensembles, multi-objective
clustering, subspace clustering, multi-view clustering, among
others. Important areas such as biology, medicine, engineering,
marketing, remote sensing and bioinformatics can be benefited
from cluster analysis. In bioinformatics, for example, cluster
analysis has been successfully applied to gene expression data
with the aim of gathering insights for the understanding of
biological processes and diseases mechanisms [4].

In general, cluster analysis comprises several steps, ranging
from data preparation to the validation and interpretation of
the results [5]. These last tasks are of ultimate importance
to the experts, as they will guarantee the usefulness of the
knowledge extracted. The interpretation of the results involves
the observation of the clusters’ contents and could benefit from
their comparison with domain knowledge that is available.
The inspection of the contents of one or two partitions is a
manageable task. However, if a higher number of partitions is
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to be inspected, a graphical representation that allows the si-
multaneous visualization of the partitions would be necessary.

In this paper, we propose a visualization method, called
PVis (Partitions’ Visualizer). It is suited for the simultaneous
visualization of a collection of partitions, allowing the com-
parison of their clusters’ contents. PVis can be used in several
ways. We will illustrate one of them. More specifically for
using domain knowledge, in the form of a known partition of
the data, to guide the discovery of new knowledge. To illustrate
the use of PVis, we will present a case study in bioinformatics
domain.

In Section II, we provide an overview of existing tech-
niques for visualization in the context of gene expression’s data
analysis. In Section III we describe the algorithm to generate
the visualization for PVis. Next, in Section IV, we present a
case study that illustrates the use of PVis for exploring gene
expression data aiming the identification of subtypes of cancer.

II. RELATED WORK

We decided to restrict the related work section to the
techniques closely related to our case study’s domain. Thus,
in this section, we will provide an overview of the techniques
for visualization of clustering results in the context of Bioin-
formatics.

One of the most frequently used graphical representation
in this context is the heatmap [6], [7]. A heatmap is a two-
dimensional colored grid used to display data that are arranged
in a matrix. The value of each entry in the matrix determines
the color of the corresponding position in the grid. The rows
and columns of the matrix can be independently reordered to
display the similar rows and/or columns next to each other. In
[6], the authors use the result of an hierarchical clustering algo-
rithm to order the genes in the original data matrix. Next, they
graphically represent the primary data: each attribute of each
data point is represented with a color that quantitatively and
qualitatively reflects the original observations. The dendrogram
showing the hierarchy obtained by the clustering algorithm is
also represented in the display.

Several other visualization tools have been proposed to
aid the exploration of either one partition or a hierarchy of
partitions. In [8], the authors compare several dimensionality
reduction methods for visualization of microarray data, which
helps in identifying clusters of samples. In [9], the authors
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present a tool for genomic data exploration. Its tool, VI-
sual Statistical Data Analyzer (VISDA), integrates hierarchical
clustering and visualization supported by hierarchical mixture
modeling, supervised/unsupervised informative gene selection,
supervised/unsupervised data projection and prior knowledge.
In [10], the authors present other useful visualization tool
that represents a partition that is a consensus of several other
partitions, facilitating the determination of the number of
clusters, clusters’ membership and boundaries.

In [11], the authors mention a variety of approaches and
tools for data visualization and briefly discuss their application
scenarios. They argue that most of the existing approaches
are not intended for cluster analysis, are only suitable for
analysis of a hierarchical clustering or are based on a specific
clustering algorithm. Given these arguments, the authors in
[11] propose several visualization techniques that can be used
with the results of any clustering algorithm applied to protein
and gene expression data. Their several methods complement
each other, allowing different types of analysis of the data.

All methods previously mentioned are suited for the visual-
ization of the data or for the visualization of a single partition
at a time. At the best of our knowledge, in the literature, there
is no method for the integrated representation and visualization
of a broad collection of independent partitions.

The tool of Eisen et al. [6] is the most directly related
to PVis. As already mentioned, it represents an hierarchy of
partitions and is based in the original data to produce the
visualization. In contrast, PVis is purely based on objects
assignments to the clusters. It does not consider the data itself
(like the expression profiles). In this way, our approach and
the methods from [6] and [11], for example, complement each
other.

III. PVIS: PARTITIONS’ VISUALIZER

A simplified version of the visualization method imple-
mented in PVis was first presented in [12]. Before describing
the method, we will introduce some useful notation.

A clustering algorithm looks for structures hidden in the
data [1], [3]. One common kind of structure is a hard partition
of the data. In this kind of partition, each object should
be assigned to only one cluster, and all objects must be
assigned to a cluster. More formally, given a set of objects
X = {x1,x2, ...,xn}, a partition of X in Ki clusters can be
defined as: πi = {ci1, ci2, ..., ciKi} with 2 ≤ Ki < n, such that
[3]:

1) cij 6= ∅, j = 1, ...,Ki,

2)
⋃Ki

j=1 c
i
j = X and

3) cij ∩ cil = ∅, j, l = 1, ...,Ki and j 6= l.

Let Π = {π1, π2, ..., πr} be a set of partitions to be
visualized, where r is the number of partitions. Let πref =
{cref1 , cref2 , ..., crefkref} be a reference partition2.

The visualization method is based on a coloring scheme
that assigns colors to each cij ∈ πi, according to πref. The
coloring scheme is presented in the algorithm of Fig. 1.

2The meaning of a reference partition will be detailed later in this section.

Input: Π, πref
Output: color and intensity for each ckj ∈ πk where πk ∈ Π

and for each crefi ∈ πref
1: for all crefi ∈ πref do
2: color(crefi ) ← newColor
3: intensity(crefi ) ← maxIntensity
4: end for
5: for all πk ∈ Π do
6: for all ckj ∈ πk do
7: cmaj = argmaxcref

i
∈πref |crefi

⋂
ckj |

8: color(ckj ) ← color(cmaj)
9: end for

10: for all crefi ∈ πref do
11: C ← { ckj | color(ckj ) = color(crefi ), ∀ ckj ∈ πk }
12: sort C in descending order according to |crefi

⋂
ckj |,

ckj ∈ C
13: auxIntensity ← maxIntensity
14: for all ckj ∈ C do
15: intensity(ckj ) ← auxIntensity
16: auxIntensity ← auxIntensity - 1
17: end for
18: end for
19: end for

Fig. 1. Algorithm of the coloring scheme

In order to illustrate the description of the method, we
will consider a dataset X = {x1,x2, ...,x10}, and πref and
Π = {π1, π2} as shown in Table I. To avoid confusion in the
explanation, we will make use of the word class to refer to the
clusters of the reference partition, reserving the term cluster to
the clusters of the partitions in Π.

TABLE I. PARTITIONS FOR THE EXAMPLE

Partition Clusters

πref cref1 = {x1,x2,x3,x4,x5,x6}, cref2 = {x7,x8,x9,x10}

π1
c11 = {x1,x2,x3}, c12 = {x4,x5,x7},

c13 = {x6}, c14 = {x8,x9,x10}

π2
c21 = {x1,x2,x7,x8,x9}, c22 = {x3,x4,x5},

c23 = {x6}, c24 = {x10}

The first step in the procedure of generating the visualiza-
tion is the assignment of a different color and an intensity
to each class (Fig. 1, Lines 1 to 4). In our example, we
assign the color green to cref1 and the color orange to cref2 ,
and a maximum value for intensity of 3 for both cases. These
assignments can be seen in Table II. The maximum intensity
should be the highest number of clusters sharing the same
color in the partitions in Π. In the example, the value is 3 as
there is at most three clusters with the same color in each of
the partitions in Π (the green clusters in π1).

Next, the majority class of each cluster (cmaj) is found
and each cluster cik ∈ πi is labeled with the same color of
its majority class (Fig. 1, Lines 6 to 9). The majority class
of a cluster is the class with the largest number of objects in
the cluster. Table II shows the results of these steps applied to
π1 and π2. Column |crefi ∩ ckj | shows the number of objects
shared between each cluster ckj and each class crefi . The largest
number for each cluster is highlighted in boldface, which
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TABLE II. STEPS OF THE COLORING SCHEME APPLIED TO THE
EXAMPLE

Partition Cluster |crefi ∩ ckj | cmaj Color Intensity

cref1 cref2

πref cref1 - - - green 3

cref2 - - - orange 3

c11 3 0 cref1 green 3

π1 c12 2 1 cref1 green 2

c13 1 0 cref1 green 1

c14 0 3 cref2 orange 3

c21 2 3 cref2 orange 3

π2 c22 3 0 cref1 green 3

c23 1 0 cref1 green 2

c24 0 1 cref2 orange 2

indicates the choice of the majority class (column cmaj). The
column “Color” shows the color assigned to each cluster.

Given all cik ∈ πi with the same majority class (and thus
with the same color), the highest intensity value is assigned
to the cluster with the greatest number of objects from the
majority class. Decreasing values of intensities are assigned
to the other clusters considering the number of objects from
their majority class in decreasing order (Fig. 1, Lines 10 to
18). The intensities assignments can be seen in Table II.

Once all partitions have been colored, they are organized
in a table. As a convention, the first column represents the
identifiers of the objects in the dataset. The second column
represents πref. Each of the remaining columns represents
one of πi ∈ Π. Each cell in the table is filled with the
color/intensity representing the cluster to which the object
belongs to in the corresponding partition. Fig. 2 shows the
result of PVis applied to the example.

Partitions
πref π1 π2

PPPPID
k

2 4 4

x3
x1
x2
x4
x5
x6
x7
x8
x9
x10

Fig. 2. Visualization of the example

The table with the visual information is as large as the
number of objects of the dataset. Any number of objects can
be represented. However, if this number is very large, the
observation of the complete visual information by a human is
hard. In order to minimize this difficulty we included in PVis
a step of collapsing the objects with identical coloring pattern.
That is, the rows with identical pattern can be represented
as one single row. The user can set the minimal number of
identical rows he/she wants to group. In the example, we can
observe that x1 and x2 have the same color and the same
intensity in all columns and they can be collapsed. For the
same reason, it is possible to collapse x4 with x5 and x8 with
x9. Fig. 3 shows the result of collapsing identical lines of the
example.

Partitions
πref π1 π2

PPPPID
k

2 4 4

x3

Block 0
2 Objects
x1, x2

Block 1
2 Objects
x4, x5
x6
x7

Block 2
2 Objects
x8, x9
x10

Fig. 3. Visualization of the example collapsing identical lines

In practical terms, the reference partition can be chosen in
different ways, depending, for example, on the kind of priori
information the user has or his/her aim in the analysis. For
instance, the user could choose:

• A partition πi ∈ Π. For example, (1) the partition with
the smallest number of clusters, or (2) the partition that
shows more similarity to each of the other partitions
in Π, according to some partition similarity criterion.

• A known partition of the data. In this case, the
expert can provide this priori knowledge in order, for
example, to support the discovery of new knowledge.

• A partition that represents the consensus among the
partitions in Π. Any ensemble method can be used to
produce the consensus partition [13].

In the case study illustrated in this paper, the reference
partition will be a known partition of the data.

IV. CASE STUDY

In order to show an application of the PVis method we
use a classical dataset from the Bioinformatics domain. The
aim of the analysis is to illustrate how new knowledge can be
identified from sets of partitions if prior knowledge is given
in the form of a reference partition. In order to do so, we
first produced a set of partitions with traditional clustering
algorithms. Then, we visualize these partitions using one
known structure of the dataset as the reference.

A. Data

The dataset we used contains gene expression data from
acute leukemia patients [14]. This dataset is interesting for
our analysis as it has more than one underlying structure. The
two structures of clinical interest (E1 and E2) refer to types
and subtypes of acute leukemia:

• E1: corresponds to the classification of the samples
in Acute Lymphoblastic Leukemia (ALL) and Acute
Myeloid Leukemia (AML);

• E2: contains a refinement of the ALL class. In this
case, the data are classified in AML, Tcell (T-lineage
ALL) and Bcell (B-lineage ALL).

Besides E1 and E2, two other types of information are
available: E3 and E4. They have no clinical relevance. We
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will use them to check if some group could have appeared
due to some sort of unexpected influence. For example, if a
group emerged due to bias in the samples preparation or tissue
type. The structures E3 and E4 refer to:

• E3: a division of the samples according to the institu-
tion where they came from: DFCI (Dana-Farber Can-
cer Institute), CALGB (Cancer and Leukemia Group
B), StJude (St. Jude Children’s Research Hospital)
and CCG (Children’s Cancer Group);

• E4: shows if the samples are from bone marrow (BM)
or peripheral blood (PB).

All samples considered in [14] are used and the data was
preprocessed in the same way as in the original work. After
preprocessing we obtained a dataset containing 72 samples
and 3571 attributes. To make things clearer, we labeled each
sample according to its membership. For example, sample
ALL-Bcell-BM-DFCI-1 belongs to ALL in E1, to Bcell
in E2, to DFCI in E3 and to BM in E4. The final number was
used just to enumerate the samples.

B. Partitions’ generation

To generate the collection of partitions Π, we ran three
traditional and largely employed clustering algorithms [1].
The algorithms employed were: k-means (KM), complete-
linkage (CoL) and average-linkage (AL) [1]. We run them
with Euclidean distance and generate partitions with numbers
of clusters k ∈ [3, 8]. In order to minimize the occurrence
of suboptimal solutions, we run k-means 30 times for each k,
with a random choice of initial centers. Among all 30 partitions
produced for a given k, we selected the partition with the
lowest squared error. For the algorithms AL and CoL, we
generated the hierarchies and cut them in order to produce
one partition for each value of k. With this procedure, we
produced a set of partitions Π = {π1, π2, ..., π18}.

C. Visualization and analysis

To visualize Π, we run PVis using E1 (AML/ALL distinc-
tion) as the reference partition. We ordered the columns of the
table by the values of the corrected Rand (CR) of the partitions
with respect to πref [1]. This means that π1 is more similar to
πref than π2 and so on. The visualization produced is shown
in Fig. 4. In this table, π1 to π3 and π16 to π18 were generated
with AL; π6, π9 and π12 to π15 were generated with KM; and
π4, π5, π7, π8, π10 and π11 were generated with CoL.

Finding wrong assignments and outliers

The wrong assignments are objects placed with objects
of a different class with respect to the reference partition.
In the visualization, they are represented with a different
color than that of the other objects of their class. In Fig. 4,
the objects AML-BM-CALGB-29, AML-BM-CALGB-34,
AML-BM-CALGB-35, AML-BM-CCG-66 were grouped with
ALL-Bcell samples in several partitions (most of partitions
from π4 to π15).

The outliers are isolated in small clusters or singletons,
represented with a different color/intensity than that of
all other objects. In Fig. 4, the most evident case of
outlier is the object AML-PB-CCG-64 that was placed

in a singleton in half of the partitions. Other cases are
ALL-Bcell-BM-DFCI-17, ALL-Bcell-BM-DFCI-20
and ALL-Bcell-BM-DFCI-21, presenting a different color
patter in partitions π1 to π3 and π16 to π18.

The identification of wrong assignments and outliers is
important to the expert. These objects could be noisy samples,
incorrectly labeled objects, or samples that present an atypical
behavior with respect to the other objects in the same class.

Finding new groups

The subdivision of a given original class of a dataset in
more than one cluster can support the discovery of novel
classes in the data. For example, this could lead to a molecular-
based refinement of broadly defined biological classes, with
implications in cancer diagnosis, prognosis and treatment [10].
In the visualization, the subdivision of a class in more than one
cluster can be observed by the presence of different intensities
of the color associated with the class.

In Fig. 4, we can observe several subdivisions of both
classes, ALL and AML. These subdivisions could represent new
knowledge that deserves investigation, as they appear several
times as a clear data separation. For part of the subdivisions
that we found, the information available in [14] (E2, E3 and
E4) gave us support to provide the cluster’s interpretation,
validating them as new knowledge discovered with PVis. For
other cases, information was not available for this dataset, but
it’s known that several other relevant subdivisions of leukemia
exists. For example, [15] mentions several subdivisions of the
Bcell. In [16], the authors shows that besides the AML and
AML types, a third type exists, revealed by a clear distinction
from AML and ALL when applying clustering algorithms.

Observing Fig. 4, the first subdivision we can notice is
the clear separation of the Bcell and Tcell samples. In
π3, the cluster in dark green (rows 1 to 35) corresponds to
Bcell samples, and the cluster in light green (rows 36 to 44)
contains all the Tcell samples. Moreover, the color pattern
seen in rows 36 to 43 evidence a cluster containing the samples
of the class Tcell (partitions π3, π10 to π14). This shows that
the knowledge of E2 could be discovered using PVis.

We can also clearly identify two other subdivisions of the
ALL samples. In rows 1 to 28 and 29 to 35, we identified two
groups of objects that contains the samples of the Bcell.
Although we do not have enough information to provide the
interpretation of these clusters, it is possible that they reflect
meaningful subtypes of Bcell.

For the class AML, we also observed a division of the
samples in two groups. The cluster represented in dark orange
encompasses the majority of the samples from CALGB. The
other cluster encompasses most remaining AML samples origi-
nated from the other institutions (rows 61 to 65 and 68 to 71).
The clusters found could also refer to the separation of adults
and children, as all the sample from CALGB are from adults
and all the samples of other institutions are from children.

From a clinical point of view, the separation of the samples
by institution is not expected to occur. The clusters found could
be due to differences in protocols used by the laboratories
for sample preparation. Identifying such problems, the expert
could, for example, propose approaches to avoid these artifacts
such as the standardization of the protocols.
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Partitions
πref π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12 π13 π14 π15 π16 π17 π18

PPPPID
CR

1 0.88 0.79 0.56 0.55 0.47 0.42 0.39 0.38 0.32 0.26 0.26 0.24 0.2 0.19 0.18 0 0 0

1 ALL-Bcell-BM-DFCI-19
2 ALL-Bcell-BM-DFCI-25
3 ALL-Bcell-BM-DFCI-47
4 ALL-Bcell-BM-DFCI-41
5 ALL-Bcell-BM-DFCI-44
6 ALL-Bcell-BM-DFCI-45
7 ALL-Bcell-BM-DFCI-46
8 ALL-Bcell-BM-StJude-59
9 ALL-Bcell-PB-DFCI-70
10 ALL-Bcell-BM-DFCI-26
11 ALL-Bcell-BM-DFCI-18
12 ALL-Bcell-BM-DFCI-22
13 ALL-Bcell-BM-DFCI-39
14 ALL-Bcell-BM-StJude-56
15 ALL-Bcell-BM-DFCI-12
16 ALL-Bcell-BM-StJude-55
17 ALL-Bcell-BM-DFCI-40
18 ALL-Bcell-BM-DFCI-27
19 ALL-Bcell-BM-DFCI-49
20 ALL-Bcell-BM-DFCI-7
21 ALL-Bcell-BM-DFCI-8
22 ALL-Bcell-PB-DFCI-71
23 ALL-Bcell-PB-DFCI-72
24 ALL-Bcell-BM-DFCI-42
25 ALL-Bcell-BM-DFCI-43
26 ALL-Bcell-BM-DFCI-1
27 ALL-Bcell-BM-DFCI-4
28 ALL-Bcell-BM-DFCI-16
29 ALL-Bcell-BM-DFCI-13
30 ALL-Bcell-BM-DFCI-15
31 ALL-Bcell-BM-DFCI-24
32 ALL-Bcell-BM-DFCI-48
33 ALL-Bcell-BM-DFCI-5
34 ALL-Bcell-PB-DFCI-68
35 ALL-Bcell-PB-DFCI-69
36 ALL-Tcell-BM-DFCI-10
37 ALL-Tcell-BM-DFCI-23
38 ALL-Tcell-BM-DFCI-6
39 ALL-Tcell-BM-DFCI-11
40 ALL-Tcell-BM-DFCI-14
41 ALL-Tcell-BM-DFCI-2
42 ALL-Tcell-BM-DFCI-3
43 ALL-Tcell-BM-DFCI-9
44 ALL-Tcell-PB-DFCI-67
45 ALL-Bcell-BM-DFCI-21
46 ALL-Bcell-BM-DFCI-20
47 ALL-Bcell-BM-DFCI-17
48 AML-BM-CALGB-35
49 AML-BM-CALGB-34
50 AML-BM-CALGB-28
51 AML-BM-CALGB-30
52 AML-BM-CALGB-33
53 AML-BM-CALGB-37
54 AML-BM-CALGB-38
55 AML-BM-CALGB-50
56 AML-BM-CALGB-53
57 AML-BM-CALGB-31
58 AML-BM-CALGB-51
59 AML-BM-CALGB-32
60 AML-BM-CALGB-36
61 AML-PB-CCG-63
62 AML-PB-CCG-62
63 AML-BM-StJude-61
64 AML-BM-CCG-65
65 AML-BM-StJude-58
66 AML-BM-CCG-66
67 AML-BM-CALGB-29
68 AML-BM-StJude-57
69 AML-BM-StJude-60
70 AML-PB-CALGB-52
71 AML-BM-StJude-54
72 AML-PB-CCG-64

Fig. 4. Visualization of the partitions

V. FINAL REMARKS

In this paper, we presented a visualization method called
PVis (Partition’s Visualizer). PVis allows the visual inspection
(comparison) of a collection of partitions of a given dataset.
The aim is to visually identify useful information contained in
the clusters belonging to the set of input partitions.

To illustrate the use of PVis, we provided a simple example
of how to perform an exploratory data analysis. More specif-
ically, we used a widely known dataset regarding molecular
classification of cancer [14]. It is known that this dataset
contains two structures of clinical interest that refer to types
and subtypes of acute leukemia. Based on this, we considered
one of the known structure as the reference partition for PVis

— for example, as if it was prior knowledge provided by the
user. To generate the partitions to be visualized/inspected, we
ran the dataset with three traditional clustering algorithms: k-
means, average-linkage and complete-linkage.

In this context, by using PVis, we could observe several
subdivisions of the classes ALL and AML (reference partition).
For some of the subdivisions that we could identify, the
information available in [14] gave us support to provide the
cluster’s interpretation. For example, via PVis we could see
clearly the other clinical subdivision of this data: Bcell,
Tcell, and AML.

For other cases in which we could visualize subdivisions,
the original paper ([14]) had no information for supporting an
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interpretation. However, there are works in the literature that
show that several other relevant subdivisions of leukemia exist.
For example, [15] mentions several subdivisions of Bcell.
Finally, by our visual inspection we found some partitions that
had clusters representing a separation of adults and children
— this kind of “structure” was not discussed in [14].

In terms of extension and further work, the current version
of PVis does not scale up for a large number of partitions.
Other points to be investigated includes the application of PVis
to a broader range of recent techniques for finding multiple
clustering solutions and a deeper analysis of the possible types
of reference partitions that can be used.
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