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Abstract— It has been shown earlier that simple abstraction
of a neuron with nonlinear active dendrites and binary synapses
has a higher computational power than a neuron with lin-
early summing dendrites. However, it has only been used to
classify high dimensional binary patterns of mean spike rates.
In this paper, a nonlinear dendritic (NLD) neuron equipped
with binary synapses that is able to learn temporal features
of spike input patterns is presented. Since the synapses are
binary, learning happens through formation and elimination
of connections between the inputs and the dendritic branches
thus modifying the structure or “morphology” of the cell. A
morphological learning algorithm inspired by the ‘Tempotron’–
a recently proposed temporal learning algorithm–is presented
in this work. Experimental results indicate that our neuron
with NLD with 1-bit synapses can obtain similar accuracy as
a traditional Tempotron with 4-bit synapses in classifying a
population of single spike latency patterns. Hence, the proposed
method is better suited for robust hardware implementation in
the presence of statistical variations.

I. INTRODUCTION

Though the representation of stimulus by the neurons in
our brain is a topic of much ongoing research and debate, it
is widely believed that the timing of the action potentials or
spikes fired by these neurons carries important information [1].
Spike latency codes i.e. delay in the spike time after stimulus
presentation, have been suggested for tactile, olfactory and
retinal systems [2]. They are also thought to offer significant
advantages in terms of reducing power needed for communi-
cating spikes as well as allowing rapid processing of inputs.
Hence, neuromorphic engineers, who aim to mimic the brain’s
processing capabilities in silicon, have also been interested in
spike timing based neural networks. Several analog CMOS
integrated circuits operating in the sub-threshold regime have
been designed in the past to implement somatic and synaptic
functions [4], [5]. However, with the increase of statistical
variations due to the constantly decreasing feature size of
transistors, performance of silicon neural networks requiring
accurate setting of a “weight” parameter become strongly com-
promised. This is also true for several nanometer scale non-
CMOS devices (e.g. memristor or domain wall magnets) that
have potential for use in neuromorphic applications. Hence,
there is a strong need to develop algorithms and architectures
that retain the performance of earlier systems but require low-
resolution weights.
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In this paper, a hardware-friendly morphological learning
rule that learned on nonlinear dendritic neuron (NLD) with
spatiotemporal spike patterns is presented. Different from
earlier work [3], [9] where mean rate encoded inputs were
considered, spike-timing information is presented to the neu-
ron with NLD in our case. Unlike the Tempotron learning
rule [1] that requires weights with high resolution, the pro-
posed network uses low-resolution integer weights and learns
through modifying connections. This results in easier hardware
implementation since a low-resolution integral weight of W
can be implemented by activating a shared binary synapse W
times through time multiplexing schemes like Address-Event
Representation (AER) [6], [7].

The organization of this paper is as follows: in Section
II, the architecture of nonlinear dendritic neurons and its
morphological learning algorithm is introduced. In order to
test the morphological learning’s ability in recognizing spa-
tiotemporal spike patterns, a classification task based on single
spike latency patterns similar to the one in [1] is discussed in
Section III. To show the effectiveness of the proposed method,
several experiments are conducted with different number of
spike input patterns in Section IV. Finally a conclusion is
drawn in Section V.

II. METHOD

A. Nonlinear Dendrites Model with Spatiotemporal Spike Pat-
terns

Dendritic neurons with lumped nonlinearity are able to per-
form a larger number of input-output mappings than is possible
by a neuron with linear ones [3]. Though the performance of
NLD has been tried on a pattern classification task in relation
to static and spike-rate input patterns [9], no application has
been made to the learning of spike timing-based decision rules.
To bridge this gap, a neuron with NLD that is able to respond
to temporal features of input spike patterns is presented in this
paper. As presented in Fig. 1, the structure of a neuron with
NLD is characterized by m identical dendritic branches and
k excitatory synaptic contacts per branch. For each branch,
the activation of synaptic contact is determined by one of d
dimensions of an input spike pattern. At the relevant times
governed by incoming spikes, the synaptic connections are
initiated and the membrane voltage is calculated by weighted
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Fig. 1. The architecture of nonlinear dendritic neuron (NLD) model

sum of postsynaptic potentials (PSPs) as follows:

V (t) =
m

∑
j=1

b

(
k

∑
i=1

wi jK (t− ti j)

)

(1)

where wi j is the weight of the ith synapse formed on the
jth branch, b(⋅) is the nonlinear activation function of the

dendritic branch which is characterized by b(z) = z2/
xthr

, z is
the total synaptic activation on a branch [9], K denotes the
postsynaptic potential kernel and ti j are times of incoming
spikes. The normalized postsynaptic potentials (PSP) con-
tributed by each incoming spike arriving at time ti is obtained
by:

K (t− ti) =V0(exp[−(t− ti)
/

τ ]− exp[−(t− ti)
/

τs]) (2)

where the parameters τ and τs =τ
/

4 denote the decay time
constants of membrane integration and synaptic current re-
spectively. The NLD neuron is designed such that the final
output voltage Vout takes a value of either “1” or “0” depending
on whether the summed membrane voltage V (t) crosses a
threshold voltage (Vthr). Similar to [1], this indicates that a
neuron fires at least one spike if V (t) crosses Vthr, otherwise it
remains quiescent. After the neuron fires a spike, it is returned
to the refractory state and the rest of the spikes in the incoming
pattern do not affect the computation.

B. Morphological Learning Algorithm

In this section, the morphological learning rule that can
modify the connections between afferent lines and nonlinear
dendrites (NLD) is introduced. The inspiration of this work
comes from the Tempotron learning rule [1] that learnt the
temporal features of random spike patterns by updating its
weights. However, for feasibility of hardware implementation,
we consider the use of binary weights in this work as opposed
to using high resolution weights. To start with the proposed
learning rule, the cost function which measures the deviation
between the maximum membrane voltage (Vmax) generated by
error patterns and the firing threshold (Vthr) is defined as:

E =

{
Vthr−Vmax, i f positive pattern P+ is presented
Vmax−Vthr, i f negative pattern P− is presented

(3)
where Vmax is the maximum value of postsynaptic potential
V (t) at the time tmax, i.e., Vmax =V (tmax). With a guidance by

the gradient-descent method, the change in synaptic efficacy
is calculated by:

Δwi j = − dE2

dwi j
=−

(
∂E2

∂wi j
+

(
∂E2

∂ tmax
⋅ dtmax

dwi

))

(4)

= 2 (Vthr−Vmax)

∂

(
m
∑
j=1

b

(
k
∑

i=1
wi jK (tmax− ti)

))

∂wi j

(5)

where the second term in (4) becomes 0 because
∂ (Vthr−Vmax)

/
∂ tmax = 0 by definition of tmax [1]. By sub-

stituting (3) and (1) in (4), (5) is obtained. From (3) to (5),
the weight updating rule is obtained as:

Δwi j = (Vthr−Vmax)b′jK (tmax− ti) (6)

where b′ denotes the derivative of b. As mentioned earlier,
the weights of the NLD only takes the binary values, i.e.,
wi j = 1 if a connection exists and 0 otherwise (Note that we
allow multiple connections between an input and a dendritic
branch; therefore, effective weight of a connection can be an
integer larger than 1). Hence, we cannot directly modify the
weights by adding the Δwi j term derived here. Instead, the
term Δwi j in (6) is redefined as a correlation term, ci j i.e.,
ci j = Δwi j = (Vthr−Vmax)b′jK (tmax− ti) and is used to guide
the process of swapping connections. At every iteration of the
learning process, the synapse with the lowest ci j averaged over
an entire batch of patterns will be replaced with the highest
ci j synapse in a candidate replacement set. The mechanism of
the learning process is presented as follows:

1) The learning process starts with random initialization of
total synaptic connections (s = m×k) from the uniform
distribution of 1 : N afferents.

2) In each iteration of the training process, a random
input spike pattern is presented to the NLD neuron.
The activation of synapses on each dendritic branch
is determined and the cell membrane voltage (V (t)) in
equation (1) is calculated for all the input patterns.

3) From the calculated V (t), the maximum membrane
voltage (Vmax) is observed and classification output is
determined, i.e. the patterns are correctly classified if
Vmax >Vthr is satisfied for P+ and Vmax <Vthr for P−.

4) For all misclassified patterns, the correlation term, ci j is
computed by equation (6) for each synapse. Based on
the obtained ci j averaged over the entire pattern set, a
random set T of nT synapses was targeted for possible
replacement.

5) The poorest-performing synapse (minimum ci j) in T is
replaced with the best-performing synapse (maximum
ci j) from another randomly chosen replacement set R
containing nR of the N afferent lines.

6) Synaptic connections are modified if the number of
learnt patterns increases. If there is no increment, a new
replacement set R is chosen. If the number of learnt pat-
terns does not change for 40 iterations, it is assumed that
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the learning algorithm encountered a local minimum. In
this case, we modify synaptic connections even though
there is no change in the number of learnt patterns. By
doing so, the learning algorithm may attempt to escape
from local minimum.

7) The learning steps (2) to (6) are repeated until all the
patterns are correctly learnt, or 100 local minima are
encountered, or the maximum number of iterations is
reached.

C. Determination of Optimal Threshold

Since we do not have an arbitrary multiplicative weight in
our neural model, the range of maximum voltages generated
in response to a fixed temporal spike pattern is limited. This
is similar to the problem faced in [10]. Hence, improper
selection of threshold may largely degrade the classification
performance since a very large Vthr (= m× k×Kmax) may
never be crossed by V (t). To define a proper threshold (Vthr)
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Fig. 2. (a) Membrane Potential V (t) for a spike pattern (b) Probability
distribution of Vmax

level, the maximum value of V (t), i.e., Vmax at time tmax

for random input spike patterns is firstly determined (Fig. 2
(a)). This process is repeated for a large number of randomly
generated patterns. From the Vmax obtained over this entire set,
the probability distribution of Vmax is generated and is used
to determine the optimal threshold Vthr. As shown in Fig. 2
(b), this is equal to the voltage corresponding to the peak of
probability distribution function, Vpeak.

III. MORPHOLOGICAL LEARNING FOR
CLASSIFICATION

A. Input Pattern Generation

In order to test the morphological learning’s ability, its
performance was assessed on classifying a population of single
spike latency patterns [1]. To perform the task, P spike patterns
are generated, each of which was randomly assigned to one
of the two classes: positive class (P+, Class 1) and negative
class (P−, Class 2) . For each spike pattern, X=(x1,x2, . . . ,xN)
consists of spikes arriving at N afferents, each of which spiked
only once at a time drawn independently from a uniform
distribution between 1 and T = 400 ms.

For instance, consider random latency patterns with spike
times of 12 afferent inputs. A positive pattern P+ and negative
pattern P− are shown in Fig. 3 (a). The morphological learning
rule is required to correctly classify such random patterns.

B. Learning to Classify Latency Spike Patterns

The NLD neuron was trained to correctly classify random
input spike patterns belonging to the two classes 1 and 2.
Patterns are said to be correctly classified if their associated
membrane voltage, V (t) reached its maximum value, Vmax at
time t+max and t−max and satisfied the condition, V+

max > Vthr >
V−max. As shown in Fig. 3 (b), when the conditions are satisfied,
the neuron fires at least one spike in response to P+ patterns
while it remains below threshold for P− patterns.
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Fig. 3. (a) Spike Times with 12 afferent; a positive pattern (P+ (blue square)
and a negative pattern P− (red circle) (b) Generation of V(t) for positive and
negative patterns

In the process of learning, the grouping of synchronous
spikes on a dendritic branch will be encouraged for the
patterns in Class 1 while it is prevented for those in Class
2. As presented in Fig. 4, with the proposed learning rule,
the connections of NLD are modified such that for a learnt
pattern in Class 1, afferents receiving synchronous spikes are
grouped together on a dendrite which allows neuron membrane
voltage V (t) to exceed Vthr while a trained pattern in Class 2
is characterized by asynchronous spikes arriving on a dendrite,
resulting in V (t) falling below Vthr.

IV. RESULT AND DISCUSSION

Throughout the experiment, the design parameters m, k, xthr,
τ , nT , nR and T , were chosen as 50, 10, 6, 15 ms, 25, 25
and 400 ms respectively. The details about the selection of
parameters xthr are discussed in [9]. There is no default rule
for the selection of NLD parameters, which were selected by
the trial-and-error method. As discussed in Section II-C, the
firing threshold Vthr is chosen at the peak location of Vmax

distribution over 10000 random input spike patterns. Hence,
Vthr is set at 11.

To start with the classification task, the NLD neuron in
Fig. 1 was trained for random latency patterns as generated
in Section III-A. To see the effectiveness of the proposed
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respectively.
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Fig. 5. The distribution of Vmax and tmax before and after training. Dashed
lines indicate Class 1 while solid lines indicate Class 2.

method, the classification performance was measured for a
small number (= 100) of input patterns. The results in Fig.
5 (a) and (b) show that the proposed method can efficiently
perform the classification task. A clear separation between
the Vmax distributions for Class 1 and Class 2 shows that
the proposed method is able to respond to the random single
spike latency patterns by shifting Vmax away from the Vthr

in opposite directions for the patterns belonging to the two
classes. Next, we consider the distribution of tmax distribution
before (Fig. 5 (c)) and after training (Fig. 5 (d)). Both the
distributions are widely spread over time implying that the
connections were modified such that the spikes in an input
pattern that arrive closer to the initial tmax for that pattern,
are grouped together on a dendrite, thereby not changing the
tmax values significantly. Further, the NLD neuron was also
trained for larger number of input patterns (500 and 1000
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Fig. 6. The distribution of Vmax for a set of 100, 500 and 1000 random
latency spike patterns

patterns) as presented in Fig. 6. It shows that the proposed
method can perform the classification task quite well by
achieving accuracies of 92 and 86 % for 500 and 1000 patterns
respectively.

Next, the performance of the proposed method is compared
with the Tempotron learning [1] that learnt single spike latency
patterns by using weight updating rule. Since we are interested
in the performance of these algorithms in their hardware
implementations, which are plagued by mismatch, we consider
the performance of the Tempotron when its weight is quantized
at different resolutions. Further, we do the quantization in two
ways: either after the completion of training or as a step within
the training procedure. The comparison results in Fig. 7 show
that the Tempotron using floating-point numbers achieves
better performance compared to the proposed method. How-
ever, when the high resolution weights are quantized at 2-
bit level, its performance is worse than the proposed method.
Also, it can be seen that the performance is better when the
quantization is performed within the learning loop. This is to
be expected since the learning algorithm can now try to correct
this quantization error as well.

Only at 4-bit quantization level, the classification perfor-
mance of Tempotron (93 and 89 % accuracy for 500 and 1000
patterns) is comparable to our proposed method (92 and 86
% accuracy for 500 and 1000 patterns respectively) that uses
only 1-bit or binary weights. This underlines the importance
of our proposed method in robustly implementing spike timing
based classifiers with low-resolution analog synapses using
nano-scale CMOS or non-CMOS devices.

V. CONCLUSIONS

A morphological learning rule that can be used to find the
optimal connection matrix of neurons with nonlinear dendrites
(NLD) and binary synapses is presented. To see the effec-
tiveness of the proposed method, the NLD neuron is trained
for a classification task with spatiotemporal spike inputs.
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Fig. 7. Comparison studies on classification performance, for Tempotron
learning [1] and morphological learning rule

The results (classification accuracy at 100, 92 and 86 % for
100, 500 and 1000 random input spike patterns respectively)
depict that the NLD neuron with 1-bit weights trained by the
morphological learning rule achieves comparable performance
to the Tempotron learning rule using 4-bit weights. This makes
our proposed system amenable for hardware realization in the
face of statistical variations which plague deep sub-micron
CMOS processes as well as nanoscale non-CMOS devices like
memristors.
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