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Abstract—Spike sorting plays an important role in analysing 
electrophysiological data and understanding neural functions. 
Developing spike sorting methods that are highly accurate and 
computationally inexpensive is always a challenge in the 
biomedical engineering practice. This paper proposes an 
automatic unsupervised spike sorting method using the 
landmark-based spectral clustering (LSC) method in 
connection with features extracted by the locality preserving 
projection (LPP) technique. Gap statistics is employed to 
evaluate the number of clusters before the LSC can be 
performed. Experimental results show that LPP spike features 
are more discriminative than those of the popular wavelet 
transformation (WT). Accordingly, the proposed method LPP-
LSC demonstrates a significant dominance compared to the 
existing method that is the combination between WT feature 
extraction and the superparamagnetic clustering. LPP and 
LSC are both linear algorithms that help reduce computational 
burden and thus their combination can be applied into real-
time spike analysis.  
 

I. INTRODUCTION 
Neuroscience practice extracellularly records the activity 

of single neurons using thin electrodes implanted in the 
brain. Neurons in the vicinity of the electrode tip are picked 
up by the extracellular recordings and thus there is a demand 
to determine which spike corresponds to which neuron. 
Neurons, which are detected by the same electrode, can react 
in response to different activities. Even when neighboring 
neurons have similar responses, it is essential to differentiate 
them and detect their individual tuning properties, firing 
characteristics, and connection with other neurons [1]. Spike 
sorting refers to the process that assigns the detected spikes 
of a multichannel signal into clusters based on the similarity 
of their shapes.  

In the literature, there exists a number of methods from 
machine learning or statistical mechanics dealing with neural 
spike analysis in general or spike sorting in particular. 
Brown et al. [2] reviewed state-of-the-art techniques and 
challenges in analysing multiple neural spike training data.  

Alternatively, Quiroga [3] proposed a method that 
combines wavelet transformation (WT) with 
superparamagnetic clustering without assumptions such as 
low variance or Gaussian distributions. Hill et al. [4] on the 
other hand recommend that four quality metrics of false-
positive and false-negative errors should accompany spike 

sorting regardless of the algorithm used to sort. These 
metrics would facilitate the assessment regarding the 
performance of the sorter relative to the level of 
contamination of the data.  

Oliynyk et al. [5] constructed a tool for quick and robust 
online classification of single neuron activity using the fuzzy 
c-means clustering. The method is particularly suitable for 
the analysis of large parallel recordings, which are 
practically impossible or inconvenient for human 
supervision, and thus is helpful in the decoding of neural 
ensembles or other clinical applications.  

Shalchyan et al. [6] introduced an algorithm for automatic 
unsupervised detection of action potentials in extracellular 
recordings. A new manifestation variable for detection is 
defined based on the combination of denoised wavelet 
coefficients over selected scales. Tiganj and Mboup [7] used 
an iterative application of independent component analysis 
along with a deflation technique in two nested loops for 
neural signal analysis with multi-channel recordings. Each 
loop of the algorithm enhances the final sorting results and 
thus significantly improves the overall spike sorting 
performance.  

More recently, Shao et al. [8] examined spike sorting 
errors and their impacts to the Granger causality analysis, 
which is a powerful technique for detecting causal 
interactions between time series signals. Pillow et al. [9] 
otherwise investigated the geometry of failures of traditional 
spike sorting algorithms and developed a sorting model, 
which explicitly takes into account the superposition of 
spike waveforms.  

Though various methods have been proposed, obtaining 
high accuracy in spike sorting is always a big challenge in 
neuroscience and biomedical engineering. Furthermore, the 
computational burden in spike sorting is massive. This paper 
presents an integrated approach, which combines locality 
preserving projection (LPP) [10], gap statistics (GS) [11], 
and landmark-based spectral clustering (LSC) [12], for a 
computationally inexpensive unsupervised spike sorting 
method. According to our best knowledge, this is the first 
proposal on application of the LPP for spike feature 
extraction, GS in determining the number of clusters, and 
LSC for clustering spike sorting data. The accuracy of the 
proposed approach is compared to the renowned benchmark 
spike sorting method that is a combination between the 
wavelet transformation (WT) and the superparamagnetic 
clustering (SPC) in [3].  
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The arguments are organized as follows. The next section 
describes details of steps in the proposed methodology. 
Section III is devoted for experiments and results whilst 
discussions and concluding remarks are presented in Section 
IV & V respectively.  
 

II. SPIKE SORTING METHODOLOGY 
The proposed methodology is graphically illustrated in 

Fig. 1 where LPP method is employed for spike feature 
extraction. The automatic unsupervised clustering is 
deployed by a combination of GS and LSC.  
 
 
 

 
 

 
 

 
 

 
 

 
Fig. 1. Spike sorting proposed method (adapted from [13]) 

 
The first step in the methodology is spike detection, which 

aims to identify data points that form an action potential. 
The voltage threshold detection is employed where the 
automatic threshold (ܶℎݎ) is set to:  

ܶℎݎ = 4݉݁݀݅ܽ݊ ቊ
|ݔ|

0.6745ቋ 

where ݔ is the bandpass-filtered signal [3]. For each detected 
spike, 64 samples are assembled for further process. Details 
of other steps are described in the following subsections.  
 
A. Feature Extractions 

Feature extraction is one of the most important steps in 
which the silent features of the spikes are derived based on 
spike wave shapes. The features should be able to well 
differentiate spikes of different neurons and preferably low-
dimensional. Simple features like peak-to-peak amplitude, 
maximum spike amplitude and spike width can be used [13]. 
These approaches however are sensitive to noise and 
intrinsic variations in spike shapes. Alternatively, principal 
component analysis (PCA) is one of the popular methods 
used for feature extraction [14-16]. WT also has emerged as 
a competitive feature extraction method for spike sorting 
[17-20]. For ease of comparison, we briefly present both WT 
and the suggested method LPP in the following subsections.  
 
1) Wavelet Transformation (WT): WT represents a signal in 
a time-frequency fashion [21]. Once the wavelets (the 
mother wavelet) ߮(ݔ) is fixed, translations and dilations of 
the mother wavelet can be formed ቄ߮ ቀ௫ି


ቁ , (ܽ, ܾ) ∈ Rା ×

Rቅ. It is convenient to take special values for ܽ and ܾ as 
ܽ = 2ି and ܾ = 2ି݇ where ݆ and ݇ are integers. One of 
the simplest wavelets is the Haar wavelet, which has been 
used in various applied mathematics. Haar functions can 
uniformly approximate any continuous function. Dilations 
and translations of the function ߮, which is ߮(ݔ) =
ݔ2)߮.ݐݏ݊ܿ − ݇), define an orthogonal basis in ܮଶ(ܴ). 
This means that any element in ܮଶ(ܴ) may be represented as 
a linear combination of these basis functions. The scaling 
function in Haar wavelet is simply unity on the interval [0,1) 
as ߶(ݔ) = 1	(0 ≤ ݔ < 1). Quiroga et al. [3] employed a 
four-level decomposition based on Haar wavelets for spike 
sorting. The wavelet coefficients are then selected by the 
normality test based on the Lilliefors modification of the 
Kolmogorov-Smirnov (KS) test.  
 
2) Locality Preserving Projections (LPP): LPP is a linear 
algorithm, which is seen as an alternative to PCA [10]. It 
constructs a graph integrating neighbourhood information of 
the dataset. A transformation matrix mapping the data points 
to a subspace is computed based on the notion of the 
Laplacian of the graph. LPP obtains a subspace spanned by 
the smallest eigenvectors of the local covariance matrix. 
Three steps of LPP are summarized below:  
Step 1. Creating the adjacency graph: Define ܩ as a graph 
with ݉ nodes. If ݔ and ݔ are close, an edge between nodes 
݅ and ݆ are created. There are two alternatives: 

(a) ߳-neighborhoods: Nodes ݅ and ݆ are linked by an edge 
if ฮݔ − ฮݔ

ଶ
< ߳ where ߳ ∈ ܴ and the norm is the 

Euclidean norm in ܴ.    
(b) ݇ nearest neighbors, ݇ ∈ ܰ. Nodes ݅ and ݆ are linked 
by an edge if ݅ is among ݇ nearest neighbours of ݆ or ݆ is 
amongst ݇ nearest neighbours of ݅.  

Raw signal 

Spike Detection & 
Alignment 

Feature Extraction  
(by LPP) 

Unsupervised Clustering  
(by GS + LSC) 

Spike Sorting 
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Step 2. Choosing the weights. There are two variations for 
weighting the edges as well. ܹ is a sparse symmetric ݉-
dimensional matrix with ܹ  having the weight of the edge 
connecting vertices ݅ and ݆, and 0 if there is no connection 
between ݅ and ݆.  

(a) Heat kernel. If nodes ݅ and ݆ are linked, where ݐ ∈ ܴ 

set ܹ = ݁ି
ቛ ೣషೣೕቛ

మ

 ; 
(b) Simple-minded. ܹ = 1 if and only if vertices ݅ and ݆ 

are linked by an edge.  
Step 3. Eigenmaps: Calculate the eigenvectors and 
eigenvalues for the generalized eigenvector problem: 

ࢇ்ܺܮܺ =  ࢇ்ܺܦܺߣ
where ܦ is a diagonal matrix with entries are column (or row 
if ܹ is symmetric) sums of ܹ, ܦ = ∑ ܹ  and ܮ = ܦ −
ܹ is the Laplacian matrix. Note that the ݅th column of 
matrix ܺ is ݔ .  
Denote [ܽ, … ,ܽିଵ]் as the solution of the above problem, 
ordered based on their eigenvalues, ߣ < ⋯ <  ିଵ. Thusߣ
the embedding is characterized as follows: 

ݔ → ݕ = ݔ்ܣ ܣ, = (ܽ, … ,ܽିଵ) 
where ݕ is a ݈-dimensional vector, and ܣ is an ݊ × ݈ matrix.  

In this paper, instead of using WT, we suggest the linear 
algorithm LPP for extracting spike features. 
 
B. Clustering Methods 

Three clustering methods are investigated in this paper. 
Along with SPC and LSC, the well-known k-means 
clustering is also examined for extra comparisons.  
1) Superparamagnetic clustering (SPC): SPC is one of the 
unsupervised clustering methods based on the simulated 
connections between each data sample and its ܭ nearest 
neighbours [22]. SPC calculates the interaction strength ܬ 
between neighboring points ݒ and ݒ in the first step:  

ܬ = ቐ
1
ܭ
−ቆݔ݁

݀ଶ

2ܽଶ
ቇ , if	ݒ	and	ݒ 	are	neighbors	

0										,																									otherwise
 

where ܽ and ܭ are the average distance and the number of 
nearest neighbors. The strength of the interaction ܬ 
decreases exponentially if the Euclidean distance ݀ =
ฮݔ − ฮݔ

ଶ
 increases. The Euclidean distance simply 

represents the similarity of spikes. Therefore, points in high 
density areas have stronger connections than those in low 
density areas. In the next step, each point ݔ  is assigned an 
initial random state ݏ from 1 to ݍ. Then ܰ Monte Carlo 
iterations are carried out for various temperatures ܶ 
employing the Wolf algorithm. Given an initial structure of 
states ݏ, a point ݔ is randomly chosen and its state ݏ altered 
to a new state ݏ௪ somewhere between 1 and ݍ. The 
likelihood that the nearest neighbors of ݔ will also change 
their state to ݏ௪ is computed as:  

 = 1− −൬ݔ݁
ܬ
ܶ
 ௦,௦ೕ൰ߜ

where ܶ is the temperature and ߜ௦,௦ೕ  is the point-point 
correlation [3].  

In SPC, the temperature has a key role in determining the 
number of clusters. All points will change their state 
together at low temperatures and therefore will be 
considered a single cluster. In contrast, at high temperatures, 
many points will change their state independently and thus 
partitioning the data into several clusters. The challenge is 
that one needs to pre-specify a range of temperature, e.g. 
ܶ = [0,0.2] in [3].  

There is no doubt that this range of temperature may be 
selected imprecisely because different datasets with different 
noise levels would be in favour of different temperatures. 
Furthermore, selecting a right temperature in the range may 
involve mistakenness due to the existence of unlimited 
points in the range. Even if the range is pre-defined 
appropriately, the algorithm to select the correct temperature 
to result in correct number of clusters is not guaranteed to 
work precisely in every circumstance. 
 
2) K-means Clustering: K-means clustering [23] partitions ܰ 
observations of ݀-dimension into ܭ clusters in which each 
observation assigned to the cluster with the nearest mean. 
Given a set of observations (ݔଵ, ,ଶݔ . . . ,  ே), k-meansݔ
clustering partitions the ܰ observations into ܭ clusters 
ܭ) ≤ ܥ (ܰ = ,ଶܥ,ଵܥ} . . . ,  } with the aim to minimize theܥ
within-cluster sum of squares. The algorithm comprises a 
simple re-estimation process including the following two 
steps.  
Step 1: The data points are allocated randomly to the ܭ 
clusters and the centroid is calculated for each set:  

݉ =
∑ :()ୀݔ

ܰ
, ݇ = 1, …  ܭ,

where ܰ and ݉ is the number of data points and centre of 
the ݇th cluster respectively.  
Step 2: Every point is allocated to the cluster whose centroid 
is closest to that point using the squared Euclidean distance 
measure. For a current set of cluster means, assign each 
observation as: 

(݅)ܥ = argmin
ଵஸஸ

ݔ‖ −݉‖ଶ ,				݅ = 1, … ,ܰ 

These two steps are repeated and halted when a stopping 
condition is met, i.e. there is no further change in the 
allocation of the data points.  
 
3) Landmark-based Spectral Clustering (LSC): LSC was 
first introduced by Chen and Cai [12]. The basic idea of LSC 
is to design an efficient way for graph construction and 
Laplacian matrix eigen-decomposition. LSC initially selects 
 representative data points as the landmarks and 
characterize the remaining observations as the linear 
combinations of these landmarks. The spectral embedding of 
the data can then be effectively calculated with the 
landmark-based representation. This proposed procedure 
scales linearly with the problem size. LSC is briefed in the 
following five steps.   
Step 1. Create  landmark points based on k-means or 
random selection.  
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Step 2. Produce a sparse affinity matrix ܼ ∈ ܴ× between 
observations and landmark points, with the affinity 
computed using the following equation. 

ݖ =
ݔ)ܭ (ݑ,

∑ ᇲ∈〈〉(ᇲݑ,ݔ)ܭ
 

where ܭ(. ) is a kernel function with a bandwidths ℎ and 
݆ ∈ 〈ܷ〉 with 〈ܷ〉 ∈ ܴ×  denote a sub-matrix of ܷ consisted 
of ݎ nearest landmarks of ݔ.  
The Gaussian kernel ܭ൫ݔ ൯ݑ, = exp	(−ฮݔ − ฮݑ

ଶ
/2ℎଶ) is 

one of the most commonly used.  
Step 3. Calculate the first ݇ eigenvectors of ்ܼܼ, denoted by 
ܣ = [ܽଵ, … , ܽ].  
Step 4. Calculate ܤ = [ܾଵ, … , ܾ] ∈ ܴ× by ்ܤ = ∑ିଵ்ܣ መܼ 
where መܼ =   .ܼ is the row-sum of ܦ ଵ/ଶܼ withିܦ
Step 5. Apply k-means clustering to the matrix ܤ to get the 
output clusters.  

In experiments of this paper, the k-means is chose for 
selecting landmark points with  = 1000. The number of 
nearest landmarks ݎ is set equal to 5 whilst the number of 
cluster ݇ must be found in advance by GS, which is 
presented in the next subsection.  

 
C. Evaluating Clusters: Gap Statistics (GS) 

In k-means or LSC, the challenge is to find the number of 
clusters before performing the clustering. The following 
presents a popular cluster evaluator GS [11] to find the 
natural number of clusters as an input of k-mean or LSC. GS 
has been found successfully applied into a wide range of 
problems, especially in biomedical engineering [24-25]. It is 
thus motivated for using in this particular spike sorting 
problem. GS procedure employed herein comprises the 
following nine steps [26]:  

Step 1. Cluster the data using the desired clustering 
method to obtain partitions ݇ = 1,2, …  .ܭ,

Step 2. Calculate the observed log	( ܹ) for each partition 
with ܭ clusters.  

Step 3. Create a random sample ܺ∗ of size ݊ using the 
gap-uniform procedure. For each of the ݅ dimensions (or 
variables), we generate ݊ one-dimensional variates that 
are uniformly distributed over the range ݔ to ݔ௫ , 
where ݔ characterizes the ݅-th variable or the ݅-th 
column of ܺ.  
Step 4. Cluster the random sample ܺ∗ by the same 

clustering technique as in Step 1). 
Step 5. Calculate the within-dispersion measures 

log	( ܹ ,
∗ )  for this sample.  

Step 6. Repeat steps 3) and 5) for ܤ times to result in a 
set of measure log	( ܹ ,

∗ ) where ݇ = 1, …  and ܭ,
ܾ = 1, …   .ܤ,
Step 7. Compute the average of these values and their 

standard deviation as follows: 

Wതതതത =
1
ܤ
 log	( ܹ ,

∗ )		


 

݀ݏ = ඨ
1
ܤ
ൣlog൫ ܹ ,

∗ ൯ −Wഥ ൧
ଶ
	



 

Step 8. Calculate the estimated gap statistics 
gap(݇) = Wതതതത − log	(W) 

Step 9. Define s = ඥ1݀ݏ +  and chose the number ܤ/1
of clusters as the smallest ݇ such that gap(݇) ≥
gap(݇ + 1)−   .ାଵݏ

It is worth to note that the challenge to obtain the likely 
correct number of clusters is as difficult as obtaining the 
optimal temperature in SPC. Selecting a number of clusters 
far from being optimal can cause a dramatic change in 
accuracy of the model. 
 

III. EXPERIMENTS AND RESULTS 
Datasets used for experiments in this paper are identical to 

those published in Quiroga et al. [3] for ease of comparisons. 
Four datasets with different noise levels, from 0.05 to 0.2 (or 
0.4 for easy clustering datasets), are simulated for 
experiments. Three separate spikes having a Poisson 
distribution of interspike intervals with a mean firing rate of 
20 Hz are presented in all four datasets. The background 
noise reproduces spike shape variability although spikes are 
originated from the same class. The refractory period of 2ms 
is introduced between spikes of the same class.  

In the previous study Quiroga et al. [3], the WT technique 
is used for feature extraction to derive 64 features of the 
spike shapes. These features are then reduced using the KS 
test for normality. The first 10 wavelet coefficients with the 
largest deviation from normality were employed for 
implementation. The chosen wavelet coefficients, which are 
a compressed form of the spike features, are then input to the 
SPC clustering method. Experimental results based on the 
synthetic data demonstrated that the combination of WT (for 
feature extraction) with SPC leads to higher spike sorting 
accuracy compared to other combinations, i.e. PCA + SPC, 
Wavelet + K-means or PCA + K-means (the first term 
represents feature extraction whilst the latter is the clustering 
method). 

Comparable to 10 wavelet coefficients, 10 features 
derived from the LPP method are served as inputs to 
clustering methods. Graphical comparisons of feature 
extraction by wavelet plus KS test and by the LPP method 
are presented in Fig. 2 & 3 respectively. The dataset at 
Example 1, noise level 0.2 (see Table I) is used for the 
illustration. Note that results reported here are with and 
without overlapping spikes after clustering by the k-mean 
method.  

Comparing the projections before and after removing 
overlapping spikes in both methods, it is clear that 
overlapping spikes do not belong to a cluster clearly but they 
tend to locate in the confused areas among clusters. 
Obviously, overlapping spikes are hard to be clustered and 
they certainly can cause a dramatic decline in the 
performance of the feature extraction and then of the 
clustering methods.  

Both feature extraction methods WT and LPP demonstrate 
the ability to separate three clusters. However, it is worth to 
note the appearance of many red colour spikes in the blue 
cluster area in the projection with overlapping spikes (Fig. 
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2A) and even after removing overlapping spikes (Fig. 2B) of 
the WT method. In the LPP projection, after removing 
overlapping spikes, the mixture among 3 clustering areas 
disappear and fetch very clear separate clusters (Fig. 3B). 
Thus, very discriminative features are obtained by the LPP 
compared to the WT+KS method.  

 

 
Fig 2. Best projection of extracted features by WT + KS test: 
A) with overlapping spikes, B) without overlapping spikes. 

 

 

 
Fig 3. Best projection of extracted features by LPP: A) with 

overlapping spikes, B) without overlapping spikes. 
 

After extracting features of the spike waveforms by either 
WT or LPP, each clustering algorithm, i.e. SPC, k-means, 
and LSC, is carried out 20 times and the average results are 
reported in Table I & II.  

Table I & II present results in the fashion that separates 
two feature extractions: WT and LPP. Table I assembles 
results when having overlapping spikes included whilst 
outcomes in Table II are calculated without overlapping 
spikes. For each dataset, results presented in Table I & II are 
of independent trails.  

Note that in SPC, there is not a pre-set number of clusters 
but SPC finds the number of clusters automatically. SPC 
selects the appropriate temperature that decisively 
determines the number of clusters. As SPC does not require 
a prior determination of the number of clusters, the threshold 
of 3 clusters (equal to the real number of clusters) is set to 
limit the number of clusters. If the number of clusters 
automatically detected is greater than 3, then the 3 largest 
clusters with the most overlapping with the real clusters will 
be recorded to calculate the accuracy.  

On the other hand, the k-means and LSC methods require 
a pre-determined number of clusters by gap statistics. 
Therefore, the numbers in parentheses adjacent to values in 
the k-means and LSC columns indicate the number of 
clusters when different from 3. 

 
IV. DISCUSSIONS 

Comparing two feature extraction methods, we see that 
spike features extracted by WT and LPP when inputting into 
the SPC lead to a very similar accuracy. With overlapping 
spikes (Table I), WT+SPC obtains 65.35% accuracy whilst 
LPP+SPC reaches 65.41%. Without overlapping spikes, 
these numbers are 68.20% and 68.96% respectively in Table 
II. However, when applying to the k-means and LSC 
methods, there is a significant difference. LPP features result 
in a much greater accuracy than those of the WT in both 
Table I and Table II. Specifically, LPP combined with k-
means on average obtains the accuracy at 74.37% (or 
74.63% in Table II) whilst that of the WT+K-means is just at 
68.22% (or 68.60% in Table II). The proposed method 
LPP+LSC leads to the highest average accuracy, at 78.20% 
(or 81.63% in Table II) compared to 73.65% (or 75.04% in 
Table II) of the WT+LSC.  

 

 
Fig. 4. Average performance of three clustering methods  

B) 

A) 

Remove 
overlapping 

spikes 

B) 

A) 

Remove 
overlapping 

spikes 
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TABLE I 
AVERAGE ACCURACY OF DIFFERENT SPIKE SORTING METHODS  

Example Noise 
levels 

No. 
spikes 

WT WT WT LPP LPP LPP 

SPC(*) GS + 
K-means 

GS + 
LSC SPC(*) GS + 

K-means 
GS + 
LSC 

Example 1 0.05 3514 58.56 77.96 (5) 83.89 (4) 54.83 62.85 (5) 61.35 (5) 
 0.10 3522 62.68 77.24 (5) 68.93 (5) 62.29 73.21 (5) 68.14 (5) 
 0.15 3477 71.19 72.81 (5) 69.75 (5) 77.57 72.25 (5) 69.08 (5) 
 0.20 3474 60.52 69.57 (5) 83.17 (4) 84.07 83.06 (4) 98.73 
 0.25 3298 70.73 70.77 (5) 69.09 (5) 79.62 90.89 99.18 
 0.30 3475 50.88 79.66 (4) 67.36 (5) 55.23 87.59 84.05 (4) 
 0.35 3534 69.58 68.34 (5) 67.56 (5) 56.08 80.93 83.46 (4) 
 0.40 3386 87.21 67.69 (5) 66.03 (5) 54.28 88.00 99.38 
Example 2 0.05 3410 67.79 73.37 (5) 65.12 (5) 63.90 66.92 (5) 75.01 (5) 
 0.10 3520 81.10 60.10 (5) 99.07 79.44 80.64 (5) 78.30 (5) 
 0.15 3411 70.74 59.80 (4) 67.67 (5) 75.08 85.01 (4) 83.14 (4) 
 0.20 3526 60.13 50.55 (5) 66.90 (5) 42.54 89.81 65.93 (2) 
Example 3 0.05 3383 63.17 73.71 (5) 50.99 (5) 53.59 48.21 (2) 55.70 (5) 
 0.10 3448 53.64 51.59 (5) 67.78 (5) 67.57 68.55 (5) 65.09 (5) 
 0.15 3472 66.26 47.40 97.80 38.31 44.91 (2) 65.46 (2) 
 0.20 3414 52.86 47.89 (5) 63.50 (5) 34.68 40.62 (2) 59.18 (2) 
Example 4 0.05 3364 58.69 73.23 (5) 67.39 (5) 64.23 81.04 (5) 90.34 (5) 
 0.10 3462 55.36 73.42 (5) 82.97 (4) 88.91 58.52 (2) 65.56 (2) 
 0.15 3440 68.11 96.96 68.30 (5) 89.68 93.64 97.66 
 0.20 3493 77.75 72.36 (5) 99.67 86.32 90.80 99.31 
Average  3451 65.35 68.22 73.65 65.41 74.37 78.20 

           (*)No pre-set number of clusters for SPC  
TABLE II 

AVERAGE ACCURACY OF DIFFERENT SPIKE SORTING METHODS WITHOUT OVERLAPPING SPIKES 

Example Noise 
levels 

No. 
spikes 

WT WT WT LPP LPP LPP 

SPC(*) GS + 
K-means 

GS + 
LSC SPC(*) GS + 

K-means 
GS + 
LSC 

Example 1 0.05 2729 60.63 78.97 (5) 85.37 (4) 54.72 54.06 (5) 73.63 (5) 
 0.10 2753 61.80 77.57 (5) 67.74 (5) 62.06 70.20 (5) 76.37 (5) 
 0.15 2693 72.29 74.52 (5) 69.39 (5) 76.25 68.98 (5) 68.32 (5) 
 0.20 2678 66.26 71.81 (5) 83.95 (4) 89.39 85.61 (4) 99.95 
 0.25 2586 69.80 75.37 (5) 69.39 (5) 84.32 87.68 99.98 
 0.30 2629 47.82 83.61 (4) 67.38 (5) 58.74 90.80 84.36 (4) 
 0.35 2702 68.16 65.96 (5) 67.85 (5) 56.61 72.33 84.38 (4) 
 0.40 2645 93.85 69.81 (5) 67.31 (5) 54.64 87.89 99.76 
Example 2 0.05 2619 66.74 74.99 (5) 68.98 (5) 67.59 74.23 (5) 83.29 (5) 
 0.10 2694 80.90 63.18 (5) 99.93 82.70 87.91 (5) 84.98 (5) 
 0.15 2648 78.70 58.13 (4) 62.66 (5) 85.86 85.76 (4) 84.92 (4) 
 0.20 2715 67.71 51.84 (5) 67.33 (5) 44.82 82.29 66.53 (2) 
Example 3 0.05 2616 75.67 77.39 (5) 69.88 (5) 57.04 55.33 (2) 67.82 (5) 
 0.10 2638 63.44 42.23 (5) 69.20 (5) 70.07 68.68 (5) 62.89 (5) 
 0.15 2660 60.64 46.97 99.88 40.12 48.60 (2) 67.29 (2) 
 0.20 2624 51.45 48.64 (5) 66.94 (5) 34.72 42.70 (2) 60.52 (2) 
Example 4 0.05 2535 61.02 75.88 (5) 67.72 (5) 72.86 89.13 (5) 100.0 (5) 
 0.10 2742 62.26 73.19 (5) 82.89 (4) 99.21 58.31 (2) 67.65 (2) 
 0.15 2631 74.85 87.85 67.08 (5) 97.70 85.22 99.99 
 0.20 2716 80.08 74.09 (5) 100.0 89.73 96.87 99.99 
Average  2663 68.20 68.60 75.04 68.96 74.63 81.63 

 
Comparing three clustering methods, LSC on average is 

clearly more accurate than k-means and SPC (see Fig. 4 for 
a graphical comparison). Along with the superiority of LPP 
features against WT ones, it is obvious that the proposed 
LPP+LSC is the more competent spike sorting compared to 
the popular benchmark WT+SPC. LPP+LSC is 
approximately on average 13% superior to WT+SPC 
regardless of taking or not taking overlapping spikes into 
account (see Table I & II). The box plot below exhibits more 
detailed the dominance of LPP+LSC contrast to WT+SPC.  

Fig. 5 illustrates the comparisons between the proposed 
method LPP+LSC (in light blue) and the benchmark 
WT+SPC (in red colour) after removing overlapping spikes. 

In each dataset, denoted by its noise level on the horizontal 
axis, there are two boxes showing results of two 
corresponding methods. Each box shows the distribution of 
results throughout 20 trials.  

The median values of the LPP+LSC distributions are 
greater than those of the WT+SPC in almost every 
experimental dataset. This is consistent with the mean values 
reported in Table II that shows a significant dominance of 
the proposed LPP+LSC method against the WT+SPC. 
Alternatively, the interquartile ranges of the LPP+LSC are 
much smaller than those of the WT+SPC. This demonstrates 
the greater stability and robustness of the LPP+LSC 
approach compared to WT+SPC.  
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Fig. 5. Performance comparisons between WT+SPC and LPP+LSC methods 

 

 
Fig. 6. Spikes after clustering of Example 4, noise level 0.2 

 
On the other hand, it is seen that GS when deployed with 

LPP features obviously leads to a more accurate number of 
clusters than when applied with WT features.   

The number of clusters detected reflects not only the 
performance of GS but also the effectiveness of the feature 
extraction method. LPP features enable GS to perform more 
efficiently than those of the WT. Particularly, when GS 
combined with k-means, LPP leads to seven correct cases (3 
clusters) whilst WT produces correct results in only two 
datasets. In the case of LSC, LPP leads to precise results in 
five datasets compared to three datasets of the WT features 
(see Table I or II).  

Fig. 6 graphically shows results of the proposed method 
applied to the dataset Example 4, noise level 0.2. In the 
figure, the left presents both overlapping and none-
overlapping spikes whilst the right has overlapping ones 

removed. The original spike shapes of the dataset are plotted 
on top of the figure. It is seen that the spikes in the dataset 
exhibit a complicated spike sorting process. This is because 
the shapes of its 3 spikes are hard to differentiate (see 
original spikes on top of Fig. 6).  

 
V. CONCLUSIONS 

This paper presents the integrated approach of LPP, GS 
and LSC for spike sorting. As per obtained results, the 
proposed method significantly dominates the popular 
existing combination of WT and SPC. LPP method exhibits 
its remarkable suitability in the spike feature extraction 
compared to the WT.  

On the other hand, the LSC clustering method 
demonstrates its advantage when combined with the cluster 
evaluator GS. Under the automatic perspective, the 
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comparison is absolutely convincing as the challenge to find 
the correct number of clusters in the proposed LPP+LSC 
method is as difficult as to find the appropriate temperature 
in SPC. Selecting an inappropriate temperate in SPC results 
in a low spike sorting accuracy and so does the cluster 
evaluation by GS. The challenge to estimate the correct 
range of temperature for SPC is complicated because 
datasets with different noise levels would require different 
temperatures.  

Given that the range of temperature is specified correctly, 
selecting the ideal single point temperature from the range is 
also problematic for SPC due to the existence of unlimited 
points within the range. Our proposed method attempts to 
estimate the number of clusters first and then employs 
clustering methods that lead to significantly improved spike 
sorting performance.  

Overlapping spikes are a huge challenge for any spike 
sorting methods as they tend to increase the difficulties in 
detection and sorting and thus reduce the overall sorting 
performance. Overlapping spike sorting problem thus would 
be worth a further research. As LPP and LSC are both linear 
algorithms, the combination of these two methods helps 
reduce remarkably the computational burden. This implies 
that the proposed method can be applied into real-time spike 
analysis, which is interesting for a more extensive 
investigation in the future. 
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