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Abstract—P300 speller is the communication tool based on
Brain Computer Interfaces (BCIs) which allow users to input
letters only by thoughts. It uses P300, one of the event-related
potential (ERP), as the target feature. In P300 speller, another
person starts and closes the system. Therefore, a user can-
not switch P300 speller ON/OFF by himself/herself. To solve
this problem, an asynchronous P300 speller which can control
ON/OFF based on the user’s intention of input is needed. In
recent years, the intention classification method with additional
pre-training has been proposed. In the additional pre-training,
the classifier trains non-control state data which is recorded when
the user does not input. However, the additional pre-training
causes another burden and usage restrictions. In this paper, we
propose and study an intention classification method using only
training data in which a user inputs letters and an asynchronous
system in P300 speller based on the user’s intention of input.

I. INTRODUCTION

Brain-Computer-Interfaces (BCIs) allow users to control
external devices without using muscles based on the brain
signals such as electroencephalogram EEG [1]. BCIs are
expected to be developed as a communication tool for severely
paralyzed patients like those with amyotrophic lateral sclerosis
(ALS) [2]. P300 speller [3] is one of the BCIs by which
a user can input letters only by thoughts using P300, one
of the event related potential (ERP), as the target feature.
P300 speller generally employs the interface on which letters
are allocated in the form of matrix (see Fig. 1). Each row
and column is flashed one by one in random order, which
is called stimulus presentation. A user concentrates on his/her
desired letter by counting how many times it intensified. When
the attended letter is intensified, the P300 is elicited. The
system discriminates the user’s desired letter that includes the
P300 most likely as the target one. However, the patterns of
P300 and its features are individually different. Therefore,
just before an actual use, the classifier has to be trained
with training data in which the user inputs a set of prepared
letters (pre-training). Discriminant score for each recorded data
is calculated based on the model generated in pre-training,
and the system discriminates P300/non-P300 based on the
discriminant score.

In P300 speller, another person starts and closes the sys-
tem generally. Therefore, a user cannot switch P300 speller
ON/OFF by himself/herself when the user wants to input
letters or to stop the system. Asynchronous P300 speller which

Fig. 1. Interface of P300 speller

can control ON/OFF based on the user’s intention of input is
needed. Recently, several studies have addressed the issue of
the asynchronous control of BCI. Zhang et. al. proposed a
computational approach to implement an asynchronous P300-
based BCI [4]. F Aloise et.al. proposed an asynchronous gaze-
independent BCI [5]. Panicker et al. proposed an asynchronous
P300 BCI with SSVEP-based control state detection [6].
In these approaches, in addition to general pre-training, the
classifier trains non-intention training data which is recorded
when the user does not input letters (non-control state), then
the system classifies a user’s intention of input and switches
ON/OFF based on the classification results. However, in
these methods, additional pre-training for non-control state
is needed. Moreover, the non-control state in actual input
basically has to match the state in the pre-training, or the
classifier has to train several types of non-control state.

In this paper, we propose a classification method based on
user’s intention of input using only intention training data
which is recorded when user input letters (control state), i.e.
the proposed method does not need additional pre-training.
We evaluate the performance of the proposed method in the
experiment on classification of input intention and discuss the
results.
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Fig. 2. Flow of Proposed method

II. PROPOSED METHOD

A. A process of Discrimination

Figure 2 shows the flow of the proposed method. In Fig.2,
T is the number of sequences (in one sequence, every row and
column flashes once in random order) on stimulus presenta-
tion. In the beginning or after inputting a letter, the minimum
number of sequences on stimulus presentation to be classified
is T0. This is because of the low signal-to-noise ratio of P300.
Figure 1 shows 7 10 matrix interface, and the number of
candidates in Fig.1 is 17 (7 rows and 10 columns). When ith
candidate flashes in tth sequence, the recorded EEG data is
represented as x

(t)
i . In tth sequence, the EEG data denotes

x(t) = {x(t)
i |i = 1, 2, ..., 17}. When the classification of

input intention is done, EEG data in several sequences are
averaged and the averaged data are used to reduce the noises
and improve the classification accuracy. After the stimulus
presentation in T sequences, classified EEG data denotes
X(T ) = {x(t)|t = Ts, Ts+1, ..., T}. Ts is the start of sequence
for classification and defined by the following equation.

Ts =

{

1 (T < TL)

T − TL − 1 (T ≥ TL)

TL is the maximum length of sequences to be classified. When
the system classifies user’s intention into non-control state,
stimuli of one more sequence are presented. Then the system
classifies user’s intention again using the latest X(T ). This
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Fig. 3. Score distribution

intention classification continues until the result of the clas-
sification becomes control state. When the system classifies
user’s intention into control state, the target letter is predicted
based on the discriminant scores. In the determination of a
target letter, row/column that has the highest averaged score
among all rows/columns is identified, and the target letter is
predicted by the intersection of the identified row and column.

B. model of P300 and non-P300 discriminant score

Discriminant score value is calculated as

d
(t)
i = w ∗ x(t)i

(1)

where w is the weights assigned based on the training data and
x
(t)
i denotes the EEG data on ith candidate in tth sequence. In

pre-training, a user inputs a set of prepared letters. Therefore,
every training data is labeled as P300 data or non-P300 data.
Averages of the P300 and the non-P300 discriminant scores
(μP300 μnon-P300) are calculated from the training data.
Based on the previous the study [7], each score distribution is
assumed as a normal distribution. Figure 3 shows an image of
the probability density models of the discriminant score in a set
of training data. We employ these score models to describe the
likelihood of P300 and non-P300 by the following equations:

p(d
(t)
i |P300) =

1√
2πσ

exp

{

−(d
(t)
i − μP300)

2

2σ2

}

(2)

p(d
(t)
i |non-P300) =

1√
2πσ

exp

{

− (d
(t)
i − μnon-P300)

2

2σ2

}

(3)

where the parameters for the normal distributions can be
learned from the training data.

C. Classification of user’s intention

When a user wants to input a letter, the P300 is elicited
when the row/column including the target letter flashes. When
a user has no intention to input a letter, P300 or a noise similar
to P300 is rarely recorded intensively at a certain row/column.
In the proposed method, input reliability R(T ) is calculated by
X(T ).
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The discriminant scores on the target row/column denotes
d
(t)
target = {d(t)i |i = r̂, ĉ}, where r̂ and ĉ are the estimated

target row and column based on X(T ). After the stimulus pre-
sentation in T sequences, the ensemble of discriminant scores
on the target row/column denotes D

(T )
target = {d(t)target|t =

Ts, Ts + 1, ..., T}. R(T ) is defined by the following equation.

R(T ) = P (P300|D(T )
target) =

P (D
(T )
target|P300)P (P300)

P (D
(T )
target)

=
P (D

(T )
target|P300)P (P300)

P (D
(T )
target|P300) + P (D

(T )
target|non-P300)

(4)

We assume an even probability between P (P300)

and P (non-P300) = 1/2. The P (D
(T )
target|P300) and

P (D
(T )
target|non-P300) represent the conditional probability

density of observation when D
(T )
target is given. We assume each

EEG data is independent one another, so we have

P (D
(T )
target|P300) =

∏

t,i

p(d
(t)
i |P300) (5)

P (D
(T )
target|non-P300) =

∏

t,i

p(d
(t)
i |non-P300) (6)

where p(d
(t)
i |P300) and p(d

(t)
i |non-P300) is calculated by

ep.(2) and eq.(3), respectively. In the classification of input
intention, if R(T ) > Rthre where Rthre is a preset threshold,
the system classifies user’s intention into control state. If not,
the system classifies user’s intention into non-control state.

III. EXPERIMENT

A. Data Description

In this paper, the interface containing Japanese characters
shown in Fig.1 was employed for the P300 speller experiment.
The offline experiment was done and it used a recorded
dataset which contained EEG data measured by four subjects
(Sub1 Sub2 Sub3, Sub4) The EEG data was recorded
with sampling frequency of 1000Hz from nine electrodes
based on the ten-twenty electrode system of the international
federation [8] : Fz, Cz, Pz, O1, O2, P1, P2, C3 and C4,
referenced to the linked ears, A1 and A2. The P300 speller
implemented in BCI2000 [9], a general-purpose system for
brain-computer interface research, was employed. The stimu-
lus onset asynchrony (SOA) was 175ms. One letter consisted
of ten sequences, and one sequence contained 17 (10 rows and
7 columns) stimuli. Two types of EEG data were recorded.
One was the control state data in which the users were
concentrating on the target letter (the users counted how many
times the desired letter was intensified). The other was the non-
control state data in which the users were paying no attention
to a target but looking at the interface. In both cases, EEG
for 40 letters (40 10 sequences) were recorded. These EEG
signals were down-sampled to 100Hz, 12 data points after each
stimulus corresponding to 0ms (50ms) to 600ms by averaging
5 data points in every 50ms were extracted. Stepwise Linear

Discriminant Analysis (SWLDA) [10] was employed for the
discrimination of P300/non-P300 in this experiment.

B. Experimental Settings

To evaluate the performance of the proposed method, the
offline experiments using the data described in III-A were
conducted. First, 10 letters (10 10 sequences) of the control
state were utilized for the pre-training. The discrimination
function and the score model of P300 and non-P300 were
calculated by the training data. Then, two types of test data
were generated and the proposed method was applied. One
was consisted of the control state data of 20 letters (20
10 sequences ). In the control state data, there could be three
different classification results.

1) Correct Discrimination: the target letter was correctly
detected.

2) Failure of Discrimination: The classification of the input
intention was correct, but the target letter was not
correctly detected.

3) Failure of classification: the system classified into a non-
control state, i.e. it could not classify the data into the
control state by the latest TL(=10) sequences.

We calculated the accuracy of classification, the ratio of the
number of sequences needed to classify the user’s intention
into control state over the number of sequences of stimulus
and the information transfer rate (ITR). ITR indicates that how
many bits of information is able to communicate effectively
through the interface [11].

ITR =
log2(N) + p log2(p) + (1− p) log2(

1−p
N−1 )

d
(7)

where p denotes the accuracy of classification, N denotes the
number of choices, i.e. N = 70 in this experiment, and d
denotes the average time (minutes) to enter one letter in a
session.

The other test data was consisted of the non-control state
data of 10 minutes (202 sequences). We calculated the false
positive rate (FPR) which indicates how many false events (the
non-control state into the control state) the system detected on
average within 1 minute.

These pre-training and intention classification were con-
ducted for 50 times, and the results were averaged. In this
experience, T0 = 3, TL = 10 and Rthre = 0.99.

IV. RESULT AND DISCUSSIONS

Table I shows the result in the control state data. In
table I, Correct Discrimination achieved on average 89.3%
(std.=5.9%), Failure of Discrimination achieved on average
10.5% (std.=5.8%) and Failure of Classification achieved on
average 0.2% (std.=0.7%). It shows that incorrect classification
was rarely done by the proposed method, while the number of
sequences was 3.3 on average (std.=0.2). Figure 4 shows the
result of ITR and Fig. 5 shows FPR in the offline experiment.
A mean value of ITR was 31.06 bit/min (std.=3.66) and FPR
achieved on average 0.11 event/min (std.=0.12).
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TABLE I
RESULT OF CONTROL STATE DATA

Correct Discrimination( ) Failure of Discrimination ( ) Failure of Classification( ) Number of sequences
Average std. Average std. Average std. Average std.

Sub1 90.4 5.9 9.5 5.8 0.1 0.7 3.2 0.2
Sub2 84.9 5.4 14.7 5.2 0.4 1.4 3.5 0.3
Sub3 88.3 6.5 11.6 6.4 0.1 0.7 3.3 0.2
Sub4 93.7 5.7 6.3 5.7 0.0 0.0 3.1 0.1

Average 89.3 5.9 10.5 5.8 0.2 0.7 3.3 0.2
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Fig. 4. Information transfer rate (bit/min)
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Fig. 5. False positive rate (event/min)

Zhang et al. reported on average 1.0 event/min in FPR, and
a mean ITR of 20 bit/min in the offline experiment [4]. Though
there were some differences in the experimental settings and
the classification approach, these results in this experiment
show that the proposed method using only control state data
had good ITR with low FPR.

V. CONCLUSIONS

In this paper, we proposed and discussed the intention
classification method using only training data in control state.
In the offline experiment, the proposed method achieved on
average ITR of 31.06 bit/min with a mean FPR of 0.11

event/min. This result showed that the performance of the
proposed method was demonstrated good ITR with low false
FPR in 4 subjects comparing with the conventional method.
We will do online experiments by the proposed method and
investigate the proposed method more.
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