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Abstract—While many existing multi-task learning
based Wi-Fi location approaches pay more attention
on the location performance, they generally neglect de-
termining key access points(APs). In order to reduce
maintenance cost in complex indoor environment, a new
multi-task learning based Wi-Fi location approach is
proposed to find the key APs with enough accuracy. First,
we introduce extreme learning machine as basic method
to establish a new multi-task learning machine. This
machine is based on the assumption that the hypotheses
learned from a latent feature space, rather than the
original high-dimensional feature space, are similar, in
which L1/2-norm is utilized to construct L2−1/2-norm to
achieve joint feature selection in multi-task scenario. An
alternating optimization method is employed to solve this
problem, by iteratively optimizing the latent space and
key features. Experiments on real-world indoor localiza-
tion data are conducted, and the results demonstrate the
effectiveness of the proposed approach.

I. INTRODUCTION

Currently, indoor localization using 802.11 wire-
less LAN has attracted more and more interest from
research and industrial communities. Many machine
learning methods are widely applied to improve local-
ization performance. Generally speaking, these meth-
ods firstly collect wireless signals, often the re-
ceived signal strength(RSS) values, from various access
points(APs), and then establish regression or classi-
fication models for localization[1]. When a real-time
RSS value is input into this model, the corresponding
localization information can be predicted.

At present, multi-task learning(MTL)[2-3] methods
have get satisfactory localization results. These meth-
ods often assume the distribution of the collected signal
data are fixed so that the localization model learned
from one device, place or time can be used for another
one. Following this assumption, some researches[4-6]
apply MTL on multi-device/space/time settings accord-
ing to their different practical requirements. However,
these methods tend to neglect determining the key APs

which are important for daily maintenance. This target
can be achieved via the joint feature selection in multi-
task learning.

Although many traditional MTL methods utilize
L1-norm or LASSO to get satisfactory selection results,
the obtained sparsity is not enough in the application of
Wi-Fi localization. For example, we need to determine
the most key APs, even chosen again from the results
of conventional L1-norm based MTL feature selection.
In other words, the results of traditional MTL feature
selection are still not enough sparse in this scenario.
To find key APs with enough localization precision,
a new multi-task learning approach based on L1/2-
norm is proposed for Wi-Fi localization. The critical
step of this approach is utilizing L1/2-norm to con-
struct L2−1/2-norm regularizer in multi-task learning.
Because L1/2-norm has many advantages such as more
sparse than L1-norm, easier calculation than L0-norm
regularization[7], etc., the proposed approach can get
more key APs than L1-norm based methods. To our
best knowledge, this research serves as a first attempt
to establish L2−1/2-norm based multi-task learning
approach.

The contributions of our work are as follows.
For Wi-Fi localization application, we develop a new
approach for calibrating a new device by making use of
data collected before on other devices, and some key
APs can be determined while keeping precision to a
certain degree. For machine learning, we develop a new
feature selection multi-task learning algorithm based
on L2−1/2-norm for better exploiting sparsity. In the
experimental section, we demonstrate our approachs
effectiveness on real data sets.

II. RELATED WORKS

Learning based Wi-Fi localization methods general-
ly include two steps: in an offline step, a mobile device
moving around the wireless environment is used to
collect wireless signals from various APs. The received
signal strength(RSS) values are then used to learn a
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statistical model with location information contained.
In online localization step, this model is sued to infer
the locations according to the real-time RSS values.

Many statistical and machine learning methods
were introduced to solve this problem. For example, k-
ernel learning[8] is used to achieve location estimation.
Gaussian process was also utilized to make localization
via constructing a latent variable model. And MTL or
TL based localization approaches received more and
more attentions in recent years. For example, Zheng[4]
extended the general assumption mentioned above, and
presented another assumption for multi-device prob-
lem: the data distribution for related tasks may not be
similar in the high-dimensional feature space. On the
contrary, he looks for an appropriate feature mapping to
seek a latent low-dimensional feature space, in which
new device can get useful information from integrating
the data collected before. Many MTL and TL based
localization methods[5-6] all employ similar idea.

Multi-task learning make each task get benefit from
others via learning a set of related tasks jointly. An gen-
eral assumption for MTL is that the hypotheses learned
from the original high-dimensional feature space for
related tasks are similar[2]. Another further assumption
is that the hypotheses learned in a latent feature space
are similar[3]. Based on these assumptions, multi-task
feature selection is a key issue in real applications.
Paredes[9] utilizes an irrelative task to learn main tasks
via using its prior information to construct a sparse
and efficient information expression. Argyriou[3] in-
troduces L1-norm regularization to extend LASSO for
single task into the setting of multi-task, and selects im-
portant features while improving learning performance.
Obozinski[10] presents L2−1-norm for joint feature
selection in multi-task learning. This method firstly
calculates L2-norm of one feature across tasks, and
then computes L1-norm across features. Kumar[11]
utilizes a group of basic latent task to express each
learning task, which is based on the assumption that
related tasks have similar linear weights of these latent
tasks. Totally speaking, these methods generally fail to
seek stronger sparsity in multi-task learning.

III. BRIEF INTRODUCTION OF ELM

As studied by [12], the theoretical foundations of
ELM is that SLFN with at most N hidden neuron-
s can learn N distinct samples with zero error by
adopting any bounded nonlinear activation function.
Following this concept, Huang[13] proposed ELM
algorithm whose main procedure is determining the
output weights by a matrix pseudo-inversion compu-
tation after initializing the input weights and hidden
layer biases randomly. As proved empirically by many
researchers[14], ELM has very high learning speed,
simple network structure and good generalization per-
formance. Here a brief summary of ELM is provided.

Given a set of i.i.d training samples
{(x1,y1), · · · , (xN ,yN )} ⊂ R

d × R
m, standard

SLFNs with Ñ hidden nodes are mathematically
formulated as:

Ñ∑
i=1

βigi(xj) =

Ñ∑
i=1

βigi(wi · xj + bi) = oj , j = 1, ..., N

(1)
where g(x) is activation function, wi =
[wi1, wi2, ..., wid]

T is input weight vector
connecting input nodes and the ith hidden node,
βi = [βi1, βi2, ..., βim]T is the output weight vector
connecting output nodes and the ith hidden node, bi is
bias of the ith hidden node. Huang[13] has rigorously
proved that then for N arbitrary distinct samples
and any (wi, bi) randomly chosen from R

d × R

according to any continuous probability distribution,
the hidden layer output matrix H of a standard
SLFN with N hidden nodes and is invertible and
‖Hβ −T‖ = 0 with probability one if the activation
function g : R �→ R is infinitely differentiable in
any interval. Then given (wi, bi), training a SLFN
equals finding a least-squares solution of the following
equation[13]:

Hβ = Y (2)

where:

H(w1, ...,wÑ , b1, ..., bÑ ,x1, ...,xÑ )

=

⎡
⎢⎣

g(w1 · x1 + b1) · · · g(wÑ · x1 + bÑ )
... · · · ...

g(w1 · xN + b1) · · · g(wÑ · xN + bÑ )

⎤
⎥⎦
N×Ñ

β = [β1, ..., βÑ ]T

Y = [y1, ...,yN ]T

Considering most cases that Ñ � N , β cannot be
computed through the direct matrix inversion. There-
fore, Huang[13] calculated the smallest norm least-
squares solution of equation (2):

β̂ = H†T (3)

where H† is the Moore-Penrose generalized inverse
of matrix H. Based the above analysis, Huang[13]
proposed ELM whose framework can be stated as
follows:

Step 1. Randomly generate input weight and bias
(wi, bi), i = 1, · · · , Ñ .
Step 2. Compute the hidden layer output matrix H.
Step 3. Compute the output weight β̂ = H†T.

Therefore, the output of SLFN can be calculated
by (wi, bi) and β̂:

f(xj) =
Ñ∑
i=1

β̂igi(wi · xj + bi) = β̂ · h(xj)
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IV. MULTI-TASK LEARNING FOR WI-FI

LOCALIZATION

Different from the methods above, we attempt
to establish a general multi-task learning framework
which can improve generalization performance and
select most important features. In this target, the input
dimension is not high. Considering extreme learning
machine(ELM)[13] has many advantages such as high
learning speed, good generalization, etc, we use ELM
as basic architecture to construct new multi-task learn-
ing framework. Due to the limitation of space, the
introduction of ELM is omitted here.

A. Optimization target

Consider a two-dimensional Wi-Fi localization
problem. Assume there are m APs, which periodi-
cally broadcast wireless signals. A device can mea-
sure the RSS values from m APs. Each RSS vector
xi =

(
xi1, x

i
2, · · · , xid

)′
is a data instance, and its label

yi = (y
(i)
1 , y

(i)
2 ) is a 2-D location coordinate vector.

In real application, we need to collect lots of labeled
signal data Dsrc =

{(
xisrc,y

i
src,j

)}
, i = 1, · · · , ns,

j = 1, 2. Here our objective is to use Dsrc to help
predict the labels for a target device, by which we will
only collect a small number of labeled signal data.

Specifically speaking, we focus on the learning task
on different devices. To share the information between
devices, we need to find proper feature mapping func-
tions ϕt, t = 1, ..., T , which can map the data collected
from source and target devices into a common latent
feature space. Like [2], we define the task relatedness
by exploiting the shared structure by the hypotheses.
More specifically, we consider ELM regression prob-
lem: f (x) = β · h (x), where β is output weight
vector and h (·) is activation function. Each task t,
t = 1, · · · , T , has a hypothesis parameterized as βt,
then βt share a common structure β0 by:

βt = β0 + νt, t = 1, · · · , T

where νt denotes the difference for each task t. We
follow the idea of latent multi-task learning proposed
in [4], and formulate our multi-task learning method
under ELM setting as follows:

min J(β0,νt, eit,Φ) =
T∑
t=1

m∑
i=1

e2it +
λ1

T

T∑
t=1

‖νt‖2

+λ2‖β0‖2 + λ3‖Φ‖
1
2
2−1/2

s.t. yit − (β0 + νt) · h(φt(xit)) = eit,
λ1, λ2, λ3 > 0

(4)
From left to right in equation (1), we explain each

term:

• The first term
T∑
t=1

m∑
i=1

e2it indicates the regression

loss across total T tasks. Minimization this term
equals to minimize the overall localization error over
T devices.

• In the second term, minimizing ‖νt‖ make the
tradeoff between the relatedness of tasks in the latent
feature space φt(x).

• In the third term, minimizing ‖β0‖2 means
improving the generalization ability of ELM, which
is shown in ELM theory[13]. Note regularization
parameters λ1 is forced to be larger than λ2 in order
to make the task related to each other.

• In the fourth term, ‖Φ‖ 1
2
2−1/2 denotes the

complexity and sparsity of mapping functions
Φ = [φ1, φ2, · · · , φt, · · ·φT ]. To make our problem
tractable, we force φt as a linear transformation, as
φt(x) = φtx. So Φ is d × (k × T ) matrix, k < d is
the dimension of the latent space. This term plays as a
L2−1/2-norm regularizer of mapping function, which
makes the latent feature be sparse.

Note that because L1/2-norm is not convex, then
equation (1) is not jointly convex. We use an alternat-
ing optimization strategy to solve this problem. First,
fixing Φ, optimize (β0,vt, eit), and second, optimize
mapping function Φ with fixed (β0,vt, eit). The whole
algorithm works iteratively until convergence.

1) First step: learning the regression model: Given
mapping function matrix Φ, we need to construct he
regression functions from equation (1) to predict the
location labels {yit} for signal data {xit}. We follow
the idea of [2] and [4], and re-formulate a feature
mapping function as F : X ×{1, · · · , T} → �, which
means a function across all tasks. So, we can re-define
a special mapping function as the following uniform
setting:

f(x, t) = β · ϕ(φ(x, t))
where:

ϕ(φ(x, t)) = (h(φ(x))√
μ ,0,0...0︸ ︷︷ ︸

t−1

, h(φ(x)),0, ...0︸ ︷︷ ︸
T−t

)

β = (
√
μβ0,ν1, ...νT ),0 ∈ Rd, μ = Tλ2

λ1

⎫⎪⎬
⎪⎭

(5)
Then we have the following theorem:

Theorem IV.1. According to the definition in equation
(2), the multi-task learning in equation (1) can be
reformulated as a standard ELM problem:

min J̃ (β, eit) =
C
2

T∑
t=1

m∑
i=1

e2it +
1
2‖β‖2

s.t. yit − β · ϕ(φt(xit)) = eit

(6)

where C = T
λ1
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Proof. Because β = (
√
μβ0,ν1, ...νT ), we have

‖β‖2 = u‖β0‖2 +
T∑
t=1

‖vt‖2

Given Φ, the term λ3‖Φ‖
1
2
2− 1

2
is fixed. Therefore,

we have:

min J =
T∑
t=1

m∑
i=1

e2it +
λ1

T

T∑
t=1

‖νt‖2 + λ2‖β0‖2

= T
2λ1

T∑
t=1

m∑
i=1

e2it +
1
2 (

T∑
t=1

‖νt‖2 + Tλ2

λ1
‖β0‖2)

= C
T∑
t=1

m∑
i=1

e2it +
1
2‖β‖2

(7)
By means of equation (2), the constraint can be

rewritten as:

yit−(β0+νt)·h(φt(xit)) = yit−β·ϕ(φt(xit, t)) = eit

Applying Lagrange method, the dual of equation
(3) is:

lL(β, αit) =
1

2
‖β‖2 + C

2

T∑
t=1

m∑
i=1

e2it

−
T∑
t=1

m∑
i=1

αit(β · ϕ(φt(xit))− yit + eit)

(8)

Let ∂L
∂β = 0, we have

β =

T∑
t=1

m∑
i=1

αitϕ(φ(xit))

Let ∂L
∂eit

= 0, we have

C · eit = αit

Substituting these two equations into equation (5),
we have:

T∑
s=1

m∑
j=1

αsjϕ(φ(xj), s)ϕ(φ(xi), t) +
αit
C

= yit (9)

After calculating the system of linear equations (6),
we obtain the regression model:

ft(x)
∗ =

T∑
s=1

m∑
i=1

α∗
iskst(xi,x)

where

Kst(xi,x) = ϕ(φ(xi, s)) · ϕ(φ(x, t))s, t = 1, 2..., T

2) Second step: learning the latent feature space:
After calculating (β0,vt, eit) from equation (6), we
can rewritten equation (1) as:

lmin J̃ (Φ) =λ3‖Φ‖
1
2
2−1/2

s.t βt · h(φt(xit))− yit = eit,

λ3 > 0

(10)

Equation (7) equals to:

min J̃ =

m∑
i=1

‖Yi − βt · h(Xi ⊗ Φ)‖2F + λ3 ‖Φ‖
1
2

2−1/2

(11)
Here Xi and Yi denotes the i−th input and output

of all T tasks. ‖·‖F is Frobenius norm of a matrix.
Equation (8) contains two parts. One is squared loss
function, and the other is L2−1/2 regularizer which
means calculating L2-norm of each feature across
tasks firstly and then calculating L1/2-norm across
features. Therefore, the key issue is summarized to
calculate L1/2-norm. Because L1/2-norm regularizer is
not convex and tractable easily, optimizing L1/2-norm
regularizer is generally transformed into a series of
weighted L1-norm regularization iterations[7], in
which L1-norm regularizer is convex. Here in the first
iteration, it needs to solve a L1-norm regularization
problem, and in the second iteration, the weighted
L1-norm regularization problem is solved after a
simple linear transformation.

Because solving L1/2-norm regularization
problem can be transferred to a series of L1-
norm regularization problems[7], L2−1/2-norm
regularization problem is essentially equal to a series
of L2−1-norm regularization problems. Different
from the conventional joint feature selection based
on L2−1-norm which makes the upper limit of
L2-norm of each row in block matrix as constraint,
L2−1/2-norm uses the multiplier of upper limit of
L2-norm of each row with L2-norm in the latest
iteration as constraint. Therefore, the constraint in
L2−1/2-norm regularization merely adds a constant
on the conventional L2−1-norm regularizer, so the
constraint set is also a closed convex set. Therefore,
we can use the solving framework of L2−1-norm
regularization[9] to optimize L2−1/2-norm regularizer.
The solution procedure for equation (8) is as follows:

Step 1. Initialize the max iteration number K,
and Φ0 = [1,1, · · · ,1]
Step 2. Solving:

Φk+1 = argmin

m∑
i=1

‖β · h(Xi ⊗ Φ)−Yi‖2F

+ λ3

d∑
j=1

‖Φj‖√∥∥Φkj
∥∥

(12)
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and set k = k + 1
Step 3. Solving equation (9) equals to solve the follow-
ing optimization problem under constraint condition:

min
m∑
i=1

‖β · h(Xi ⊗ Φ)−Yi‖2F + λ3

d∑
j=1

tj

s.t.
∥∥Φj∥∥ ≤ tj ·

√∥∥Φkj
∥∥

t = [t1, t2, ...td]
T

(13)

Step 4. Go to step 2 until k = K. Output ΦK if
reaching convergence.

V. EXPERIMENTS

In this section, we test the benefits of the proposed
multi-task learning approach in the application of Wi-
Fi localization. We firstly use AutoCAD to partition the
whole floor, as shown in Fig.1. In Fig.1, each grid

Fig. 1: Physical partition of collection area

denotes 1.2 square meters. We establish a coordinate
axis according to these girds, and then get the label of
each grid. Then we collect RSS values in our office
buildings using two Android mobile phones. At each
grid, we collected 50 samples for each device. The
collected RSS vector has 48 dimensions, and the latent
space dimension k is set to be 20.

For better comparison, two multi-task learning al-
gorithms are introduced. The first is multi-task feature
learning algorithm, called FS-MTL, proposed in [9]
which employs L2−1-norm regularizer. Another is Wi-
Fi localization algorithm based on multi-task support
vector machine[4]. This algorithm, called L-SVM in
this article, uses L2-norm to construct MTL model and
also needs to find latent feature space. The proposed
method is called L-MTL. Moreover, we also run the
classical ELM as single-task algorithm for comparison.
Each of input and output variables are rescaled linearly
to the range [−1,+1]. All programs are carried out

TABLE I: Localization error of different methods

Max Min Average Std

ELM 4.382 2.921 3.164 0.921
FS-MTL 2.366 1.781 2.136 0.788
L-SVM 2.527 1.522 1.934 0.728
L-MTL 2.123 1.556 2.041 0.734

in MATLAB2010a environment running in a Core
2, 2.66GHz CPU and 3.37GB RAM. All results are
the mean of 30 trials. Since the localization problem
is a regression problem, we report the average error
distance and the standard deviation. A method with
lower error values is better.

First, we evaluate the influence of three regulariza-
tion parameters on localization performance. In equa-
tion (1), λ1, λ2 and λ3 control the tradeoff between
empirical error, model complexity and latent feature
space. Fig.2 provides the localization error of different
parameters values.

From Fig.2, three parameters play quite different

−3 −2 −1 0 1 2 3 4 5 6 7
1

2

3

4

5

6

7

8

Parameter’s value(log)

A
ve

ra
ge

 e
rr

or
 d

is
ta

nc
e(

m
et

er
)

λ
1

λ
2

λ
3

Fig. 2: Average error distance of different values of
three parameters

role. Specifically for λ3, the error is lowest at the
value exp(3), which indicates the latent space is not
very important. According to Fig.2, we set these three
parameters sequentially as 1, 1 and 50 in the next
experiments.

We also check the localization precision of four
methods. The regularization parameters in FS-MTL
and L-SVM are chosen via cross validation. Table 1
provides the comparative results.

Obviously, the error of L-MTL is not lowest. L-
SVM get lowest error, but theres very few difference
between L-MTL and L-SVM. Moreover, FS-MTL also
get satisfactory results. Table 1 shows, for Wi-Fi local-
ization, the conventional multi-task learning methods
could reach enough good performance, but single-task
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learning method is hard to decrease localization error
due to its few training sample.

Second, we evaluate the convergence rate. Because
FS-MTL, L-SVM and L-MTL all employ iterative
solution, the convergence rate and speed are two im-
portant issues in practical applications. Fig.3 illustrates
the convergence speed of three multi-task learning
methods. Here the sample size is 80.

Obviously, L-MTL reach convergence quickly. FS-
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Fig. 3: Convergence speed of three methods

MTL also get similar speed. Although L-SVM obtains
lowest localization error, its convergence speed is more
slow than two other methods. According to theoretical
analysis, the reason is that L-SVM utilizes L2-norm
rather than L1-norm used in L-MTL and FS-MTL.
Despite the error is not lowest, L-MTL gets satisfactory
results in selecting key features. Fig.4 shows the key
features with different iteration number.

In Fig.4, L-SVM are not be considered, because it
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Fig. 4: Quantity of key features with different iteration
number

uses L2-norm which has no sparsity. Compared with
FS-MTL which uses L2−1-norm, L-MTL gets better
sparsity. Taking Fig.3 and Fig.4 into account together,
although L-MTL cannot get lowest localization error,
it exactly uses few key features to obtain similar
localization error, which is just our algorithms value.

Finally, we test the running time of these four
methods. We run experiments 30 times, and get the
average running time as final result, as shown in Fig.5.
The settings of experiment are same to the above one.

Obviously, ELM needs least time, and the slowest
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Fig. 5: Running time of four methods

one is L-SVM. According to section 3.2, L-MTL
employs L2−1/2-norm regularization which is more
simple than L2-norm based L-SVM and doesnt need
to solve quadratic programming. Meanwhile, FS-MTL
focuses on feature selection which increases algorithms
complexity.

VI. CONCLUSION

In this paper, a new Wi-Fi localization approach
based on latent multi-task learning is proposed. To seek
a common latent feature space, this approach constructs
a regularization framework including mapping func-
tion as regularizer. To select key APs, the proposed
approach employs L1/2-norm rather than L1-norm to
achieve joint feature selection in multi-task scenario. A
key step of this approach is to solve L2−1/2-norm reg-
ularization problem. The experimental results on Wi-
Fi data demonstrate the effectiveness of the proposed
approach. There are two problems to be studied in
our future research. First is a matter of choosing the
appropriate value of latent spaces dimension, which
will be determined by cross-validation in practice.
Another problem is how to identify the inner structure
in the tasks.
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