
 
 

 

  

Abstract—In order to recognize early symptoms of 
melanoma, the fatal cancer of the skin, systems for computer 
aided melanoma diagnosis have been developed for years. In 
this work we analyze an ensemble-based binary classifier for 
discriminating melanoma from dysplastic nevus utilizing 
wavelet-based features of the dermatoscopic skin lesion images. 
The multiresolution decomposition of the dermatoscopy images 
is done through wavelet packets. We search for the optimal 
wavelet base maximizing the quality of the classifier in terms of 
AUC (Area Under Curve) for models optimized by some 
common quality measures: accuracy, precision, F1-score, FP- 
rate, specificity, BER and recall. Within the statistics of our 
experiments reverse bi-orthogonal wavelet rbio3.1 makes the 
best wavelet model of melanoma. 

I. INTRODUCTION 
he increasing rate of cutaneous melanoma worldwide has 
been a big epidemiologic problem for years due to its 
early metastases and high mortality rate [1]. 

Transformations of the pigment cells in the epidermis may 
lead to: benign (melanocytic nevus), atypical (dysplastic 
nevus) and malignant stages (malignant melanoma)[2]. 
Medical doctors use some descriptive measures based on a 
visual examination to classify the stage of atypia: ABCD(E), 
the 7-Point Checklist or Menzies to mention the most 
common [3]. Those checklists have certain geometric or 
coloristic criteria that contribute to the total score. 
Observations of the moles are made with help of ELM 
(Epiluminescence Microscopy) i.e. dermatoscopy. This is a 
non-invasive technique that consists in optical enlarging and 
illuminating the skin by white (halogen) light. The magnified 
field of the lesion can be digitally photographed or displayed 
on a computer screen for analysis of its surface structure [4]. 
Some dedicated instruments allow for trans-illumination 
where the light is directed into the skin at an angle of 450 or 
use a set of wavelengths to penetrate deeper layers of the skin 
and thus attempting to reveal its 3D structure. The most 
common are however the cheapest, plain dermatoscopes. 
Dermatoscopy images recorded and stored on a computer can 
be compared for how lesions develop in time, transmitted to a 
clinic/remote specialist for a (tele)consultation or analyzed by 
dermatoscopy management software [5]. 

 
Grzegorz Surówka is with Faculty of Physics, Astronomy and Applied 

Computer Science, Jagiellonian University, 30-151 Kraków, Poland (phone: 
+48126635590; fax: +48126337086; e-mail: grzegorz.surowka@uj.edu.pl). 

 Maciej Ogorzałek is with Faculty of Physics, Astronomy and Applied 
Computer Science, Jagiellonian University, 30-151 Kraków, Poland (phone: 
+48126635827; e-mail: maciej.ogorzalek@uj.edu.pl). 

This work was supported by the Polish National Science Center under 
Grant N N518 419038. 

Benign melanocytic nevi are usually well recognized in 
dermatoscopy images whereas discrimination between 
dysplastic nevus and melanoma may be very difficult even for 
experienced specialists. It is in force especially at the earliest 
stages of malignancy, when resection can be a life-saving 
factor [6]. Biopsy and the subsequent microscopy 
examination is the only fully reliable method to identify nevi 
and melanoma lesions. Based on histologic criteria for 
melanoma two main staging schemes have been proposed: 
Clark and Breslow. The Clark’s level (I-V) differentiates the 
degree of tumor penetration quantitatively while the 
Breslow’s depth is an actual micrometer measurement of the 
lesion depth and is grouped into four categories (<0.75mm, 
0.75-1.5 mm, 1.5-4.0mm and >4.0mm) which determines the 
prognosis of the case. Since biopsy of all suspicious moles is 
not feasible (economy, surgical complications, ANS-Atypical 
Nevus Syndrome), early detection of malignant moles is the 
key of effective treatment. This, however, is with high 
accuracy still unsatisfactory. Quality of dermatoscopic 
diagnosis depends on the appearance of classic 
dermatoscopic features, but early stages of melanoma are 
mainly featureless [7]. In this case clinical descriptive 
measures and geometric/coloristic segmentation is not 
sensitive enough.  
Methods for wavelet based decomposition of skin lesion 
images have been proposed since the 90-ies of the XX 
century [8]. They assume analysis of frequency and scale 
information found in the skin texture to be a sensitive probe of 
the pigmented skin atypia and the melanoma progression. 
Discrete wavelet transforms are closely related to the theory 
of digital filtering  so the properties of the decomposition 
filters (the choice of the basis, degree of regularity, the 
sub-bands of interest) play an important role in the skin 
texture characteristics [9], [10]. 
Various factors play a role in the discrete wavelet analysis 
[11]: 
i) decomposition path: recursive decomposition of the 
low-frequency (averaged) signal (=the pyramidal algorithm) 
or a selective tree-structured analysis where the consecutive 
decomposition is applied to the output of any channel 
(=wavelet packets/trees), 
ii) wavelet base: this choice has a diverse impact on the 
texture classification, 
iii) wavelet order: decomposition over an optimal finite range 
of resolutions, 
iv) model constraints: orthogonality (the wavelet transform is 
energy preserving and nonredundant) versus bi-orthogonality 
(separate filters for decomposition and synthesis are present, 
wavelets are more compact and symmetric at the cost of 
orthogonality),  
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iv) sampling of 2D signals: the Mallat algorithm [12]. 
Pioneering contributions on wavelet based decomposition of 
melanoma dermatoscopy images belong to Patwardhan et al. 
[9], [10]. This group successfully studied binary classification 
models for benign nevus and melanoma by decomposing 
different frequency scales of the skin texture (wavelet 
packets).  This approach corresponds to the observations that 
the significant sub-bands of the pigmented skin texture 
belong to the middle frequency range and the standard 
(recursive)  analysis of the low-frequency sub-band only, is 
less optimal than the wavelet packets (also called selective 
wavelet trees). 

II. MOTIVATION 
Melanoma binary classifiers from Patwardhan [9], [10] 

and following contributions [13], [14], [15], [16] were using 
only one wavelet base (Daubechies 3) to build classification 
models. In this work we study different wavelet bases and 
analyze how they affect the quality of the classification 
models. As a framework to test wavelet features we use a 
moderate ensemble of six different model types. We don’t 
aim at optimization (fine-tuning) of any single model or an 
ensemble of models beyond the standard machine learning 
procedure (cross-validation) e.g. through feature selection, 
but use the ensembling technique as a ‘blind’ learning 
environment to find optimal wavelet bases in terms of 
classification quality measures: accuracy, precision, recall, 
specificity, false-positive rate (FP-rate), F-score and balanced 
error rate (BER). 

In the following sections we show methodology of our 
machine learning experiments and present the results. 
Discussion on mathematical implications (wavelet 
properties) of the results is beyond the scope of this work. 

III. METHODOLOGY 

A. Image acquisition and preparation 
Dermatoscopy images of 2272x1704 pixel resolution and  
RGB 24-bit color depth were collected from different 185 
anonymous patients with Minolta Z5 digital camera with an 
extra dermatoscopy extension. After resection and 
histopathology examination all the melanoma cases (102) 
were coded with ‘1’ and dysplastic nevus cases (83) as ‘-1’. 
Our experimental setup was coded in Matlab 8.1.0.604 
(R2013a) [24] with help of ‘Image processing Toolbox’, 
‘Wavelet toolbox’ and Entool [17]. Since the Wavelet 
Toolbox supports only indexed images with linear, 
monotonic color maps, all the JPG dermatoscopy images had 
to be transformed into this format. Finally our dataset 
consisted of one 185x2272x1704 matrix of double precision 
numbers. 
Since each iteration of the wavelet decomposition 
downscales the input image by a factor of 2 in the rows or 
columns, after three iterations the width and length of the 
resulting filtered images were still integer numbers 284x213 
so no initial padding was required. 
In this study no preprocessing tasks to the images were done 
e.g. removal of artefacts like tiny hairs, remaining droplets 

of immersion fluid, etc. This was to eliminate any bias on 
the final wavelet base selection. 

B. Wavelet packets 
Wavelet analysis of signals is well established in theory 

after studies of Gabor, Morlet, Daubechies, Mallat and the 
others [11], [12]. It is also widely used especially for discrete 
signals in the form of DDWT-Discrete Dyadic Wavelet 
Transform to analyze the signal structure, signal de-noising 
and compression capabilities. Images are two-dimensional 
signals so one iteration of the Mallat filtering algorithm 
produces 4 sub-images which can be considered as LL, LH, 
HL and HH filters (L-low-pass, H-high-pass filter) after 
one-dimensional wavelet transform on the rows and then on 
columns. Since we used the wavelet packets, the further 
iterations were done on each of the four parent filters. 
Altogether in three iterations 1+4+16=21 different 
transformation branches were produced. In one branch the 
following 12 features were calculated: (ei, i=1,2,3,4) - 
energies of the sub-images (energy is defined as a sum of 
absolute values of the pixels), (ei/emax, i=1,2,3,4) - maximum 
energy ratios, (ei/Σek, k≠i, i=1,2,3,4) - fractional energy ratios 
[9], [10], [13]. This procedure was repeated for each wavelet 
base, producing different sets of 21x12=252 attributes. 

Different wavelet bases decompose the skin texture with 
variable classification accuracy. Also numeric properties and 
the management of computer resources are important factors 
when choosing certain wavelet families. For discrete signals, 
orthogonal or bi-orthogonal and compactly supported wavelet 
functions are usually taken into account when analyzing 
patterns. It has to do with accuracy of the signal 
reconstruction, monotonic behavior affecting the 
convergence and number of vanishing moments 
(representation density) [11]. We tested orthogonal wavelets:  

i) Daubechies db1-db10 (wavelet number=2-11), 
ii)  symlets: sym2-sym8 (wavelet number=12-18), 
iii) coiflets: coifN (wavelet number=19-23), 

and bi-orthogonal/reverse bi-orthogonal wavelets: 
iv) biorNr.Nd (wavelet number=24-38), 
v)  rbioNr.Nd (wavelet number=38-53). 

(Reverse) Bi-orthogonal wavelets (wavelet pairs) have the 
property of perfect reconstruction i.e. X=A+D, where: 
X-image, A-reconstructed image of approximation and 
D-reconstructed image of details. This property is possible 
due to two separate filter sets, one for decomposition and 
another one for image reconstruction. Those wavelets are not 
orthogonal. Orthogonal wavelets, on the other hand, fulfil the 
formula X2=A2+D2. Symlets, coiflets and (reverse) 
bi-orthogonal wavelets are symmetric functions, whereas 
Daubechies - asymmetric [11]. 

C. Ensembling 
An ensemble is a set of single machine learning models fk 
whose predictions are combined by voting or weighted 
averaging [18]: 
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       Eq.1 

(x: data matrix=(cases)*(attributes), y: output class, Σkwk=1). 
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It is known that the generalization error of the ensemble: 
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   Eq.2 
 
can be decomposed into an average error of the individual 
models: 
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and average ambiguity of the ensemble: 
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The ensemble generalization error (Eq.2) is always smaller 
than the mean of the generalization error of the single 
ensemble members (Eq.3), which makes this technique a 
good tool to maximize the classification performance. In 
order to increase the ensemble ambiguity (Eq.4) it should 
consist of well trained but diverse models of any type (no 
assumptions are made about the constituent models). 

To build an ensemble of models starting from an empty 
ensemble we were selecting step-by-step the best models by a 
cross-validation scheme for model training (the so called 
OOT-Out-of-Train procedure (after Breiman's Out-Of-Bag 
technique) [19]. The cross-validation was done in several 
training rounds on different training sets, because this 
increases the ambiguity of the ensemble and leads to better 
generalization. This is one way of introducing diversity of 
models because training on slightly different data sets leads to 
different models. Another advantage of this method is that 
one gets an unbiased estimator of the ensemble generalization 
error. The whole procedure consisted of the following steps: 

0) data are divided into training/testing set (80%) and 
validation set (20%), cross-validation partitions: 5, here 
final quality (AUC) of the trained ensemble was 
calculated as the mean of the five trained samples, 

1) training/testing data are divided into training set (80%) 
and testing set (20%), cross-validation partitions: 10 

2)  several models are trained on the training set, 
3) these models are compared by evaluating the prediction 

errors on the testing set, 
4) the best models are taken out and become ensemble 

members, 
5) data are divided again in a way that the new testing set 

has minimal overlap with the former ones, 
6) the procedure stops if the ensemble has the desired size. 
 
Training in step 2) was performed with the following six 

model families: 
-Penalized Fisher’s Linear Discriminant Analysis: classical 
LDA classifier with spatial constraints on many highly 
correlated predictors (a model for pixels in an image) [20], 
-Kernel Ridge Regression: a model with the 
Tikhonov-Phillips regularization capable of controlling 
bias-variance trade-off, with a polynomial kernel k(x,x') = 
(a+x.x')^b and coefficient a and b [21], 

-Multi Layer Perceptron: trained with the first order weight 
update mechanisms (RPROP descent), with the changeable 
number of nodes [22], 
-Perceptron: trained with a second order gradient decent [22], 
-Decision Trees: based on C4.5 algorithm, with pruning 
procedures based on cross-validation scheme [23], 
-Matlab data trees (dtree) [24]. 

D. Quality measures for supervised learning 
In binary classification a confusion matrix shows the test 

outcome versus the true condition which means it presents 
instances of predicted and actual classes [25]. This can 
visualize performance of the model on validation data. The 
four statistical entities: tp=true positive, tn=true negative 
(they are the desired results) and fp=false positive (type I 
error) and fn=false negative (type II error) form a set of 
values out of which numerous quality measures are derived. 
The choice for a measure and its application in the 
classification scheme depends on the research purpose. In our 
experiments we used (one by one) seven different quality 
measures to control how the ensembles of primary models are 
constructed. Those measures were optimization factors when 
accumulating best constituent models. Below we list them 
with brief annotations [25]: 

accuracy: an overall measure of all desired outcomes in the 
test (tp+tn)/(tp+tn+fp+fn). This is a common quality measure 
when no particular requirements are imposed. 

precision: aka PPA (positive predictive value) is a fraction 
of retrieved instances that are relevant, tp/(tp+fp). This is a 
quality measure of exactness/quality. 

recall: aka sensitivity is a fraction of relevant instances that 
are retrieved, tp/(tp+fn). This is a quality measure of 
completness/quantity. 
Absence of type I and type II errors corresponds respectively 
to maximum precision (no false positive) and maximum 
recall (no false negatives). 

F score: F(1) score is a harmonic mean of precision and 
recall 2*(precision)*(reall)/(precision+recall) 
=2*tp/(2*tp+fn+fp). 

fp rate: false positive rate fp/(tp+fp). 
specificity: is a fraction of true negative, tn/(tn+fp).  A high 

specificity has a low type I error rate. 
ber: balanced error rate is an average of the errors on each 

class 0.5*(fn/(tp+fn) + fp/(fp+tn)). 
 
The ensembles trained according to the above mentioned 
quality measures were finally (step 0) tested on validation 
data. For the quality measure at this step we chose AUC - the 
area under the ROC curve (Receiver Operating 
Characteristic) [26] obtained by plotting 
sensitivity=tp/(tp+fn) against (1-specificity)=tn/(tn+fp), for 
each confidence value. The ROC curve is better in presenting 
the quality of the classification system than any single quality 
measure since one can obtain sensitivity and specificity as a 
function of a confidence level (thresholds between single 
values of calculations from the model). The values of AUC 
presented in all the figures were calculated from the ROC 
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curve using the trapezoid method. 
 

 

 

 

 
 

Fig. 1.  AUC (Area under Curve) for the ensemble classifiers optimized for 
different quality measures (accuracy, precision, F-score, FP-rate) as a 

function of wavelet bases. 
 

IV. RESULTS AND DISCUSSION 
Fig. 1 and Fig. 2 present seven different AUC values as a 
function of the wavelet base number. The wavelet numbers 
are mapped to particular wavelet names in Section III.B. 
Each wavelet was used to decompose a set of dermatoscopic 
images and to calculate a corresponding feature set. The 
wavelet features were learnt by an ensemble of models in this 
way, that the ensemble optimized (one by one) seven 
different quality measures: accuracy, precision, F1-score, fp 
rate, specificity, ber and recall. The final model was validated 
on a separate unseen set of data (pulled out at Step 0). 
 

 

 

 
 
Fig. 2.  AUC (Area under Curve) for the ensemble classifiers optimized for 
different quality measures (specificity, BER, recall) as a function of wavelet 

bases. 
 

The AUC values in Fig.1, 2 have error bars that reflect 
standard deviation of the AUC value over different validating 
rounds. Our first observation refers to the magnitude of the 
error bars. For most of the quality measures they are bigger 
than the fluctuations of AUC over different wavelet bases. 
This confirms that the learning environment plays an 
important role in the stability of the models and this role may 
outperform or at least screen the influence of a wavelet base.  
Each quality measure seems to ‘prefer’ its own mean level of 
magnitude plus fluctuates with the wavelet number. Where 
performance of a given measure has a local hill, the error bar 
tends to be smaller (solution in a local extremum ‘gets 
stuck’). 
AUC differs in the absolute level between different quality 
measures and also fluctuates among the wavelet bases. For 
the gathered statistics, the run of ‘accuracy’ seems to yield the 
maximum AUC values overall. ‘Recall’ (i.e. sensitivity) has 
also a high level of performance (the latter two have hills in 
different wavelet numbers) but its error bars are slightly 
bigger. Quality measures between AUC=0.8 and 0.9 have 
apparent zones of correlation (where they follow each other in 
their monotonic runs) and decorrelation. Correlation of 
different learning schemes proves stability of the learning 
environment. For a better comparison between the runs Fig. 3 
presents experimental points connected with a line. Fig. 3 

168



 
 

 

helps us follow the absolute level and variability of AUC for 
different ensemble development scenarios. 
 

 
Fig. 3.  AUC (Area under Curve) for the ensemble classifiers optimized for 

different quality measures as a function of wavelet bases - a comparison. 
 

 
The most optimal wavelet base in our experiments is wavelet 
number 46 i.e. reverse bi-orthogonal wavelet rbio3.1. At 
wavelet number 46 all the examined measures achieve 
(global) extrema (except for ‘recall’ which has its global 
extremum at wavelet number=41 i.e. for rbio1.5). 

Feature set based on rbio3.1 introduces much stability to the 
solutions for all of the optimization measures. At this point 
also error bars of AUCs are diminished simultaneously for all 
the ensemble learning scenarios.  

V. CONCLUSION AND OUTLOOK 
We performed some machine learning experiments to search 
for optimal wavelet bases for decomposition of 
dermatoscopic images of melanoma (102 cases) and 
dysplastic nevus (83 cases). This is motivated by the medical 
problem of pattern recognition of early stages of the 
cutaneous melanoma. In literature a lot of attempts have been 
done to find an optimal representation of melanoma in order 
to maximize its classification performance. Wavelet bases 
seem to outperform other melanoma representations 
(geometrical and coloristic) so experiments on how different 
wavelet bases affect quality of binary classification of 
dermatoscopic images of skin lesions are very important. We 
collected results of seven ensemble learning cases optimized 
for different quality measures. Different wavelet bases, we 
used, affect the training process of the ensembles of models in 
a different way according to different supervision of the 
quality measure on the learning environment. 

Since in this work we focused on a ‘blind’ selection of the 
most optimal wavelet base in terms of its classification 
performance, future experiments may i) imply certain 
mathematical properties of the wavelet base to explain its 
performance and ii) extend model pool and/or reduce 
dispersion of the final models to draw more detailed/exact 
conclusions about the optimal wavelet bases for the wavelet 
model of melanoma. 
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