
 
 

 

  

Abstract—Reservoir Computing (RC) is a paradigm of 
artificial neural networks with important applications in the 
real world. RC uses similar architecture to recurrent networks 
without the difficulty of training the network hidden layer 
(reservoir). However, RC can be computationally expensive and 
various parameters influence its efficiency, making it necessary 
to search for alternatives to increase its capacity. This work 
aims to use a hybrid algorithm between a PSO (Particle Swarm 
Optimization) extension and Simulated Annealing for optimize 
the global parameters, architecture and weights of RC, in time 
series forecasting. The results showed that the Reservoir 
Computing optimization with the hybrid algorithm achieved 
satisfactory performance in all databases investigated and 
outperformed original APSO (Adaptive Particle Swarm 
Optimization) in some of them. 

Keywords—Reservoir Computing; PSO; optmization; time 
series forecasting. 

I. INTRODUCTION 
eservoir Computing is a paradigm of Artificial Neural 
Networks with important applications [1] [2] [3]. RC 
uses similar architecture to Recurrent Neural Networks 

(RNN) for temporal processing without the difficulty of 
training the network hidden layer. Reservoir Computing was 
introduced independently as Liquid State Machines (LSM) 
[4] and Echo State Networks (ESN) [5]. In general, RC is 
based on building a random RNN (this layer is called the 
reservoir) without changing the weights. After this phase, a 
linear regression function is used to train the system output. 
Schrauwen et al. [6] show that the dynamic non-linear 
processing provided by the reservoir is sufficient for the 
output layer to be able to extract the output signals using a 
simple linear mapping. Usually, the output layer is called 
readout. 

As in conventional neural networks, Reservoir Computing 
has some disadvantages. Since RC is an approach of recurrent 
networks, computational cost can be expensive, even without 
the training phase on the reservoir layer. Several parameters 
influence the RC performance; for instance, the number of 
nodes used and the type of activation function. Setting these 
parameters without experience is difficult. Lukosevicius and 
Jaeger [7] say that it is unlikely that the random generation of 
the weights and the training of the output layer using a simple 
linear regression function provide the ideal solution for RC. 

Several works have sought to use optimization techniques 
to improve RC performance. For instance, Ferreira proposed 
a method using Genetic Algorithms [8] to optimize 
architecture, parameters and initial weights of the network 
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hidden layer [9].  
Particle Swarm Optimization [10] is an optimization 

algorithm that has some advantages over other global search 
techniques. PSO is based on the social behavior of flocks of 
birds: a population of solutions is maintained and each 
individual seeks to improve its performance based on its best 
experience and the best experience of the group. When 
compared to Genetic Algorithms, for example, PSO has 
simpler implementation and, in some cases, relatively fast 
convergence and low computational cost [11] [12]. 

Sergio and Ludermir [13] used PSO to optimize RC 
architecture and initial parameters. Subsequently, based on 
the work of Ferreira and his first approach, Sergio [14] also 
sought to optimize the weights of RC (along with the 
architecture and initial parameters) with PSO, and two of its 
extensions, applying the method in time series forecasting. 
The results showed that, taking into account the time series 
forecast error, the PSO extension known as APSO [15] 
achieved the best performance. 

The literature contains several examples of using 
optimization techniques to improve performance over 
traditional architectures of neural networks. Among these, the 
work of Li and Liu [16] may be mentioned. The authors 
proposed a hybrid algorithm between a modified PSO, 
Simulated Annealing (SA) and an RBF network, named 
MPSO-SA-RNN (Modified PSO-SA algorithm and RBF 
Neural Network). Simulated Annealing, described 
independently in [17] and [18], is a probabilistic global search 
technique, based on an analogy with thermodynamics. The 
new method was used in the prediction of a variable that 
indicates the quality of polymers. The PSO was modified 
with features of SA and used to optimize the parameters of an 
RBF network. The results validated the proposed model and 
the confirmed advantages of MPSO-SA against original PSO 
and SA algorithms. 

This work aims to investigate the use of a hybrid algorithm 
between PSO and SA in the task of optimizing the global 
parameters, architecture and weights of Reservoir 
Computing, in the problem of time series forecasting. To 
validate the proposed method, benchmark time series were 
tested. 

Next, here is the structure of this work. Section II discusses 
the main concepts of Reservoir Computing and presents the 
PSO and SA algorithms, as well as the hybridization 
proposed by Li and Liu. Section III discusses RC 
optimization and Section IV describes the proposed method. 
Section V presents numerical simulations and, finally, 
Section VI describes the conclusions and proposals for future 
work. 

Reservoir Computing Optimization with a Hybrid Method 
Anderson T. Sergio, Teresa B. Ludermir 

R

2014 International Joint Conference on Neural Networks (IJCNN) 
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 2653



 
 

 

II. BACKGROUND 

A. Reservoir Computing 
Reservoir Computing is a paradigm of artificial neural 

networks developed independently as Liquid State Machine 
[4] and Echo State Network [5]. In common, all the Reservoir 
Computing approaches use the computational power of 
recurrent neural networks without training the hidden layer. 

In general, RC is composed of a recurrent network with a 
relatively large number of processing units, called the 
reservoir. The reservoir receives the input signals and sends 
them to a smaller circuit called the readout. While the 
reservoir weights are set randomly at the beginning of the 
process and kept unchanged, the readout is used to train the 
network output through a function that does linear regression 
of signals from the hidden layer. Fig. 1 shows a diagram of a 
simple Echo State Network. 

 
Fig. 1. Echo State Network architecture 

As seen in Fig. 1, the reservoir layer receives signal values 
coming from the input layer, and optionally the signals from 
the feedback connection and bias. The reservoir, with a 
certain number of processing units (PEs), is designed with 
recurrent connections. The weights of these connections are 
random and do not change. The readout layer makes a simple 
linear mapping from the reservoir output using, for instance, 
pseudo-inverse. Also in Fig. 1, dotted lines represent 
connections that can be trained and shaded lines indicate 
optional connections. 

Rather than trying to achieve a particular transformation by 
adjusting the weights, RC uses a larger number of neurons 
(compared to conventional networks) to achieve a diverse set 
of transformations from the input signals [5]. In general, such 
changes are not desired, but these changes can be combined in 
order to achieve these transformations. This action is held by 
the readout layer. The calculation is made simple since the 
readout has no feedback connections. It is important to note 
that the same reservoir can be used to calculate multiple 
transformations in parallel, since they have different readouts. 

B. APSO and SA 
PSO is a global optimization technique based on a 

population of solutions.  The algorithm is based on the social 

behavior of a flock of birds, where an individual mimics the 
actions of the group's best (or most suitable) individual.  The 
process starts defining the population of solutions. Each 
individual (particle) is a possible solution. Each particle has a 
position and speed, and the update process is based on its best 
experience and the best experience of the group. PSO was 
introduced by Kennedy and Eberhart in 1995 [10]. 

Works such as Van den Bergh [19], Clerc et al. [20] and 
Trelea [21] mathematically analyze the convergence of PSO. 
Such discussions had led guidance on which parameters 
affect the convergence, divergence, or oscillation of the 
algorithm, and these studies have led to several variations of 
the original PSO. 

Adaptive Particle Swarm Optimization (APSO) [15] was 
developed trying to increase the search efficiency and the 
convergence speed of the original PSO algorithm. Basically, 
APSO has two main steps. First, after evaluating the 
population distribution and the fitness function of each 
particle, the algorithm identifies to which of the four 
evolutionary states the current generation belongs: 
exploration, exploitation, convergence or jump. With this 
knowledge, there is an automatic control of some variables, 
such as the term of inertia and acceleration coefficients. 
Second, an elitist strategy is performed (ELS - Elitist 
Learning Strategy), activated when the evolutionary state is 
classified as convergence. To classify the evolutionary state 
of the current generation, APSO uses an approach called ESE 
(Evolutionary State Estimation). ESE is based on search 
behavior and population distribution of the PSO solutions. 

The main objective of ELS in APSO is to give the particle 
better overall performance and leaves out regions of local 
optima when the search is classified as convergence state. 
Granting a disturbance to the particle with better performance 
is important because this individual has no parameters to 
follow. If this disturbance finds a region with better results, 
the entire swarm will follow the example of the leading 
particle. 

Simulated Annealing is a probabilistic global search 
technique, based on an analogy with thermodynamics - the 
gradual cooling of a physical system to reach a minimum 
potential energy. The method was described independently in 
1983 [17] and 1985 [18]. 

In general, the algorithm starts with an initial solution ܵ. ܶ 
is the parameter that controls temperature, starting at ܶ. The 
temperature of the system decreases until it reaches a thermal 
equilibrium which is a better solution. In this process, a new 
solution ܵ  is created in the neighborhood of the previous 
solution  ܵ. If the new solution fitness ݂ሺܵሻ is better than the 
prior value ݂ሺܵሻ, the new solution is accepted. Otherwise the 
new solution is accepted according to a probability ܲ given 
by equations 1 and 2. 

 
 
 ܲ ൌ ݔ݁ ൬െ ∆ܶ൰ 

                                                                                     (1) 
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∆ ൌ  ݂ሺܵሻ െ ݂ሺܵሻ݂ሺܵሻ  100 ݔ 

                                                                                     (2) 

Applying the ܲ  factor, the search tends to leave local 
minima. The algorithm repeats this process described in the 
previous paragraph until it reaches a desirable state. 

If the initial solution is a point close to the global optimal, 
SA generally gives good results. However, sometimes it is 
impossible to start from a good initial solution. Then, a trial 
and error process is necessary. Also, the user must set certain 
heuristics. For example, the user must consider the way that 
new solutions will be proposed and what the appropriate 
stopping criterion will be. 

Trying to achieve better efficiency in finding optimal 
solutions to a given problem, Li and Liu [15] proposed a 
hybrid algorithm between PSO and SA. One of the 
disadvantages of PSO is that after a few generations, the 
diversity of the swarm is reduced and the population may 
converge to a local optimal. Since SA can be more effective 
when an appropriate initial state is taken into account, the 
authors proposed to run this method after iterations of a 
modified PSO algorithm. The new algorithm is called 
MPSO-SA (Modified PSO-SA). 

Regarding the original PSO, MPSO-SA has different 
update equations for the inertia term (momentum) and 
acceleration coefficients. The authors propose that the 
momentum should not vary linearly from a maximum value ݓ௫  to a minimum value ݓ . For the acceleration 
coefficients, ܿଵ also varies nonlinearly from  ܿଵ௫  to ܿଵ , 
while ܿଶ is fixed at 0.1. Let ݅ݎ݁ݐ௫ be the maximum number 
of iterations, ݇ the current iteration and ߙ and ߚ  constants; 
the term inertia and acceleration coefficients are given by 
equations 3, 4 and 5. These modifications were made in order 
to encourage the particles to seek solutions in the whole space 
instead of being trapped in local optima. 

ሺ݇ሻݓ  ൌ ݓ   ൬݅ݎ݁ݐ௫ െ ௫ݎ݁ݐ݅݇ ൰ఈ ሺݓ௫ െ  ሻݓ

                                                                                   (3) ܿଵሺ݇ሻ ൌ  ܿଵ   ൬݅ݎ݁ݐ௫ െ ௫ݎ݁ݐ݅݇ ൰ఉ ሺܿଵ௫ െ ܿଵሻ 

                                                                                   (4) ܿଶሺ݇ሻ ൌ 0.1 

                                                                                   (5) 

With such modifications, the standard PSO algorithm is 
executed to find the best set of individual positions of the 
population ܱܲ ൌ ሺଵ, ,ଶ … , ሻ . Then, the SA algorithm 
initializes taking this set as a starting point, according to the 
following steps: 

1. Initialize the sequence number of initial solutions: ݅ ൌ 1. 

2. For the initial solution , initialize the temperature 
controlling parameter: ܶ ൌ  ܶ. 

3. Generate a new solution ௧ according to . 
4. Do the test and decide if we should accept the new 

solution. If ݂ሺ௧ሻ ൏ ݂ሺሻ , accept ௧  to 
replace ; Otherwise, calculate ܲ from equations 1 
and 2; generate a random number ݀݊ܽݎ between 0 
and 1; if ݀݊ܽݎ ൏ ܲ, accept ௧  to replace  . A 
uniform distribution was used in order to follow the 
original MPSO-SA. 

5. Decrease ܶ. If ܶ   ܶ  go back to 3. Else go to 
next step. 

6. Choose the solution with the best objective function. 

MPSO-SA was applied in the parameters optimization of 
an RBF network, in prediction of a variable that indicates the 
quality of polymers. The results confirmed the validity of the 
proposed model and the advantages of MPSO-SA against 
original PSO and SA algorithms. 

III. RESERVOIR COMPUTING OPTIMIZATION  
As previously noted, Reservoir Computing primary 

architectures (ESN and LSM) work with a recurrent neural 
network with fixed and randomly generated weights. 
However, Lukosevicius and Jaeger [7] say that it is unlikely 
that the random generation of weights and output layer 
training with a linear regression function is the optimal 
solution for computing RC. Then, it's necessary to seek 
alternatives for reservoir generations and readout training. 

As an alternative to the reservoir layer generation, one can 
initialize the hidden layer weights in an unsupervised way or 
even from a supervised pre-training. The unsupervised 
adaptation involves optimizing some measure defined in the 
reservoir for a given input, not taking into consideration the 
desired output. In contrast, supervised pre-training also takes 
into account the desired output. 

Besides reservoir adaptation, other ways to optimize 
Reservoir Computing can be considered. Ferreira and 
Ludermir [22] presented a method to optimize the global 
parameters’ choice using genetic algorithms, in time series 
forecasting with practical application. The optimization took 
up 22.22% of the time required to perform an exhaustive 
search for the parameters and achieve similar results. In an 
exhaustive search, all parameters are combined without using 
any optimization method. 

In 2011, Ferreira [9] developed a method to find the best 
reservoir in time series forecasting, called RCDESIGN. The 
method simultaneously searches the best values of the global 
parameters of the network topology and weights, combining 
an evolutionary algorithm with Reservoir Computing. Two 
other optimization methods were implemented to compare 
the results. RS Search tries to optimize the reservoir size, the 
spectral radius and the connection density. TR Search 
simultaneously searches the spectral radius and the network 
topology. Along with RCDESIGN, TR Search does not 
consider the approach of linear systems with RC. 
RCDESIGN showed satisfactory results in all databases 
studied, being better than the other methods used for 
comparison. All approaches were also applied to the 
prediction of wind speeds, which is an important task for 
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wind power generation. 
PSO is an important candidate to perform Reservoir 

Computing optimization, due to its advantages over genetic 
algorithms [11] [12]. Also, extensions of this algorithm can 
increase efficiency, since such changes have been developed 
for this purpose. Sergio and Ludermir used PSO and two of its 
extensions (EPUS-PSO [23] and APSO) to optimize the 
overall parameters of RC. They concluded that, in the five 
series used, the proposed method reduced the number of 
training cycles needed to train the system [13]. The 
parameters used in the optimization were the number of nodes 
in the reservoir, the activation function of neurons in the 
reservoir, spectral radius of the weight matrix in the reservoir 
layer and the presence or absence of optional connections. 

Based on RCDESIDGN, Sergio [14] proposed a method to 
optimize global parameters, topology and weights of 
Reservoir Computing, using PSO and two extensions, 
EPUS-PSO and APSO. The APSO algorithm achieved the 
best results according to the forecast errors in the time series 
used. EPUS-PSO obtained the best results when the criterion 
of training cycles required to reach the optimal values was 
taken into account. 

Since APSO achieved greater improvement in the forecast 
errors, this paper proposes a hybridization between SA and 
APSO in the task of optimizing architecture, global 
parameters and weights of Reservoir Computing, for time 
series forecasting. A hybridization of these two algorithms 
showed satisfactory results when applied to a more traditional 
topology of neural networks, RBF [16]. 

IV. RESERVOIR COMPUTING OPTIMIZATION WITH APSO 
AND SA 

Hereafter, the proposed method will be presented. The 
representation of solutions will be described, followed by 
how the fitness function was calculated, algorithm 
optimization, the parameters involved and the numerical 
simulation. The optimization is based on RCDESIGN [9] and 
the method proposed by Sergio [13]. ESN was used as the 
Reservoir Computing architecture. 

A. Solutions Representation 
Each particle is represented by a vector ݏ . Notation ݏ 

denotes dimension ݆ of the particle ݏ . Next, each of these 
dimensions is described. 
• sଵ୧  Nodes number in reservoir, integer between 50 – (ߟ) 

and 200. This parameter defines the weight matrix size. 
• sଶ୧  – Connection between input and output layers. Float 

between 0 and 1. If larger than 0.5, there is connection, 
else, there is not. 

• sଷ୧  – Connection between bias and output layer. Float 
between 0 and 1. If larger than 0.5, there is connection, 
else, there is not. 

ସݏ •  – Feedback connection in output layer. Float between 
0 and 1. If larger than 0.5, there is connection, else, there 
is not. 

ହݏ •  – Connection between bias and reservoir layer. Float 
between 0 and 1. If larger than 0.5, there is connection, 
else, there is not. 

• s୧  – Connection between output and reservoir layers. 
Float between 0 and 1. If larger than 0.5, there is 
connection, else, there is not. 

• s୧  – Neurons activation function. If 1, hyperbolic 
tangent, if 2, sigmoid. 

•  s୧଼  – Readout training function. If 1, pseudo-inverse [7], 
if 2, ridge-regress [24].  

• sଽ୧  – Leak rate. Float number between 0.1 and 1. Leak 
rate is a parameter that enables RC dynamic adaptation.  

• sଵ୧  – Regularization parameter of the training functions. 
Float number between 10-8 and 10-1. Regularization 
parameter is a noise that can be added to the reservoir 
responses. 

• sଵଵ୧  ... sሺమାଷାଵሻ୧  – Reservoir weights W, input weights W୧୬ , bias weights Wୠ୧ୟୱ  and feedback weights Wୠୟୡ୩ . 
Float number between -0.1 and 0.1. 

Vector size ݏ  is variable. This happens because the last 
positions depend on the nodes number in the reservoir layer, 
defined by dimension ݆ = 1. Interval [50, 200] was set 
empirically, in order to create large reservoirs big enough to 
compute data and in which it is feasible to perform 
simulations. If 50 = ߟ, vector ݏ  has 2660 positions. If ߟ = 
200, vector ݏ has 40610 positions. 

B. Fitness Function 
Fitness function is based on MSE (Mean Square Error) 

generated by the network. Due to the overfitting 
phenomenon, common in artificial neural networks, the 
fitness function is also based on the validation phase. 
Equation 6 shows the fitness function used. ݂ ൌ തതതതതത்ܧܵܯ   ฮܧܵܯതതതതതത் െ  തതതതതതௗ௧ԡܧܵܯ 
                                                                                                      (6) 

C. Optimization Algorithm 
Reservoir Computing optimization with APSO and SA is 

presented in Algorithm 1. Network training was performed 
with k-fold cross-validation. Cross-validation with 10 
partitions has proven to be a suitable value for most problems 
[25]. 

As seen above, the hybridization between APSO and 
Simulated Annealing is based on work by Li and Liu [16]. 
However, there are two differences in the process. 

In Li and Liu's work, the authors propose a new way to 
calculate inertia term and acceleration coefficients. However, 
compared with standard PSO, APSO also presents a different 
way to calculate these variables. Since the approach used in 
APSO (ESE - Evolutionary State Estimation) to update these 
values is relatively more complex than that used in Li and 
Liu, ESE was selected. Another difference is how the final 
solution is selected. In MPSO-SA, SA receives as input the 
individual best solutions set, and, according to temperature, 
these solutions are improved. However, these solutions are 
not compared with the best global solution. This paper 
proposes to use the best global solution in this phase. When a 
new solution based on the best individual solutions is found, it 
is compared with the best global solution. 

In MPSO-SA, Li and Liu do not say how a new solution 
must be proposed in the neighborhood, at the SA execution 

2656



 
 

 

phase. In this work, using the concept already used in APSO, 
the new solution is proposed according to the ELS (Elitist 
Learning Strategy) approach. 

ELS randomly selects a particle dimension with better 
global performance and enforces a Gaussian perturbation, 
according to equation 7 (being d the d-ith dimension and X the 
minimum and maximum limits). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ܲௗ ൌ  ܲௗ  ൫ܺ௫ௗ െ  ܺ ௗ ൯  ൈ ,ߤሺ݊ܽ݅ݏݏݑܽܩ  ଶሻߪ

                                                                                      (7) 

In Gaussian distribution with mean μ = 0, standard 
deviation (called elitist learning rate in APSO) is given by 
equation 8. g is the generation of the current iteration and 
max_gen denotes the maximum number of generations. σ is 
linearly decreased according to the number of generations. ߪ ൌ ௫ߪ  െ ሺߪ௫ െ ሻߪ  ݃max _݃݁݊ 

                                                                                     (8) 

D. Parameters 
For APSO, the following parameter set was tested, based 

on [13]: swarm size = 50; number of iterations = 20; initial 
momentum term = 0.9. Regarding SA, the parameters were 
set after extensive initial testing, as follows: initial 
temperature = 100; final Temperature = 10, temperature 
decreasing rate = 0.85. The weights values of the reservoir 
was set in interval [-0.1 01]. These values were set 
empirically. 

E. Experimental Method 
Five benchmark time series were tested, including two 

variations: 

• Narma order 10 and Narma order 30 (NAR10 and 
NAR30) 

Narma is a discrete time series given by equation 9: ሺݕ  1ሻ ൌ ሻݐሺݕ0.3  ሻݐሺݕ0.05  ݐሺݕ െ ݅ሻିଵ
ୀ ൩ 1.5ݑ൫ݐ െ ሺ݇ െ 1ሻ൯ כ ሻݐሺݑ  0.1 

                                                                                             (9) 
The series input is a uniform random noise ݑሺݐሻ, ݐ is time, ݇ is the system order and ݕ is the output. Two values for the 

system order were used: ݇ = 10 and ݇ = 30. 
 

• Mackey-Glass average chaos and Mackey-Glass 
moderate chaos (MGS17 and MGS30) 

Mackey-Glass, a continuous and unidimensional time 
series, is given by equation 10. ݕሺݐ  1ሻ ൌ ݐሺݕ0.2  െ  ߬ሻ1  ݐሺݕ െ  ߬ሻଵ െ  ሻݐሺݕ0.1

                                                                                           (10) yሺtሻ is the output in t time and τ is a delay parameter that 
leverages the chaos level. Two values for the τ parameter 
were used: τ  = 17 (average chaos) and τ  = 30 (moderate 
chaos). The first value is less chaotic than the second one. 

• Multiple Sinewave Oscillator (MSO) 
MSO series is used to create a system for generating 

multiple sines. It is given by equation 11: ݕሺݐ  1ሻ ൌ sinሺ0.2 כ ሻݐ  sin ሺ0.311 כ  ሻݐ
                                                                                       (11) 

• Natural shining star series (STAR) 
Available in [26], STAR series has 600 consecutive 

numerical observations of star light at midnight. 
• Dow Jones Industrial Average (DJIA) 

Available in [27], the Dow Jones Industrial Average 
financial series consists of daily observations of the index of 
the same name. Data used in this work contains 1444 records, 
with observations from January 2nd 1998 to August 26th 2003. 

In order to compare the results with other methods in the 
literature, the performance of the proposed optimization in 
this work was calculated according to various forecast error 
indices. They are: Mean Square Error (MSE), Normalized 
Square Root Mean Square Error (NRMSE) and Normalized 
Mean Square Error (NMSE). These errors are given 
respectively by equations 12, 13 and 14. ܧܵܯ ൌ 1ܰ כ ܲ  ሺ ܶ െ ሻଶேܮ

ୀଵ


ୀଵ  

                                                                                     (12)  

ܧܵܯܴܰ ൌ 1ܰ כ ܲ   ሺ൫ݐݎݍݏ ܶ െ ሻݐሺݎܽݒ൯ଶܮ ሻே
ୀଵ


ୀଵ  

                                                                                     (13) 

ܧܵܯܰ ൌ 1ܰ כ ܲ   ൫ ܶ െ ሻேݐሺݎܽݒ൯ଶܮ
ୀଵ


ୀଵ  

                                                                                     (14) 

In these equations, ܲ is the patterns number in the data set, 

Algorithm 1: RC Optimization with APSO and SA 
Input: database, swarm size (s), iterations number in APSO 
(iterMax), initial temperature (T0), final temperature (Tf), 
temperature decreasing rate (Tx) 
Select database 
Randomly initialize swarm with size s 
while (iteration ≤ iterMax) do 
Create RC according particle position 
while fold ≤ 10 (cross-validation) do 

Create training sets (nine partitions) and validation set 
(one partition) 
Simulate network with training set 
Train readout 
Calculate training set errors 

end while 
Calculate fitness function 
 Update swarm positions and velocities according APSO 
end while 
temperature = T0 
while (temperature ≤ Tf) do 
Execute SA algorithm, 
According to Tx, execute SA algorithm, being the best individual 
solutions set resulting from APSO the initial search space.  
Update, when applicable, best global solution. 
end while 
Return best global solution 
Create RC according to best solution 
Calculate test set errors 
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ܰ is the output units number and ܶ  and ܮ  are respectively 
the output and the desired values calculated by i-th neuron of 
the output layer. ݎܽݒሺݐሻ is the variance of the values in the 
desired outputs set. Considering that MSE, NMSE and 
NRMSE raise the squared error, larger differences penalize 
the final assessment more sharply. 

V. NUMERICAL SIMULATIONS 
Table I shows the NRMSE provided by the proposed 

algorithm in the training phase, along with the results reached 
by Sergio using APSO as optimization algorithm [13]. Table 
II shows the same information regarding the testing phase. 
Because of the random characteristics of the numerical 
simulations, and to perform hypothesis testing, the 
performance measures are represented by averages of 30 
startups in each database. The values in parentheses are the 
standard deviations. The best performances among the 
investigated configurations are bold. 

In Table I and II, the third column shows the comparison 
between the models according to the Student's t test at 5% of 
significance (95% of confidence). In this table, the "=" sign 
says that the null hypothesis was not rejected (the difference 
between the mean errors is not statistically significant) and 
the models have the same performance. The sign "<" says that 
the null hypothesis was rejected and that the algorithm 
provided by this work has the worst performance and the ">" 
sign says the opposite. 

According to Table I, one can observe that, during the 
training phase, APSO-SA outperforms APSO in two 
databases, Narma 30 and Mackey-Glass 17. In remaining 
databases both algorithms reached the same performance. In 
the test phase, according to Table II, APSO-SA had better 
performance. This algorithm was not outperformed by APSO 
in any databases, and, in three of them (Narma 30, 
Mackey-Glass 17 and MSO), there were decreased 
forecasting errors. Regarding DJIA database, this series is 
more difficult than others and the results are not much 
different between distinct techniques. Furthermore, in most 
databases in which the differences between models were not 
statistically significant, APSO-SA reached the best absolute 
results. With more empirical studies about parameters set in 
APSO-SA, this algorithm can achieve even better results. 
This point of view is stronger with Narma 10 and 
Mackey-Glass 30, since APSO-SA outperforms APSO in 
NAR30 and MGS17. 

In prior works, other algorithms were used to optimize 
Reservoir Computing in the same way as APSO-SA in this 
paper. Table III shows an absolute comparison between 
APSO-SA, PSO, EPUS-PSO and RCDESIGN (with Genetic 
Algorithms), in the test phase. 

In absolute terms, since best results are bold, one can see 
that APSO-SA was outperformed in just one database. 
Reservoir Computing optimization with a hybrid algorithm 
between APSO and SA was better than the original PSO, two 
PSO extensions, and Genetic Algorithms. APSO-SA's better 
performance can be explained by the fact that this algorithm 
uses SA after APSO to find out the best solutions set. This 
way, the search is positioned in a good region, increasing the 

chances of finding global optimal solutions. The proposed 
algorithm works with the advantages of both PSO and 
Simulated Annealing. That is the main idea when an 
algorithm is hybridized with another one. 

 
TABLE I 

NRMSE IN TRAINING PHASE, 30 STARTUPS 

Database APSO-SA APSO Student’s 
t Test 

 

NAR10 0.0436145368 
(0.04361) 

0.0477106861 
(0.0222) 

=  

NAR30 0.0429269667 
(0.006823) 

0.0910574919 
(0.0195) 

>  

MGS17 0.0000967796 
(0.00001) 

0.0001082409 
(0.00001) 

>  

MGS30 0.0003573238 
(0.00001) 

0.0003643903 
(0.00002) 

=  

MSO 0.0000000031 
(5*10-10) 

0.0000000033 
(6*10-9) 

=  

STAR 0.0307661037 
(0.00473) 

0.0318399628 
(0.0027) 

=  

DJIA 0.1318084901 
(0.00013) 

0.1318174990 
(0.0001) 

=  

     

 
TABLE II 

NRMSE IN TESTING PHASE, 30 STARTUPS 

Database APSO-SA APSO Student’s 
t Test 

NAR10 0.0457983264 
(0.00516) 

0.0503082103  
(0.0242) 

= 

NAR30 0.0452129088 
(0.00737) 

0.0948630262 
 (0.0208) 

>

MGS17 0.0000986223 
(0.00001) 

0.0001099572 
(0.00001) 

> 

MGS30 0.0003707519 
(0.00001) 

0.0003778040 
(0.00002) 

= 

MSO 0.0000000032  
(5*10-10) 

0.0000000034 
 (7*10-10) 

> 

STAR 0.0496100461 
(0.00091) 

0.0494933321 
 (0.0001) 

= 

DJIA 0.3787291947 
(0.00084) 

0.3783935519  
(0.0006) 

= 

    

 
TABLE III 

NRMSE IN TESTING PHASE, 30 STARTUPS 

Database APSO-SA PSO EPUS-PSO RCDESIGN 

NAR10 0.0457983264 
(0.00516) 

0,05030821 
(0,0242) 

0.05626217 
(0,0301) 

0.08462155 
(0,0354) 

NAR30 0.0452129088 
(0.00737) 

0,09486302 
(0,0208) 

0.12576019 
(0,0371) 

0.20424126 
(0,0469) 

MGS17 0.0000986223 
(0.00001) 

0,00010995 
(0,00001) 

0.00012705 
(0,00001) 

0.00050628 
(0,0001) 

MGS30 0.0003707519 
(0.00001) 

0,00037780 
(0,00002) 

0.00039609 
(0,00002) 

0.00099067 
(0,0002) 

MSO 0.0000000032  
(5*10-10) 

3.4 *10-9 
(7*10-10) 

4.5 *10-9 
(1*10-9) 

0.00000120 
(0,0000) 

STAR 0.0496100461 
(0.00091) 

0,04949333 
(0,0001) 

0.05068854 
(0,0010) 

0.08555901 
(0,2088) 

DJIA 0.3787291947 
(0.00084) 

0,37839355 
(0,0006) 

0.37877361 
(0,0006) 

0.23938190 
(0,0156) 

     

 
Even with experiments with different settings, one can 

compare APSO-SA performance with other works that used 
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some databases studied, taking into account that the 
experiments were not reproduced. This comparison is 
performed in tables IV, V and VI. Since the standard 
deviation is not available in some of these works, this 
information was suppressed. Reservoir Computing 
optimization with APSO-SA outperformed all these works. 

 
TABLE IV 

MSE COMPARISON 

Algorithm NAR10 NAR30 MGS30 

APSO-SA 0.0000248907 0.0000254061 0.0003707519 
Sergio and  

Ludermir [13] 
0.00023951 0.00013143 0.0000000092 

    

 
TABLE V 

NMSE COMPARISON 

Algorithm MGS30 

APSO-SA 0.0000001389 
Steil [28] 0.0340 

  

 
 

TABLE VI 
NRMSE COMPARISON 

Algorithm MGS17 MGS30 MSO 

APSO-SA 0.0000986223 0.0003707519 0.0000000032 
RS Search [9] 0.00584469 0.01114130 0.01347762 
TS Search [9] 0.00168976 0.00260901 0.00068574 
Jaeger [5][5] 0,00012 0,032 - 

Wyffels et al. [29] 0,0065 0,0065 - 
Jaeger and Haas [30] 0,000063 - - 

Schmidhuber et al. [31] - - 0,0103 
    

 

VI. CONCLUSIONS AND FUTURE WORKS 
This paper presented a method to optimize the global 

parameters, the topology, and the weights of Reservoir 
Computing using a hybrid algorithm between APSO and 
Simulated Annealing. This hybridization was inspired by the 
MPSO-SA-RBF, proposed by Li and Liu [16]. 

Numerical simulations were performed and compared with 
the optimization done only with the APSO algorithm, 
according to [13]. Some benchmark time series were used as a 
database. According to the forecast errors, APSO-SA had 
better performance. This can be explained by the fact that this 
algorithm used SA after APSO to find out the best solutions 
set, positioning search in a better region. 

The results were compared with other works in the 
literature. According to the forecast errors, the proposed 
optimization proved to be better than the others in all 
databases investigated. However, it is important to note that 
numerical simulations of the works used for comparison were 
not reproduced. 

Reservoir Computing optimization with APSO-SA achieve 
good results, but its performance can be improved. This can 

be accomplished through a fine-tuning of the parameters 
used. 

Other future works: use distinct algorithms to optimize 
Reservoir Computing; use the optimization proposed by this 
work in practical databases; test the proposed algorithm in 
benchmark optimization problems. 
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