

Abstract—Reservoir Computing (RC) is a paradigm of
artificial neural networks with important applications in the
real world. RC uses similar architecture to recurrent networks
without the difficulty of training the network hidden layer
(reservoir). However, RC can be computationally expensive and
various parameters influence its efficiency, making it necessary
to search for alternatives to increase its capacity. This work
aims to use a hybrid algorithm between a PSO (Particle Swarm
Optimization) extension and Simulated Annealing for optimize
the global parameters, architecture and weights of RC, in time
series forecasting. The results showed that the Reservoir
Computing optimization with the hybrid algorithm achieved
satisfactory performance in all databases investigated and
outperformed original APSO (Adaptive Particle Swarm
Optimization) in some of them.

Keywords—Reservoir Computing; PSO; optmization; time
series forecasting.

I. INTRODUCTION
eservoir Computing is a paradigm of Artificial Neural
Networks with important applications [1] [2] [3]. RC
uses similar architecture to Recurrent Neural Networks

(RNN) for temporal processing without the difficulty of
training the network hidden layer. Reservoir Computing was
introduced independently as Liquid State Machines (LSM)
[4] and Echo State Networks (ESN) [5]. In general, RC is
based on building a random RNN (this layer is called the
reservoir) without changing the weights. After this phase, a
linear regression function is used to train the system output.
Schrauwen et al. [6] show that the dynamic non-linear
processing provided by the reservoir is sufficient for the
output layer to be able to extract the output signals using a
simple linear mapping. Usually, the output layer is called
readout.

As in conventional neural networks, Reservoir Computing
has some disadvantages. Since RC is an approach of recurrent
networks, computational cost can be expensive, even without
the training phase on the reservoir layer. Several parameters
influence the RC performance; for instance, the number of
nodes used and the type of activation function. Setting these
parameters without experience is difficult. Lukosevicius and
Jaeger [7] say that it is unlikely that the random generation of
the weights and the training of the output layer using a simple
linear regression function provide the ideal solution for RC.

Several works have sought to use optimization techniques
to improve RC performance. For instance, Ferreira proposed
a method using Genetic Algorithms [8] to optimize
architecture, parameters and initial weights of the network

Anderson T. Sergio and Teresa B. Ludermir are with Centro de

Informática (CIn), Universidade Federal de Pernambuco (UFPE), Cidade
Universitária - 50740-560 - Recife/PE, Brazil (e-mail: ats3@cin.ufpe.br,
tpfl2@cin.ufpe.br, tbl@cin.ufpe.br).

hidden layer [9].
Particle Swarm Optimization [10] is an optimization

algorithm that has some advantages over other global search
techniques. PSO is based on the social behavior of flocks of
birds: a population of solutions is maintained and each
individual seeks to improve its performance based on its best
experience and the best experience of the group. When
compared to Genetic Algorithms, for example, PSO has
simpler implementation and, in some cases, relatively fast
convergence and low computational cost [11] [12].

Sergio and Ludermir [13] used PSO to optimize RC
architecture and initial parameters. Subsequently, based on
the work of Ferreira and his first approach, Sergio [14] also
sought to optimize the weights of RC (along with the
architecture and initial parameters) with PSO, and two of its
extensions, applying the method in time series forecasting.
The results showed that, taking into account the time series
forecast error, the PSO extension known as APSO [15]
achieved the best performance.

The literature contains several examples of using
optimization techniques to improve performance over
traditional architectures of neural networks. Among these, the
work of Li and Liu [16] may be mentioned. The authors
proposed a hybrid algorithm between a modified PSO,
Simulated Annealing (SA) and an RBF network, named
MPSO-SA-RNN (Modified PSO-SA algorithm and RBF
Neural Network). Simulated Annealing, described
independently in [17] and [18], is a probabilistic global search
technique, based on an analogy with thermodynamics. The
new method was used in the prediction of a variable that
indicates the quality of polymers. The PSO was modified
with features of SA and used to optimize the parameters of an
RBF network. The results validated the proposed model and
the confirmed advantages of MPSO-SA against original PSO
and SA algorithms.

This work aims to investigate the use of a hybrid algorithm
between PSO and SA in the task of optimizing the global
parameters, architecture and weights of Reservoir
Computing, in the problem of time series forecasting. To
validate the proposed method, benchmark time series were
tested.

Next, here is the structure of this work. Section II discusses
the main concepts of Reservoir Computing and presents the
PSO and SA algorithms, as well as the hybridization
proposed by Li and Liu. Section III discusses RC
optimization and Section IV describes the proposed method.
Section V presents numerical simulations and, finally,
Section VI describes the conclusions and proposals for future
work.

Reservoir Computing Optimization with a Hybrid Method
Anderson T. Sergio, Teresa B. Ludermir

R

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 2653

II. BACKGROUND

A. Reservoir Computing
Reservoir Computing is a paradigm of artificial neural

networks developed independently as Liquid State Machine
[4] and Echo State Network [5]. In common, all the Reservoir
Computing approaches use the computational power of
recurrent neural networks without training the hidden layer.

In general, RC is composed of a recurrent network with a
relatively large number of processing units, called the
reservoir. The reservoir receives the input signals and sends
them to a smaller circuit called the readout. While the
reservoir weights are set randomly at the beginning of the
process and kept unchanged, the readout is used to train the
network output through a function that does linear regression
of signals from the hidden layer. Fig. 1 shows a diagram of a
simple Echo State Network.

Fig. 1. Echo State Network architecture

As seen in Fig. 1, the reservoir layer receives signal values
coming from the input layer, and optionally the signals from
the feedback connection and bias. The reservoir, with a
certain number of processing units (PEs), is designed with
recurrent connections. The weights of these connections are
random and do not change. The readout layer makes a simple
linear mapping from the reservoir output using, for instance,
pseudo-inverse. Also in Fig. 1, dotted lines represent
connections that can be trained and shaded lines indicate
optional connections.

Rather than trying to achieve a particular transformation by
adjusting the weights, RC uses a larger number of neurons
(compared to conventional networks) to achieve a diverse set
of transformations from the input signals [5]. In general, such
changes are not desired, but these changes can be combined in
order to achieve these transformations. This action is held by
the readout layer. The calculation is made simple since the
readout has no feedback connections. It is important to note
that the same reservoir can be used to calculate multiple
transformations in parallel, since they have different readouts.

B. APSO and SA
PSO is a global optimization technique based on a

population of solutions. The algorithm is based on the social

behavior of a flock of birds, where an individual mimics the
actions of the group's best (or most suitable) individual. The
process starts defining the population of solutions. Each
individual (particle) is a possible solution. Each particle has a
position and speed, and the update process is based on its best
experience and the best experience of the group. PSO was
introduced by Kennedy and Eberhart in 1995 [10].

Works such as Van den Bergh [19], Clerc et al. [20] and
Trelea [21] mathematically analyze the convergence of PSO.
Such discussions had led guidance on which parameters
affect the convergence, divergence, or oscillation of the
algorithm, and these studies have led to several variations of
the original PSO.

Adaptive Particle Swarm Optimization (APSO) [15] was
developed trying to increase the search efficiency and the
convergence speed of the original PSO algorithm. Basically,
APSO has two main steps. First, after evaluating the
population distribution and the fitness function of each
particle, the algorithm identifies to which of the four
evolutionary states the current generation belongs:
exploration, exploitation, convergence or jump. With this
knowledge, there is an automatic control of some variables,
such as the term of inertia and acceleration coefficients.
Second, an elitist strategy is performed (ELS - Elitist
Learning Strategy), activated when the evolutionary state is
classified as convergence. To classify the evolutionary state
of the current generation, APSO uses an approach called ESE
(Evolutionary State Estimation). ESE is based on search
behavior and population distribution of the PSO solutions.

The main objective of ELS in APSO is to give the particle
better overall performance and leaves out regions of local
optima when the search is classified as convergence state.
Granting a disturbance to the particle with better performance
is important because this individual has no parameters to
follow. If this disturbance finds a region with better results,
the entire swarm will follow the example of the leading
particle.

Simulated Annealing is a probabilistic global search
technique, based on an analogy with thermodynamics - the
gradual cooling of a physical system to reach a minimum
potential energy. The method was described independently in
1983 [17] and 1985 [18].

In general, the algorithm starts with an initial solution ܵ. ܶ
is the parameter that controls temperature, starting at ܶ. The
temperature of the system decreases until it reaches a thermal
equilibrium which is a better solution. In this process, a new
solution ܵ is created in the neighborhood of the previous
solution ܵ. If the new solution fitness ݂ሺܵሻ is better than the
prior value ݂ሺܵሻ, the new solution is accepted. Otherwise the
new solution is accepted according to a probability ܲ given
by equations 1 and 2.

 ܲ ൌ ݔ݁ ൬െ ∆ܶ൰

 (1)

2654

∆ ൌ ݂ሺܵሻ െ ݂ሺܵሻ݂ሺܵሻ 100 ݔ

 (2)

Applying the ܲ factor, the search tends to leave local
minima. The algorithm repeats this process described in the
previous paragraph until it reaches a desirable state.

If the initial solution is a point close to the global optimal,
SA generally gives good results. However, sometimes it is
impossible to start from a good initial solution. Then, a trial
and error process is necessary. Also, the user must set certain
heuristics. For example, the user must consider the way that
new solutions will be proposed and what the appropriate
stopping criterion will be.

Trying to achieve better efficiency in finding optimal
solutions to a given problem, Li and Liu [15] proposed a
hybrid algorithm between PSO and SA. One of the
disadvantages of PSO is that after a few generations, the
diversity of the swarm is reduced and the population may
converge to a local optimal. Since SA can be more effective
when an appropriate initial state is taken into account, the
authors proposed to run this method after iterations of a
modified PSO algorithm. The new algorithm is called
MPSO-SA (Modified PSO-SA).

Regarding the original PSO, MPSO-SA has different
update equations for the inertia term (momentum) and
acceleration coefficients. The authors propose that the
momentum should not vary linearly from a maximum value ݓ௫ to a minimum value ݓ . For the acceleration
coefficients, ܿଵ also varies nonlinearly from ܿଵ௫ to ܿଵ ,
while ܿଶ is fixed at 0.1. Let ݅ݎ݁ݐ௫ be the maximum number
of iterations, ݇ the current iteration and ߙ and ߚ constants;
the term inertia and acceleration coefficients are given by
equations 3, 4 and 5. These modifications were made in order
to encourage the particles to seek solutions in the whole space
instead of being trapped in local optima.

ሺ݇ሻݓ ൌ ݓ ൬݅ݎ݁ݐ௫ െ ௫ݎ݁ݐ݅݇ ൰ఈ ሺݓ௫ െ ሻݓ

 (3) ܿଵሺ݇ሻ ൌ ܿଵ ൬݅ݎ݁ݐ௫ െ ௫ݎ݁ݐ݅݇ ൰ఉ ሺܿଵ௫ െ ܿଵሻ

 (4) ܿଶሺ݇ሻ ൌ 0.1

 (5)

With such modifications, the standard PSO algorithm is
executed to find the best set of individual positions of the
population ܱܲ ൌ ሺଵ, ,ଶ … , ሻ . Then, the SA algorithm
initializes taking this set as a starting point, according to the
following steps:

1. Initialize the sequence number of initial solutions: ݅ ൌ 1.

2. For the initial solution , initialize the temperature
controlling parameter: ܶ ൌ ܶ.

3. Generate a new solution ௧ according to .
4. Do the test and decide if we should accept the new

solution. If ݂ሺ௧ሻ ൏ ݂ሺሻ , accept ௧ to
replace ; Otherwise, calculate ܲ from equations 1
and 2; generate a random number ݀݊ܽݎ between 0
and 1; if ݀݊ܽݎ ൏ ܲ, accept ௧ to replace . A
uniform distribution was used in order to follow the
original MPSO-SA.

5. Decrease ܶ. If ܶ ܶ go back to 3. Else go to
next step.

6. Choose the solution with the best objective function.

MPSO-SA was applied in the parameters optimization of
an RBF network, in prediction of a variable that indicates the
quality of polymers. The results confirmed the validity of the
proposed model and the advantages of MPSO-SA against
original PSO and SA algorithms.

III. RESERVOIR COMPUTING OPTIMIZATION
As previously noted, Reservoir Computing primary

architectures (ESN and LSM) work with a recurrent neural
network with fixed and randomly generated weights.
However, Lukosevicius and Jaeger [7] say that it is unlikely
that the random generation of weights and output layer
training with a linear regression function is the optimal
solution for computing RC. Then, it's necessary to seek
alternatives for reservoir generations and readout training.

As an alternative to the reservoir layer generation, one can
initialize the hidden layer weights in an unsupervised way or
even from a supervised pre-training. The unsupervised
adaptation involves optimizing some measure defined in the
reservoir for a given input, not taking into consideration the
desired output. In contrast, supervised pre-training also takes
into account the desired output.

Besides reservoir adaptation, other ways to optimize
Reservoir Computing can be considered. Ferreira and
Ludermir [22] presented a method to optimize the global
parameters’ choice using genetic algorithms, in time series
forecasting with practical application. The optimization took
up 22.22% of the time required to perform an exhaustive
search for the parameters and achieve similar results. In an
exhaustive search, all parameters are combined without using
any optimization method.

In 2011, Ferreira [9] developed a method to find the best
reservoir in time series forecasting, called RCDESIGN. The
method simultaneously searches the best values of the global
parameters of the network topology and weights, combining
an evolutionary algorithm with Reservoir Computing. Two
other optimization methods were implemented to compare
the results. RS Search tries to optimize the reservoir size, the
spectral radius and the connection density. TR Search
simultaneously searches the spectral radius and the network
topology. Along with RCDESIGN, TR Search does not
consider the approach of linear systems with RC.
RCDESIGN showed satisfactory results in all databases
studied, being better than the other methods used for
comparison. All approaches were also applied to the
prediction of wind speeds, which is an important task for

2655

wind power generation.
PSO is an important candidate to perform Reservoir

Computing optimization, due to its advantages over genetic
algorithms [11] [12]. Also, extensions of this algorithm can
increase efficiency, since such changes have been developed
for this purpose. Sergio and Ludermir used PSO and two of its
extensions (EPUS-PSO [23] and APSO) to optimize the
overall parameters of RC. They concluded that, in the five
series used, the proposed method reduced the number of
training cycles needed to train the system [13]. The
parameters used in the optimization were the number of nodes
in the reservoir, the activation function of neurons in the
reservoir, spectral radius of the weight matrix in the reservoir
layer and the presence or absence of optional connections.

Based on RCDESIDGN, Sergio [14] proposed a method to
optimize global parameters, topology and weights of
Reservoir Computing, using PSO and two extensions,
EPUS-PSO and APSO. The APSO algorithm achieved the
best results according to the forecast errors in the time series
used. EPUS-PSO obtained the best results when the criterion
of training cycles required to reach the optimal values was
taken into account.

Since APSO achieved greater improvement in the forecast
errors, this paper proposes a hybridization between SA and
APSO in the task of optimizing architecture, global
parameters and weights of Reservoir Computing, for time
series forecasting. A hybridization of these two algorithms
showed satisfactory results when applied to a more traditional
topology of neural networks, RBF [16].

IV. RESERVOIR COMPUTING OPTIMIZATION WITH APSO
AND SA

Hereafter, the proposed method will be presented. The
representation of solutions will be described, followed by
how the fitness function was calculated, algorithm
optimization, the parameters involved and the numerical
simulation. The optimization is based on RCDESIGN [9] and
the method proposed by Sergio [13]. ESN was used as the
Reservoir Computing architecture.

A. Solutions Representation
Each particle is represented by a vector ݏ . Notation ݏ

denotes dimension ݆ of the particle ݏ . Next, each of these
dimensions is described.
• sଵ୧ Nodes number in reservoir, integer between 50 – (ߟ)

and 200. This parameter defines the weight matrix size.
• sଶ୧ – Connection between input and output layers. Float

between 0 and 1. If larger than 0.5, there is connection,
else, there is not.

• sଷ୧ – Connection between bias and output layer. Float
between 0 and 1. If larger than 0.5, there is connection,
else, there is not.

ସݏ • – Feedback connection in output layer. Float between
0 and 1. If larger than 0.5, there is connection, else, there
is not.

ହݏ • – Connection between bias and reservoir layer. Float
between 0 and 1. If larger than 0.5, there is connection,
else, there is not.

• s୧ – Connection between output and reservoir layers.
Float between 0 and 1. If larger than 0.5, there is
connection, else, there is not.

• s୧ – Neurons activation function. If 1, hyperbolic
tangent, if 2, sigmoid.

• s୧଼ – Readout training function. If 1, pseudo-inverse [7],
if 2, ridge-regress [24].

• sଽ୧ – Leak rate. Float number between 0.1 and 1. Leak
rate is a parameter that enables RC dynamic adaptation.

• sଵ୧ – Regularization parameter of the training functions.
Float number between 10-8 and 10-1. Regularization
parameter is a noise that can be added to the reservoir
responses.

• sଵଵ୧ ... sሺమାଷାଵሻ୧ – Reservoir weights W, input weights W୧୬ , bias weights Wୠ୧ୟୱ and feedback weights Wୠୟୡ୩ .
Float number between -0.1 and 0.1.

Vector size ݏ is variable. This happens because the last
positions depend on the nodes number in the reservoir layer,
defined by dimension ݆ = 1. Interval [50, 200] was set
empirically, in order to create large reservoirs big enough to
compute data and in which it is feasible to perform
simulations. If 50 = ߟ, vector ݏ has 2660 positions. If ߟ =
200, vector ݏ has 40610 positions.

B. Fitness Function
Fitness function is based on MSE (Mean Square Error)

generated by the network. Due to the overfitting
phenomenon, common in artificial neural networks, the
fitness function is also based on the validation phase.
Equation 6 shows the fitness function used. ݂ ൌ തതതതതത்ܧܵܯ ฮܧܵܯതതതതതത் െ തതതതതതௗ௧ԡܧܵܯ
 (6)

C. Optimization Algorithm
Reservoir Computing optimization with APSO and SA is

presented in Algorithm 1. Network training was performed
with k-fold cross-validation. Cross-validation with 10
partitions has proven to be a suitable value for most problems
[25].

As seen above, the hybridization between APSO and
Simulated Annealing is based on work by Li and Liu [16].
However, there are two differences in the process.

In Li and Liu's work, the authors propose a new way to
calculate inertia term and acceleration coefficients. However,
compared with standard PSO, APSO also presents a different
way to calculate these variables. Since the approach used in
APSO (ESE - Evolutionary State Estimation) to update these
values is relatively more complex than that used in Li and
Liu, ESE was selected. Another difference is how the final
solution is selected. In MPSO-SA, SA receives as input the
individual best solutions set, and, according to temperature,
these solutions are improved. However, these solutions are
not compared with the best global solution. This paper
proposes to use the best global solution in this phase. When a
new solution based on the best individual solutions is found, it
is compared with the best global solution.

In MPSO-SA, Li and Liu do not say how a new solution
must be proposed in the neighborhood, at the SA execution

2656

phase. In this work, using the concept already used in APSO,
the new solution is proposed according to the ELS (Elitist
Learning Strategy) approach.

ELS randomly selects a particle dimension with better
global performance and enforces a Gaussian perturbation,
according to equation 7 (being d the d-ith dimension and X the
minimum and maximum limits).

 ܲௗ ൌ ܲௗ ൫ܺ௫ௗ െ ܺ ௗ ൯ ൈ ,ߤሺ݊ܽ݅ݏݏݑܽܩ ଶሻߪ

 (7)

In Gaussian distribution with mean μ = 0, standard
deviation (called elitist learning rate in APSO) is given by
equation 8. g is the generation of the current iteration and
max_gen denotes the maximum number of generations. σ is
linearly decreased according to the number of generations. ߪ ൌ ௫ߪ െ ሺߪ௫ െ ሻߪ ݃max _݃݁݊

 (8)

D. Parameters
For APSO, the following parameter set was tested, based

on [13]: swarm size = 50; number of iterations = 20; initial
momentum term = 0.9. Regarding SA, the parameters were
set after extensive initial testing, as follows: initial
temperature = 100; final Temperature = 10, temperature
decreasing rate = 0.85. The weights values of the reservoir
was set in interval [-0.1 01]. These values were set
empirically.

E. Experimental Method
Five benchmark time series were tested, including two

variations:

• Narma order 10 and Narma order 30 (NAR10 and
NAR30)

Narma is a discrete time series given by equation 9: ሺݕ 1ሻ ൌ ሻݐሺݕ0.3 ሻݐሺݕ0.05 ݐሺݕ െ ݅ሻିଵ
ୀ ൩ 1.5ݑ൫ݐ െ ሺ݇ െ 1ሻ൯ כ ሻݐሺݑ 0.1

 (9)
The series input is a uniform random noise ݑሺݐሻ, ݐ is time, ݇ is the system order and ݕ is the output. Two values for the

system order were used: ݇ = 10 and ݇ = 30.

• Mackey-Glass average chaos and Mackey-Glass
moderate chaos (MGS17 and MGS30)

Mackey-Glass, a continuous and unidimensional time
series, is given by equation 10. ݕሺݐ 1ሻ ൌ ݐሺݕ0.2 െ ߬ሻ1 ݐሺݕ െ ߬ሻଵ െ ሻݐሺݕ0.1

 (10) yሺtሻ is the output in t time and τ is a delay parameter that
leverages the chaos level. Two values for the τ parameter
were used: τ = 17 (average chaos) and τ = 30 (moderate
chaos). The first value is less chaotic than the second one.

• Multiple Sinewave Oscillator (MSO)
MSO series is used to create a system for generating

multiple sines. It is given by equation 11: ݕሺݐ 1ሻ ൌ sinሺ0.2 כ ሻݐ sin ሺ0.311 כ ሻݐ
 (11)

• Natural shining star series (STAR)
Available in [26], STAR series has 600 consecutive

numerical observations of star light at midnight.
• Dow Jones Industrial Average (DJIA)

Available in [27], the Dow Jones Industrial Average
financial series consists of daily observations of the index of
the same name. Data used in this work contains 1444 records,
with observations from January 2nd 1998 to August 26th 2003.

In order to compare the results with other methods in the
literature, the performance of the proposed optimization in
this work was calculated according to various forecast error
indices. They are: Mean Square Error (MSE), Normalized
Square Root Mean Square Error (NRMSE) and Normalized
Mean Square Error (NMSE). These errors are given
respectively by equations 12, 13 and 14. ܧܵܯ ൌ 1ܰ כ ܲ ሺ ܶ െ ሻଶேܮ

ୀଵ

ୀଵ

 (12)

ܧܵܯܴܰ ൌ 1ܰ כ ܲ ሺ൫ݐݎݍݏ ܶ െ ሻݐሺݎܽݒ൯ଶܮ ሻே
ୀଵ

ୀଵ

 (13)

ܧܵܯܰ ൌ 1ܰ כ ܲ ൫ ܶ െ ሻேݐሺݎܽݒ൯ଶܮ
ୀଵ

ୀଵ

 (14)

In these equations, ܲ is the patterns number in the data set,

Algorithm 1: RC Optimization with APSO and SA
Input: database, swarm size (s), iterations number in APSO
(iterMax), initial temperature (T0), final temperature (Tf),
temperature decreasing rate (Tx)
Select database
Randomly initialize swarm with size s
while (iteration ≤ iterMax) do
Create RC according particle position
while fold ≤ 10 (cross-validation) do

Create training sets (nine partitions) and validation set
(one partition)
Simulate network with training set
Train readout
Calculate training set errors

end while
Calculate fitness function
 Update swarm positions and velocities according APSO
end while
temperature = T0
while (temperature ≤ Tf) do
Execute SA algorithm,
According to Tx, execute SA algorithm, being the best individual
solutions set resulting from APSO the initial search space.
Update, when applicable, best global solution.
end while
Return best global solution
Create RC according to best solution
Calculate test set errors

2657

ܰ is the output units number and ܶ and ܮ are respectively
the output and the desired values calculated by i-th neuron of
the output layer. ݎܽݒሺݐሻ is the variance of the values in the
desired outputs set. Considering that MSE, NMSE and
NRMSE raise the squared error, larger differences penalize
the final assessment more sharply.

V. NUMERICAL SIMULATIONS
Table I shows the NRMSE provided by the proposed

algorithm in the training phase, along with the results reached
by Sergio using APSO as optimization algorithm [13]. Table
II shows the same information regarding the testing phase.
Because of the random characteristics of the numerical
simulations, and to perform hypothesis testing, the
performance measures are represented by averages of 30
startups in each database. The values in parentheses are the
standard deviations. The best performances among the
investigated configurations are bold.

In Table I and II, the third column shows the comparison
between the models according to the Student's t test at 5% of
significance (95% of confidence). In this table, the "=" sign
says that the null hypothesis was not rejected (the difference
between the mean errors is not statistically significant) and
the models have the same performance. The sign "<" says that
the null hypothesis was rejected and that the algorithm
provided by this work has the worst performance and the ">"
sign says the opposite.

According to Table I, one can observe that, during the
training phase, APSO-SA outperforms APSO in two
databases, Narma 30 and Mackey-Glass 17. In remaining
databases both algorithms reached the same performance. In
the test phase, according to Table II, APSO-SA had better
performance. This algorithm was not outperformed by APSO
in any databases, and, in three of them (Narma 30,
Mackey-Glass 17 and MSO), there were decreased
forecasting errors. Regarding DJIA database, this series is
more difficult than others and the results are not much
different between distinct techniques. Furthermore, in most
databases in which the differences between models were not
statistically significant, APSO-SA reached the best absolute
results. With more empirical studies about parameters set in
APSO-SA, this algorithm can achieve even better results.
This point of view is stronger with Narma 10 and
Mackey-Glass 30, since APSO-SA outperforms APSO in
NAR30 and MGS17.

In prior works, other algorithms were used to optimize
Reservoir Computing in the same way as APSO-SA in this
paper. Table III shows an absolute comparison between
APSO-SA, PSO, EPUS-PSO and RCDESIGN (with Genetic
Algorithms), in the test phase.

In absolute terms, since best results are bold, one can see
that APSO-SA was outperformed in just one database.
Reservoir Computing optimization with a hybrid algorithm
between APSO and SA was better than the original PSO, two
PSO extensions, and Genetic Algorithms. APSO-SA's better
performance can be explained by the fact that this algorithm
uses SA after APSO to find out the best solutions set. This
way, the search is positioned in a good region, increasing the

chances of finding global optimal solutions. The proposed
algorithm works with the advantages of both PSO and
Simulated Annealing. That is the main idea when an
algorithm is hybridized with another one.

TABLE I

NRMSE IN TRAINING PHASE, 30 STARTUPS

Database APSO-SA APSO Student’s
t Test

NAR10 0.0436145368
(0.04361)

0.0477106861
(0.0222)

=

NAR30 0.0429269667
(0.006823)

0.0910574919
(0.0195)

>

MGS17 0.0000967796
(0.00001)

0.0001082409
(0.00001)

>

MGS30 0.0003573238
(0.00001)

0.0003643903
(0.00002)

=

MSO 0.0000000031
(5*10-10)

0.0000000033
(6*10-9)

=

STAR 0.0307661037
(0.00473)

0.0318399628
(0.0027)

=

DJIA 0.1318084901
(0.00013)

0.1318174990
(0.0001)

=

TABLE II

NRMSE IN TESTING PHASE, 30 STARTUPS

Database APSO-SA APSO Student’s
t Test

NAR10 0.0457983264
(0.00516)

0.0503082103
(0.0242)

=

NAR30 0.0452129088
(0.00737)

0.0948630262
 (0.0208)

>

MGS17 0.0000986223
(0.00001)

0.0001099572
(0.00001)

>

MGS30 0.0003707519
(0.00001)

0.0003778040
(0.00002)

=

MSO 0.0000000032
(5*10-10)

0.0000000034
 (7*10-10)

>

STAR 0.0496100461
(0.00091)

0.0494933321
 (0.0001)

=

DJIA 0.3787291947
(0.00084)

0.3783935519
(0.0006)

=

TABLE III

NRMSE IN TESTING PHASE, 30 STARTUPS

Database APSO-SA PSO EPUS-PSO RCDESIGN

NAR10 0.0457983264
(0.00516)

0,05030821
(0,0242)

0.05626217
(0,0301)

0.08462155
(0,0354)

NAR30 0.0452129088
(0.00737)

0,09486302
(0,0208)

0.12576019
(0,0371)

0.20424126
(0,0469)

MGS17 0.0000986223
(0.00001)

0,00010995
(0,00001)

0.00012705
(0,00001)

0.00050628
(0,0001)

MGS30 0.0003707519
(0.00001)

0,00037780
(0,00002)

0.00039609
(0,00002)

0.00099067
(0,0002)

MSO 0.0000000032
(5*10-10)

3.4 *10-9
(7*10-10)

4.5 *10-9
(1*10-9)

0.00000120
(0,0000)

STAR 0.0496100461
(0.00091)

0,04949333
(0,0001)

0.05068854
(0,0010)

0.08555901
(0,2088)

DJIA 0.3787291947
(0.00084)

0,37839355
(0,0006)

0.37877361
(0,0006)

0.23938190
(0,0156)

Even with experiments with different settings, one can

compare APSO-SA performance with other works that used

2658

some databases studied, taking into account that the
experiments were not reproduced. This comparison is
performed in tables IV, V and VI. Since the standard
deviation is not available in some of these works, this
information was suppressed. Reservoir Computing
optimization with APSO-SA outperformed all these works.

TABLE IV

MSE COMPARISON

Algorithm NAR10 NAR30 MGS30

APSO-SA 0.0000248907 0.0000254061 0.0003707519
Sergio and

Ludermir [13]
0.00023951 0.00013143 0.0000000092

TABLE V

NMSE COMPARISON

Algorithm MGS30

APSO-SA 0.0000001389
Steil [28] 0.0340

TABLE VI
NRMSE COMPARISON

Algorithm MGS17 MGS30 MSO

APSO-SA 0.0000986223 0.0003707519 0.0000000032
RS Search [9] 0.00584469 0.01114130 0.01347762
TS Search [9] 0.00168976 0.00260901 0.00068574
Jaeger [5][5] 0,00012 0,032 -

Wyffels et al. [29] 0,0065 0,0065 -
Jaeger and Haas [30] 0,000063 - -

Schmidhuber et al. [31] - - 0,0103

VI. CONCLUSIONS AND FUTURE WORKS
This paper presented a method to optimize the global

parameters, the topology, and the weights of Reservoir
Computing using a hybrid algorithm between APSO and
Simulated Annealing. This hybridization was inspired by the
MPSO-SA-RBF, proposed by Li and Liu [16].

Numerical simulations were performed and compared with
the optimization done only with the APSO algorithm,
according to [13]. Some benchmark time series were used as a
database. According to the forecast errors, APSO-SA had
better performance. This can be explained by the fact that this
algorithm used SA after APSO to find out the best solutions
set, positioning search in a better region.

The results were compared with other works in the
literature. According to the forecast errors, the proposed
optimization proved to be better than the others in all
databases investigated. However, it is important to note that
numerical simulations of the works used for comparison were
not reproduced.

Reservoir Computing optimization with APSO-SA achieve
good results, but its performance can be improved. This can

be accomplished through a fine-tuning of the parameters
used.

Other future works: use distinct algorithms to optimize
Reservoir Computing; use the optimization proposed by this
work in practical databases; test the proposed algorithm in
benchmark optimization problems.

REFERENCES
[1] K. Vandoorne, M. Fiers, D. Verstraeten, B. Schrauwen, J. Dambre, P.

Bienstman. “Photonic Reservoir Computing: A New Approach to
Optical Information Processing”. 12th International Conference on
Transparent Optical Networks (ICTON), Munich, German, 2010.

[2] P. Buteneers, D. Verstraeten, P. van Mierlo, T.Wyckhuys,
D.Stroobandt, R. Raedt, H. Hallez, B. Schrauwen. “Automatic
detection of epileptic seizures on the intra-cranial
electroencephalogram of rats using reservoir computing”. Artificial
Intelligence in Medicine, 53, pp. 215-223, 2001.

[3] A. Smerieri, F.Duport, Y.Paquot, M.Haelterman, B.Schrauwen,
M.Massar. “Towards Fully Analog Hardware Reservoir Computing
For Speech Recognition”. International Conference of Numerical
Analysis and Applied Mathematics (ICNAAM), 1479, pp.1892-1895,
2012.

[4] W. Maass, T. Natschlager, H. Markram. “Real-time computing without
stable states: A new framework for neural computation based on
perturbations”. Neural Computation, 14(11), pp. 2531–2560, 2002.

[5] H. Jaeger. “The echo state approach to analyzing and training recurrent
neural networks”. Tech. Rep. GMD 148, German National Resource
Center for Information Technology, 2001.

[6] B. Schrauwen, J. Defour, D. Verstraeten, J. Van Campenhout. “The
introduction of time-scales in reservoir computing, applied to isolated
digits recognition”. LNCS, 4668(1), pp. 471–479, 2007.

[7] M. Lukosevicius, H. Jaeger. “Reservoir computing approaches to
recurrent neural network training”. Computer Science Review, 3(3),
pp. 127–149, 2009.

[8] Holland, H.J. Adaptation in Natural and Artificial Systems. University
of Michigan Press, 1975.

[9] A. Ferreira, T. B. Ludermir, R. Aquino. “An Approach to Reservoir
Computing Design and Training. Expert Systems with Applications, v.
40, p. 181-195, 2013.

[10] J. Kennedy, R. Eberhart. “Particle swarm Intelligence”. Proceedings of
IEEE International Conference on Neural Networks. IV. pp.
1942-1948, 1995.

[11] R. Hassan, B. Cohanim, O. De Weck, G. Venter. “A Comparison Of
Particle Swarm Optimization And The Genetic Algorithm”. 46th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, pp. 1-13, 2005.

[12] S. Panda, N. P. Padhy. “Comparison of Particle Swarm Optimization
and Genetic Algorithm for TCSC-based Controller Design”.
International Journal of Computer Science & Engineering, 1(1), pp. 41,
2007.

[13] A. Sergio, T. B. Ludermir. “PSO for reservoir computing
optimization”. ICANN 2012, Part I, LNCS 7552, pp. 685-692, 2012.

[14] A. Sergio. “Reservoir Computing Optimization with PSO - Otimização
de Reservoir Computing com PSO”. Master’s Thesis. Centro de
Informática, Universidade Federal de Pernambuco, 2013.

[15] Z-H. Zhan, J. Zhang, Y. Li, H. Chung, H. “Adaptive Particle Swarm
Optimization”. IEEE Transactions, Man and Cybernetics, 39, pp. 1362
 -1381, 2009.

[16] J. Li, X. Liu. Melt index prediction by RBF neural network optimized
with an MPSO-SA hybrid algorithm. Neurocomputing 74 (2011), pp.
735-740, 2010.

[17] S. Kirkpatrick, C. Gelatt, M. Vecchi. Optimization by Simulated
Annealing. Science 220 (4598): 671–680, 1983.

[18] V. Černý. Thermodynamical approach to the traveling salesman
problem: An efficient simulation algorithm. Journal of Optimization
Theory and Applications 45: 41–51.

2659

[19] F. Van den Bergh. “An Analysis of Particle Swarm Optimizers”. PhD
thesis, University of Pretoria, Faculty of Natural and Agricultural
Science, 2001.

[20] M. Clerc, J. Kennedy. “The particle swarm - explosion, stability, and
convergence in a multidimensional complex space”. IEEE Transactions
on Evolutionary Computation, 6(1), pp. 58–73, 2002.

[21] I. C. Trelea. “The Particle Swarm Optimization Algorithm:
convergence analysis and parameter selection”. Information Processing
Letters, 85, pp. 317–325, 2003.

[22] A. A. Ferreira, T. B. Ludermir. “Genetic algorithm for reservoir
computing optimization”. International Joint Conference on Neural
Networks, pp. 811-815, 2009.

[23] S. Hsieh, T. Sun, C. Liu, S. J. Tsai. “Efficient Population Utilization
Strategy for Particle Swarm Optimizer”. IEEE Transactions, Man and
Cybernetics, 30, pp. 444-456, 2009.

[24] C. M. Bishop. Pattern recognition and machine learning. In Information
Science and Statistics. Springer, 2006.

[25] I. H Witten, E. Frank. Data Mining, Practical Machine Learning
Toolsand Techniques with Java Implementations. Morgan Kaufmann
Publishers, 2000.

[26] http://datamarket.com/data/list/?q=provider:tsdl. Last access in
December 14th, 2013.

[27] http://www.djindexes.com/. Last access in December 14th, 2013.
[28] J. J. Steil. “Backpropagation–decorrelation: Online recurrent learning

witho(n) complexity”. In International Joint Conference on Neural
Networks, IJCNN 2004, 2, pp. 843–848, 2004.

[29] F. Wyffels, B. Schrauwen, D. Verstraeten, D. Stroobandt. “Band-pass
reservoir computing”. In International Joint Conference on Neural
Networks 2008, pp. 3203–3208, 2008.

[30] H. Jaeger, H. Haas. “Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless telecommunication”. Science,
308, pp. 78–80, 2004.

[31] J. Schmidhuber, D. Wierstra, M. E. Gagliolo, F. Gomez. “Training
recurrent networks by evolino”. Neural Computation, 19(3), pp.
757–779, 2007.

2660

