
 
 

 

 

  

Abstract—In this paper, a new fault diagnosis method for a 
five-phase fault-tolerant permanent-magnet (FTPM) motor by 
using a compact method is proposed. The key is to create a 
neural network based on principle component analysis (PCA). 
For a current signal of a five-phase FTPM motor system, PCA 
theory is used to extract the main element from the fault sample 
data. It realizes optimum compressed of fault sample data and 
simplifies structure of neural network in fault diagnosis. Speed 
and precision of the fault classification are enhanced. The 
obtained results verify the effectiveness of the proposed method. 

I. INTRODUCTION 
HE fault diagnosis for a five-phase motor system is the 
key point of rotary mechanical fault diagnosis. The 
five-phase motor is applied in a variety of areas including 

electric vehicle applications field [1], [2]. Hence, more 
attention is paid on the study of five-phase motor. The 
common faults are rotor imbalance, the loose of bearing, 
partial friction, oil whirl, etc. Among all the fault of a motor, 
the short-circuit fault is the particular one, which can cause 
serious damage to the motor shortly [3]. After detection, it is 
required to bring the machine offline to clear the fault. 
However, a shutdown of the running motor is not available in 
safety-critical applications. Hence, fault-tolerant control is 
pullulated [4], [5]. Based on harmonic analysis, fault-tolerant 
control is generally used for the multi-phase motor [6], [7]. 
Then the five-phase FTPM motor is proposed, which can run 
normally under the specific fault. By using transient 
co-simulation method, analysis of fault-tolerant performance 
of a doubly salient permanent-magnet motor drive is 
mentioned in [8]. Although with the new motor, the damage 
to the motor caused by the fault can be avoided, it is difficult 
to detect stator inter-turn short circuit fault. The severity of 
stator inter-turn short circuit fault can hardly be recognized. 
The most important step is to identify the location and the 
severity of fault quickly and accurately. Then a better 
fault-detection method is required.  

Motor current signature analysis (MCSA) is nowadays a 
widely used method to detect the broken rotor system [9], 
[10], [11]. MCSA methods employ FFT to detect the 
eccentricity and stator inter-turn short circuit characteristic 
frequencies. Some of the frequency components are close to 
the stator supply frequency [12]. There are also recent studies 
based on wavelet technique for MCSA. However, inherent 
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asymmetries in the machine and unbalanced supply voltages 
also affect the current component. In recent years, some 
methods have been proposed to diagnose turn fault for 
induction motors. Parameters estimation and intelligent 
modeling can be employed to several applications [13]. A 
noninvasive technique for diagnosing electrical faults of 
induction motors using a current park vector is proposed in 
[14]. A study of a machine fault diagnosis system by using 
FFT is clearly explained in [15]. These methods work 
correctly under steady state. They fail to detect the slowly 
developing turn fault under transient state due to the highly 
complex, non-linear nature of turn fault. Neural network has 
the ability to achieve nonlinear dynamic mappings with 
simple structure. It has rapid convergence and easy 
implementation [16]. Therefore, it can be used to detect stator 
winding turn fault in induction motors at various conditions. 

In this paper, a neural network based on PCA is proposed 
to detect different severity of the stator inter-turn short circuit 
fault [17]. This work is on the basis of multi- statistics theory 
principle. Based on the fault characteristic method of PCA, 
the motor fault diagnosis recognition method has been put 
forward to combine PCA characteristic method and neutral 
network. It can be applied to accomplishing the experiment of 
open circuit fault diagnosis. The structure of the middle 
neutral network grader of fault diagnosis can be simplified by 
this method. The classification speed and test precision of the 
neutral network are improved. PCA is a dimension reduction 
technique used in multivariate statistical analysis, which 
deals with data set that consists of many variables. PCA 
detect the abnormal change of the process. The PCA method 
can efficiently be used to extract the main variable 
information of original data set in dependent of the process 
mechanism. A lower dimension input space can reduce the 
time necessary to train a neural network. The reduced noise 
may improve the mapping performance [18]. This method is 
also suitable for in the fault diagnosis recognition of other 
circuit. 

II. IMPROVED NEURAL NETWORK BASED ON PCA 

A. PCA model 
PCA is a method to pre-process the input sample set, which 

can reflect the multi-target fault information into a few 
composite indicators. They are regarded as the input variables 
of a new network. PCA can be widely used in signal 
processing and neural network calculation [19]. The steps of 
PCA modeling are as following [20]. 

1) The original sample standardization is needed before 
data processing. In order to eliminating the effects of different 
dimensions and orders of magnitude, the standard deviation 
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method of the mean of the standardized data is used to cope 
with original sample data. The matrix of evaluation data is 
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where m is the number of indexes and n is the number of 
evaluation objects. Compute mean vector of X 
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and the centralization of X ： 
Y= (Y1, Y2, …, Ym)                              (3) 

where 
XXY ii −= (i=1, 2, …, n) 

2) After the establishment of the covariance matrix of 
standardized variables, the solution of the matrix eigenvalues 
and eigenvectors are calculated in order to get the principal 
component. Using standardized terms to get the covariance 
matrix of Y: 

)1/( −= nYYS T                                (4) 
Compute eigenvalues of S: λ1 ≥ λ2 ≥ … ≥ λm, and the 

corresponding eigenvectors are U1≥U2≥…≥Um. 
3) According to the required cumulative contribution rate, 

the number of principal component is gained. The 
contribution rate of the i-th principal components is computed 
on the total variance, which is the contribution rate of 
variance. The contribution rate of variance can be obtained: 
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The simulated result is proposed in the paper, which judges 
that the cumulative sum contribution of the anterior k 
principal components is bigger than the 85% whether or not.  
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4) The principal component equation and the solution of 
the value of all the principal components are established. The 
principal component value of the equation is: 

∑
=

=
m

j
jji yuc

1

                                (7) 

where uj is the component corresponding to the j-th 
eigenvector, jy  is the standardization value of each variable. 

The value of the principal component received forms new 
training sample sets and testing sample sets. Normally, high 
variance components could contain related information, 
whereas small variance components are expected to contain 
unrelated information, which are not retained, such as 
measurement noise. It should be noted that the high variance 
components might not contain the useful information for a 
classification problem. 

B. Improved neural network 
BP neural network usually refers to the multilayer feed 

forward neural networks based on the error back-propagation 
algorithm (BP algorithm), which consists of the input layer, 
hidden layer and output layer [21]. The model of a 3 layers 
forward neural network is shown in Fig. 1. 

 

 
Fig.1   Three layers forward neural network model 

 
The sigmoid neural network contains one hidden layer 

between the input and output variables. In the hidden layer, 
the transfer function is the sigmoid function defined in (8). 
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However, the traditional BP neural network has some 
limitations, such as the learning process with a slow 
convergence speed, local minimum problems exist. While 
learning the new sample, BP tends to forget the old 
one.Therefore, focusing on the defects of traditional BP 
algorithm, some methods are adopted to optimize the 
traditional BP neural network. Additional momentum term is 
the most common one [22]. 

The additional momentum method is to modify the 
connection weights. The trend of modification is taken into 
consideration. The connection weights modification formula 
is thus modified as follows: 

))1()(())(()1(1k −−+∇−=+Δ kkmkfm cc ωωωμω ）（   (9) 
where ω is the value of the weights, �f(ω(k)) is the gradient 
of error function, mc is the momentum factor, which is greater 
than zero and less than one.When the method is adopted, each 
change affects the next one. Additional momentum method 
uses a momentum factor to transfer the influence of the old 
change actually. Besides, the momentum is added to prevent 
the emergence of △ω equal to zero and the emergence of 
local minimum. 

C. Proposed new neural network method based on PCA 
The block diagram of PCA-NN method is shown in Fig. 

2. The fault diagnosis of five-phase FTPM motor by using a 
neural network has been proposed. The proposed network has 
many input neurons, which could consume significant time to 
train the network. Therefore, the PCA is used to reduce the 
dimension of input space [23]. 

 

 
Fig.2.  Block diagram of PCA-NN method 

III. APPLICATION AND VERICIFATION 

A. Fault diagnosis system 
The entire fault diagnosis system is shown in Fig 3. PCA is 

used to extract the fault characteristic value from the failure 
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data collected. The neural network diagnoses the fault and the 
fault severity [24]. Network structure can be optimized. For a 
five-phase FTPM motor, the stator inter-turn short circuit 
fault is one of the most common faults [25]. Less turns short 
circuit fault leads to more influence on the motor running 
process. 

 
 

Fig.3.  Block diagram of PCA-NN fault diagnosis system 
 

B. Simulated results 
The method has been tested with the three faults described 

in Table I. The improved neural network has 3 layers. The 
number of hidden neurons is set as 6 while training the neural 
network. Learning rate is 0.01, and training accuracy is set to 
0.01. 

Current signal in phase A has been collected to detect the 
stator inter-turn short circuit fault of the motor. The detailed 
current data and the corresponding harmonic current are 
shown in Fig. 4 and Table II. It can be obviously seen that the 
third harmonic of fault current increases comparing with the 
normal condition. Also, the more number of short circuits 
lead to greater harmonic. 
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Fig. 4.  Current signals of motor under different running conditions 
 

 
When the single neural network method is used to detect 

the motor fault, the data in Table II are trained as the input of 
single neural network. The precision of training curve is 
shown in Fig. 5. By the trained NN, the fault prediction 
results are presented in Table IV. 

However, by analyzing data in Table II using PCA, three 
principle components in Table III can be gained. 0.85 is 
chosen as energy value, and the number of indexes is reduced 
to 3. These principle components are also called 
comprehensive indexes. The principle components presented 
in Table III are taken as train data to train the neural 
network .The precision of training curve is shown in Fig. 5. 
Based on the given training samples, the entire fault diagnosis 
system is generated. The results of fault diagnosis with 
another set of test data are listed in Table IV. They account 
for that the trained NN based on PCA can predict stator 
inter-turn short circuit fault. Different fault severity can also 
be figured out by the proposed PCA-NN method. By 
comparing the two precise curves of training the neural 
network, PCA-NN consumed less time to achieve the target 
accuracy. From the data in Table IV, PCA-NN can predict 
failure accurately. 

TABLE I 
DIFFERENT FAULT SIZES WITH DIFFERENT TARGET OUTPUTS OF NN 

Short circuit number of turns in 
phase A Target output of NN 

0 0.10 
1 0.35 
2 0.70 
3 0.90 

TABLE II 
HARMONIC CONTENTS OF DIFFERENT CURRENT SIGNALS 

Harmonic 
frequency 

No 
faults 
(mV) 

One turn 
short 

circuit(mV) 

Two turns 
short 

circuit(mV) 

Three turns 
short 

circuit(mV) 
2 10.774 12.945 9.3706 9.2532 
3 5.9545 400.05 745.97 820.15 
4 4.084 4.7372 3.6654 6.1535 
5 3.2088 26.167 57.681 61.097 
6 3.458 4.1877 2.5808 2.5785 
7 1.7631 4.812 3.9746 2.0228 
8 1.7807 2.5106 2.0965 2.3155 
9 1.9445 3.2533 3.8713 4.9082 

10 2.0012 2.1772 3.2253 1.7104 
11 0.8791 2.8583 3.472 2.0681 
12 1.4892 1.5774 2.3947 1.9746 
13 1.6213 0.58821 0.87811 2.2219 
14 1.3376 1.0382 1.2705 1.9565 
15 1.242 0.95222 0.85032 1.1237 
16 0.6939 0.95882 1.8082 1.7741 
17 1.1593 2.0547 2.2732 1.6152 
18 0.6748 1.3636 3.3122 2.9899 
19 0.9323 1.5785 2.7727 1.057 
20 0.5781 1.3887 1.2178 3.4369 
21 0.5090 0.83575 3.1381 0.9631 
22 1.2643 1.2003 1.1527 2.8134 
23 0.5809 0.42404 1.8323 1.2327 
24 0.3731 1.9965 0.36503 0.7706 
25 1.0176 0.3409 1.64 3.2764 
26 1.0315 2.1641 0.6443 1.4618 
27 0.4601 2.005 0.0449 2.0214 
28 1.4301 0.7412 1.317 2.3411 
29 0.2861 2.0373 1.024 2.6583 
30 0.6816 1.2354 1.4589 3.0353 
31 0.3021 2.8477 152.04 3.3109 

TABLE III 
PRINCIPLE COMPONENT SCORES 

Short circuit 
cumber of turns 

in phase A 

First 
principal 

component 

Second 
principal 

component 

Third principal 
component 

0 0.2199 -0.9711 1.7283 
1 3.8606 0.5117 0.7188 
2 -0.0922 -0.5095 0.2517 
3 -0.0879 0.6359 1.1556 
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Fig. 5.  Precision curve of training the neural network 

IV. CONCLUSION 
A new comprehensive method based on PCA and 

improved neural network have been proposed to detect the 
inter-turn short circuit fault of the five-phase FTPM 
motor.The proposed algorithm, based on the PCA, allows an 
automatic classification of stator fault. As further scope of 
this paper, we can extend our research to identify the number 
of the shorted turns on the faulty phase. By using the 
proposed PCA-NN method, a comprehensive diagnosis 
procedure has been achieved. PCA techniques has not only 
contained the characteristic vector, which draws the fault 
sample effectively under the circumstances of the main 
information of data, but it also has reached the purpose of 
simplifying the neutral net structure. The PCA-NN method is 
practical to identify the fault severity. Experimental results 
have been presented in order to show the effectiveness of the 
proposed method. The proposed PCA-NN is effective and 
practical. 
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