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Abstract—Target searching, i.e. fast locating target 
objects in images or videos, has attracted much attention in 
computer vision. A comprehensive understanding of factors 
influencing human visual searching is essential to design 
target searching algorithms for computer vision systems. In 
this paper, we propose a combined model to generate scan 
paths for computer vision to follow to search targets in 
images. The model explores and integrates three factors 
influencing human vision searching, top-down target 
information, spatial context and bottom-up visual saliency, 
respectively. The effectiveness of the combined model is 
evaluated by comparing the generated scan paths with 
human vision fixation sequences to locate targets in the same 
images. The evaluation strategy is also used to learn the 
optimal weighting coefficients of the factors through linear 
search. In the meanwhile, the performances of every single 
one of the factors and their arbitrary combinations are 
examined. Through plenty of experiments, we prove that the 
top-down target information is the most important factor 
influencing the accuracy of target searching. The effects 
from the bottom-up visual saliency are limited. Any 
combinations of the three factors have better performances 
than each single component factor. The scan paths obtained 
by the proposed model are optimal, since they are most 
similar to the human vision fixation sequences. 

Keywords—visual attention; bottom-up visual saliency; 
top-down target information; spatial context 

I. INTRODUCTION 
Human visual attention, one of the most important 

mechanisms in biological vision systems [1], [3], [4], 
guides us to fast locate a specific kind of targets in images. 
A comprehensive understanding of factors influencing 
human visual searching is essential to design computer 
vision systems. In this paper, we explore three factors, 
bottom-up visual saliency, top-down target information 
and spatial context, which influence human vision systems 
to search targets (pedestrians) in images. The factors have 
been experimentally evaluated, separately or integratedly 
in literatures [5], [6], [7]. The paper presents a combined 
model which integrates the three factors with optimal 
weights, to guide target searching for computer vision 

systems. The weights are learned by linear search [2]. The 
performance of the combined model on the generation of 
scan paths is evaluated by comparing with human vision 
scan paths. 

Psychological studies show that at each moment, 
humans are attracted to salient parts in images [6], [8], [9]. 
The bottom-up saliency clue is considered to have 
influences on computer visual searching, which has been 
experimentally proved by Itti et al. [10]. On the other 
hand, during visual searching, humans not only fixate on a 
target, but also scan regions or objects with similar shapes 
to the target [11], [12]. For example, during searching for 
a pedestrian, objects of a rectangular shape, or with a 
circle on the top would attract attention. The spatial 
context information provides rich cues to target positions 
for human vision [13], [14], [15]. It is widely used in 
object detection [14] and recognition [16]. 

Based on the above facts, the paper experimentally 
explores each factor and presents a method to combine 
them for efficient target searching in images. The 
proposed method is given in section II. Section III 
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Fig. 1. The workflow of scan path generation. The saliency map 
and target map are computed based on the input image. The 
searching guide map is obtained by combining the spatial context 
map. At each round of fixation choosing, the strategies of WTA 
and IOR are used.
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 (a) (b)  

Fig. 2. Example of the Bottom-up Saliency Map: (a) is the original image; (b) is the saliency map. The lighter regions in (b) have higher 
probabilities to be fixated on. 

  
 (a) (b) 

Fig. 3. Example of the Target Clue Map. The rectangle regions indicate all the target-like items. 

evaluates the performance of our model. Conclusions are 
given in section IV. 

II. OUR METHOD 
The workflow of our method is given in Fig. 1. Firstly, 

for each image, we compute its bottom-up saliency map 
and target clue map. The spatial context map is learned 
from a database of images. Secondly, a searching guide 
map is obtained by combining the three maps. Then 
fixation regions in the image are sequentially chosen by 
using the strategies of winner-takes-all (WTA) and 
inhibition-of-return (IOR) [10] based on the searching 
guide map. The sequential fixations form a scan path 
searching for pedestrians in the image. The first fixation is 
initialized at the image center, which is consistent with the 
center bias in oculomotor behavior. 

A. Computation of bottom-up visual saliency 
Saliency, bottom-up visual clue, indicates regions 

attracting human attention. Although it is independent of 
the search task [17], it can improve the performance of 
pedestrian detection [10].  

We compute the saliency map by using the spatially 
weighted dissimilarity method recently proposed by Duan 
et al. [18]. The method integrates dissimilarity, spatial 
distance and central bias. The image is regularly divided 

into patches of a fixed size. The saliency of image patch ݌௜  is given by: 

 ܵሺ݌௜ሻ ൌ ,௜݌ଵሺݓ ሻܥ ∑ ൛ݓଶ൫݌௜, .௝൯݌ ,௜݌൫ܦ ௝൯ൟ௅௝ୀଵ݌  (1) 

Here, ݓଵሺ݌௜, ሻܥ  is the central bias term, which is 
inversely proportional to the distance between ݌௜  and the 
image center ܥ. The remaining parts in the right of (1) 
define the global dissimilarity. ܮ is the total number of 
image patches. ݓଶ൫݌௜,  ௝൯ is the inverse of the spatial݌
distance between ݌௜  and ݌௝. ܦ൫݌௜,  ௝൯is the dissimilarity݌
between ݌௜  and ݌௝. 

From (1), we can see that with the increasing of the 
spatial distance between ݌௜  and ݌௝ , the influence on ܵሺ݌௜ሻ from ܦ൫݌௜,  ,௝൯ is decreasing. On the other hand݌
the less the distance between ݌௜  and the image center ܥ, 
the larger ܵሺ݌௜ሻ. 

Examples are shown in Fig. 2, (a) is the original 
image, (b) is the saliency map. 

B. Computation of top-down target clues 
Target information serves as a referent for searching a 

target in the image. A large number of psychology 
experiments show that during target searching, humans 
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Fig. 4. (a) to (e) are image samples containing
are more likely to appear in the middle of image

would not only fixate on the real targ
regions or objects with similar shape
Therefore, we compute the target clue 
computational model proposed by [19], 
of indicating all the regions with simi
target in the image. Some examples are s

C. Computation of spatial context 
Spatial context provides a holistic d

relationship between the target and its ba
It is a useful prior for human vision to fa
in the image. To compute a spatial 
pedestrians, we borrow the context oracle
different participants in [20], each of w
region of pedestrians in different ima
context map is the average of all the con
As shown in Fig. 4, (a) to (e) are sa
containing pedestrians. (f) is the spatial 
pixel brightness in (f) denotes the p
existence of pedestrians at that position. 

D. Combination of three factors 
We generate a guide map to 

pedestrians. The searching guide map
linearly weighting the three maps. Giv
value in the guide map is computed as: 

௜ሻݍሺܯ  ൌ ௜ሻݍௌሺܯଵܭ ൅ ௜ሻݍሺ்ܯଶܭ
Where ܯௌሺݍ௜ሻ ௜ሻݍሺ்ܯ ,  and ܯ஼ሺݍ௜ሻ
pixel values in the saliency map, the tar
the spatial context map, respectively.
during the fixation selection. The initia
map is denoted as ܯ଴. A memory map
size with ܯ, denoted as ܴ, is created
steps. The values of the pixels in ܴ ar
zero. A scan path is generated by sequ
fixations. The order of the fixations is de
WTA and IOR to ܯ . In each round
fixation, the region around the pixel w
value (the “winner”) in ܯ  is selecte
fixation. Then the pixels in the current ܯ are copied to ܴ. Before selecting n

 

(b) (c) 

(e) (f) 

g pedestrian, (f) is the statistical probability map of spatial context,
es. 

Fig. 5. The linear search of parame
weighting coefficients of target map
saliency map coefficient can be obtain

get, but also scan 
es to the target. 
map by using the 
 which is capable 
ilar shapes to the 
shown in Fig. 3. 

description of the 
ackground scenes. 
st locate the target 
context map for 

e maps marked by 
which indicates the 

ages. Our spatial 
ntext oracle maps. 
amples of images 
context map. The 

probability of the 
 

guide searching 
p is obtained by 
ven a pixel ݍ௜, its 

 ൅  ௜ሻ (2)ݍ஼ሺܯଷܭ

, represent  the 
rget clue map and 
ܯ   will change 

al searching guide 
, having the same 

d for intermediate 
re initialized to be 
uentially choosing 
ecided by applying 
d of searching a 

with the maximum 
ed as the current 
fixation region in 
next fixation, the 

IOR strategy is used to suppre
current fixation by setting ܯ
them being selected again ri
constant forgetting factor. P
fixations in ܯ are suppressed
the values of those pixels in th
close to those of pixels in ܯ
candidates again. The weightinܭଷ are constrained by: 

ଵܭ  ൅ ଶܭ ൅
The optimal weighting coef
minimizing the differences b
paths and human vision 
computation will be explained 

III. THE PERFORMAN

We evaluate the effectiven
by comparing the generated sc
fixation sequences in a pub
Ehinger et al. [20]. The dat
images, half with and half wi
movements were recorded a

 

 

, which indicates that pedestrians 

 
eters in TCS model. We fix the 
 and spatial context map, so the 
ned according to (3).

ess pixels in ܯ around the ܯ ൌ ଴ܯ െ ߞ כ ܴ , to avoid 
ight away. ߞ ൌ 0.8  , is a 

Pixels belonging to earlier 
d less. After several rounds, 
he early fixations would be ܯ଴. Therefore, they become 
ng coefficients ܭଵ, ܭଶ, and 

൅ ଷܭ ൌ 1 (3) 

fficients are computed by 
etween the generated scan 
fixation sequences. The 

in Section III.  

ANCE OF OUR MODEL 
ness of the combined model 
can path with human vision 
blic database collected by 
tabase contains 912 street 
ithout pedestrians. The eye 
as observers searched for 
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pedestrians in these images. The 912 images are divided 
into a training set and a testing set. The testing set consists 
of 200 images, half with and half without pedestrians. The 
rest is training set, which is used to learn the parameters in 
(2) by linear search. In this section, we first describe the 
parameter learning. Then, we evaluate our model by 
comparing with the other combined models. 

A. Parameters Selection 
We use linear search to learn the parameters in our 

model in (2). The linear search is done by fixing all but 
one free parameter in (2). The ROC curves are employed 
to measure the performance of the TCS model with the 
selected parameters. These ROC curves are drawn based 
on the false alarm rate and detection rate between 
generated fixations and recorded human eye movements. 
The optimal value of the free parameter is selected to 
maximize the area under ROC curve (AUC) value from 
200 different discrete values over a predefined range (0 to 
1 for parameters in (2)). 

The parameter learning result is shown in Fig. 5. We 
denote our model which combines Target clues, Context 
information, and Saliency map, as TCS for short. From the 

figure, we can see that TCS model achieves the best 
performance when ଵܭ  ൌ 0.003 ଶܭ , ൌ 0.994 , ଷܭ  ൌ0.003. The optimal weights tell that the top-down target 
information plays a dominant role in generating scan 
paths. 

B. Evaluation 
We evaluate our TCS model by comparing it with 

several different models, including C (involving only 
context information), S (involving only saliency map), T 
(involving only target clues), CS (linear combination of 
context information and saliency map), TC (linear 
combination of target clues and context information), and 
TS model (linear combination of target clues and saliency 
map) in locating targets in the test dataset. The optimal 
parameters in CS, TC, and TS are also learned by linear 
search as done for TCS. We compute the ROC curves of 
each model to evaluate their performance. As given in 
Table I, the combined models CS, TC, TS, and TCS 
perform better than model C, S, and T which involve only 
one factor. TCS outperforms the other models both in the 
image set with and without pedestrians. In TCS model, the 
top-down target information is the most important factor 
influencing target searching paths in images with 
pedestrians. However, its influence in images without 
pedestrians is limited. 

We further compare the scan paths generated by the 
proposed model with ground truth of human fixation 
sequences in the test dataset. Each scan path is composed 
of four fixations. Fig. 6 presents the generated scan paths 
of TCS model (in red), S (in purple), C (in blue), and T (in 
cyan), as well as human fixation sequences (in green). 
From this figure, we can see that the scan paths obtained 
by the proposed model are most similar to the real human 
eye movements. Quantitative comparison results are given 
in Table II. We evaluate the differences between the 
generated scan paths with those of humans using 

TABLE I 
AUC IN TEST DATABASE BY DIFFERENT MODEL 

Models Pedestrian-present 
(AUC) 

Pedestrian-absent 
(AUC) 

C 0.72 0.75 

S 0.70 0.73 

T 0.83 0.77 

C+S 0.75 0.77 

T+C 0.84 0.80 

T+S 0.84 0.79 

T+C+S 0.85 0.81 

 

TABLE II 
 HAUSDORFF DISTANCE OF SCAN PATHS BETWEEN DIFFERENT MODEL AND HUMAN 

Pedestrian-present Pedestrian-absent 
Human fixations 229.7589 205.8550 

S model with two fixations 284.9030 281.5046 

S model with three fixations 280.5515 267.6675 

S model with four fixations 278.0492 255.8902 

The average of S model 281.1679 268.3541 

C model with two fixations 338.1721 299.2809 

C model with three fixations 345.2276 304.5828 

C model with four fixations 350.2776 309.0133 

The average of C model 344.5591 304.2923 

T model with two fixations  284.1035 273.4091 

T model with three fixations 304.2821 269.1187 

T model with four fixations 319.3544 267.9660 

The average of T model 302.58 270.1916 

TCS model with two fixations 273.2361 269.2430 

TCS model with three fixations 276.3487 259.4316 

TCS model with four fixations 285.4296 250.5578 

The average of TCS model 278.3381 259.7441 
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Hausdorff distance (H-Distance). Hausdorff distance 
describes the similarity of two point sets by computing the 
maximal value of all the minimal distances between two 
sets of scan paths, 

,ܣሺܪ  ሻܤ ൌ ,ܣሺ݄ሺݔܽ݉ ,ሻܤ ݄ሺܤ,  ሻሻ (4)ܣ

in which, 

 ݄ሺܣ, ሻܤ ൌ ஻א௔ݔܽ݉ ݉݅݊௕א஺ ԡܽ െ ܾԡ (5) 

 ݄ሺܤ, ሻܣ ൌ ஻א௕ݔܽ݉ ݉݅݊௔א஺ ԡܾ െ ܽԡ (6) 

A denotes a generated scan path in a test image. B is the 
path of human vision in the image. a and b are the fixation 
pointes in A and B, respectively. 

As shown in Table II, we compute the Hausdorff 
distance for the first four fixations since the observers 
used 3.5 fixations to reach the target averagely. Compared 
with the models S, C, and T, TCS model performs best in 
both pedestrian present and pedestrian absent datasets. 
Therefore, we can say that the proposed model is closest 
to the human vision systems than the other three.  

IV. CONCLUSION AND DISCUSSION 
In this paper, we presented a combined model to guide 

pedestrian searching in images. The model integrates three 
types of information, including top-down target 
information, spatial context and bottom-up visual saliency. 
The effectiveness of the combined model is verified by 

comparing its generated scan paths with human vision 
fixation sequences in the same images. The optimal 
parameters of the combined model are learned by linear 
search using the evaluation strategy. We also evaluated the 
power of the three factors in predicting targets in images, 
separately. Results indicated that the top-down target 
information performs best in images containing targets. 
Any integration of the factors performs better than a single 
component factor. The presented model, combining all the 
three factors with optimal parameters, has the best 
performance in both pedestrian present images and 
pedestrian absent images. 
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