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Abstract— Low-frequency oscillations have been the target
of extensive research both in cortical structures and in the
basal ganglia, due to numerous reports of associations with
brain disorders and the normal functioning of the brain.
Whereas a number of computational models of the basal
ganglia investigate these phenomena, these models tend to focus
on intrinsic oscillatory mechanisms, neglecting evidence that
points to the cortex as the origin of this oscillatory behaviour.
In this work we constructed a neural model of the basal
ganglia circuitry and used it to investigate the relationship
between frequency of oscillatory cortical input, dopamine and
the effectiveness of the basal ganglia as an action selection
device. Our simulations show the impact of the phase offset
between different cortical inputs. This was found to be highly
dependent on the frequency band and to have a strong influence
on basal ganglia effectiveness. In addition, the level of dopamine
in the system was found to modulate this effect, also depending
on the input’s frequency band.

I. INTRODUCTION

THE BASAL GANGLIA (BG) are a group of subcortical
nuclei that show remarkable similarities, both anatom-

ically and functionally, across vertebrate nervous system.
Both their physical location and their broad bidirectional
connectivity with major cortical areas, the limbic system and
the thalamus, place the BG in a key position to modulate
the information flow between the cortex and the body. In
addition, their strictly topographic organization on different
scales suggests that through the BG, common modulatory
operations are applied to functionally different channels of
information flow.

The above features have led to the widely held hypothesis
that the BG constitute a critical component for the action
selection system of the vertebrate brain [1]. Since then, a sub-
stantial number of models have been built on this foundation
including abstract mathematical models [2], [3] and spiking
neuron models [4], [5], [6], [7] and used to control either
physically embodied [8] or simulated [9] robotic agents.

Another major feature of the function of the BG is the
existence of strong oscillatory activity in a wide spectrum
of bands [10], [11]. Although a number of models in the
literature have investigated this phenomenon before [4], [7],
these models tend only to focus on mechanisms for gener-
ating oscillations intrinsically. One area that has not been
examined so far is how oscillatory activity that is generated
in higher cognitive areas can be dealt with the BG circuitry.
Acquiring a better understanding of this behaviour could give
more insight into the nature of this cortical input, the role
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of the BG in cognition and their relation to a number of
disorders such as Parkinson’s disease (PD), a severe brain
disorder caused by dopamine depletion in the BG.

In this study we address this issue by means of a bi-
ologically plausible neural model of BG circuitry. Using
this model, we carried out an analysis of the relationship
between frequency and the effectiveness of the BG as an
action selection device.

We found that in low frequencies (< 30Hz), the phase
offset of coherent cortical signals with different amplitudes
can have a strong influence on BG selectivity, while in the
gamma band, this effect disappears. In particular, coherent
high-beta (20 − 30Hz) oscillating input signals were found
to favour the effectiveness of the BG model significantly,
but only in the case that the phase of a strong input signal
precedes in time the phase of a second, weaker signal, with
a small offset around π

2 . On the other hand, hippocampal
theta (4− 10Hz) and low-beta (13− 20Hz) oscillations had
a negative influence on BG selectivity, especially in the case
of a phase offset greater than π. Finally, we investigated the
effect of dopamine on the process of selection which was
found to modulate the frequency spectrum of the previous
effects.

This paper is organized as follows. Section II overviews
the anatomy and function of the BG, with particular attention
to their relation with neural oscillations and Parkinson’s
disease. Section III describes our experimental approach. The
high-level architecture of the BG model is presented, the
low-level neuron model is defined, various parameter choices
are justified, and the experimental procedure is described.
Section IV presents the results of these experiments, and
Section V links our results with findings from the recent
literature. Section VI offers some concluding remarks and
directions for future work.

II. BACKGROUND

A. Anatomy

The BG internal structure comprises a canonical circuit,
replicated in parallel and in different scales. On the highest
level, this circuit is part of a set of parallel loops involving
distinct areas of the cortex such as the motor or associative
areas, the BG and the thalamus [12]. Moreover, these macro-
scopic loops can be further divided two more times, into
microscopic sub-loops (or channels) that also run in parallel.

As mentioned in the introduction, this topographic organi-
zation implies that the BG act as a fundamental processing
unit with common operations applied to functionally different
cortical areas. It has been further suggested that in the
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lowest scale, each parallel microscopic channel represents
a competing piece of information or an action [1], [2], [4].

Anatomically, the biological BG consist of two input
nuclei, the subthalamic nucleus (STN) and the striatum, two
output nuclei, the substantia nigra pars reticulata (SNr) and
the internal globus pallidus (GPi) as well as the external
globus pallidus (GPe) and finally the substantia nigra pars
compacta (SNc), a group of dopaminergic neurons that
modulate both internal and external structures. Dopamine
has a strong effect on the largest component of the BG, the
striatum, and it is considered very important for its operation.

The striatum comprises up to 97% medium spiny projec-
tion neurons (MSNs) and around 1% fast spiking interneu-
rons (FSIs) interconnected by both chemical synapses and
gap junctions [14], [15]. It can be further broken down into
two populations of projection neurons based on the dominant
type of their dopamine receptors that belong either to the D1-
or D2-like families. D1 striatal neurons are enhanced by the
presence of dopamine while the latter has negative effect to
D2 neurons (table II).

Cortical signals are initially projected to the striatum and
STN, processed by the internal system and later transmitted
to the thalamus via the inhibition of the SNr and GPi. Inter-
nally, although the structures are wired in a more complicated
manner [13], two major pathways are thought to characterize
the behaviour of the BG, corresponding to two distinct major
thalamo-cortical loops [16], [2]. In the “direct” (or “selec-
tion”) pathway, striatum D1 and STN neurons project their
signals directly to the BG output nuclei SNr and GPi which
in turn inhibit the thalamus and brainstem. STN neurons also
take part in the second “indirect” (or “control”) pathway and
along with stratal D2 and GPe neurons modulate the effect
of the direct pathway to the SNr-GPi complex.

B. Oscillations and PD

A major feature of the BG nuclei is their rich oscillatory
activity which varies, depending on the health and the current
cognitive state of the subject and is known to modulate their
behaviour. This topic has attracted numerous studies that
mainly involve patients of PD [17], [18], [19], [20], [21].
One important reason is that deep brain stimulation (DBS), a
common surgical treatment for PD, provides researchers with
the opportunity to record the spiking activity of multiple BG
structures in human patients simultaneously.

Under Parkinsonian conditions, oscillations in the BG
exhibit an excessive synchronization in the beta frequency
band (15−30Hz), as first indentified by [17], which is atten-
uated by treatment with anti-Parkinsonian medication [18].
In addition, slow oscillatory activity is linked to a number
of particular symptoms, such as the inability of patients
to initiate and execute movements [20] and resting tremor
generation [19]. Although DBS is proven to relieve these
symptoms and restore normal function, its underlying mech-
anism is still an active research area [21].

In healthy brains, though less studied, oscillatory phenom-
ena are also present in the BG, and cover a wider range of
frequencies. Striatal local field potential recordings of rats

during a radial maze task have revealed strong oscillatory
activity at theta (∼ 8Hz), beta (∼ 20Hz), and gamma
(∼ 50Hz) bands [11] with gamma oscillations (mainly at
40− 80Hz) prevailing in the BG nuclei [22].

While the importance of low oscillations (such as beta) in
the BG operation is beyond doubt, the literature is still lack-
ing a widely accepted theory of their functional role and why
they are less dominant under healthy conditions [23], [24].
Two hypotheses state that beta-band activity is responsible
for the maintenance of the current sensorimotor or cognitive
state [23] as well as that it encodes the likelihood of a new
goal-oriented movement [25].

Computational models of the BG have been employed to
identify the control mechanisms of oscillations, including [4],
where oscillatory behaviour is associated with the action
selection hypothesis, [3] where it is investigated whether beta
oscillations can emerge from the interaction between STN
and GPe and [5] where it is suggested that inhibition to GPe,
caused by the striatum, is responsible to control oscillatory
behaviour.

Although the above studies focus on oscillations within
the BG, it has been argued that this activity is more likely
to be generated externally, as a part of the thalamo-cortical
loop [26], [27], [25] and maintain its coherence throughout
the BG.

In [28], low-frequency coherent oscillations were found to
play a significant role in the communication between the rat
prefrontal cortex (PFC) and hippocampus, two major inputs
of the BG. Indeed, in this study, periods of theta coherence
peaked when the rats were at a choice point on a Y maze,
allowing new assemblies in the PFC to be formed. Also,
in an earlier study [11], coherence was found to be strong
between striatal ∼ 8Hz oscillations and hippocampal theta,
during task performance. These findings are in line with
the view that cortical low-frequency oscillations not only
influence the behaviour of the BG but they also play an
important role in the process of selecting and performing an
action. Our model vindicates this view, while it also provides
a functional distinction between the theta, beta and gamma
frequency bands, at the level of the BG.

III. METHODOLOGY

A. Model architecture

Our model comprises five distinct neural populations that
account for the four major nuclei of the biological BG, shown
in Figure 1. The internal connectivity is largely adopted from
a well-established model by Humphries et al [4] and shapes
the canonical circuitry that is described in section I.

Inside each nucleus, three largely isolated subgroups with
an equal number of neurons correspond to three microscopic
channels of the same microcircuit.

Connections between the striatum, GPe, GPi/SNr and
afferent connections to STN are restricted to the same pre-
and post-synaptic channel (topographic connections), while
STN projections as well as recurrent connections within
the GPe and the GPiSNr are equally distributed across all
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Fig. 1. The architecture of the basal ganglia model.

three channels. Each topographically connected pre-synaptic
neuron has probability pcon to be connected to a neuron in
the post-synaptic group and for diffuse connections this prob-
ability is pcon/N , where N = 3 is the number of channels.
All synaptic parameters including connection probabilities,
weights and delays are given in table III.

The estimated absolute number of neurons of the BG
nuclei varies from a vast number of spiny projection neurons
in the neostriatum to the relatively small GPi [29]. How-
ever, the inter-nuclei connectivity is largely topographically
ordered [12] and thus, small differences in size ratios can be
neglected.

On the other hand, the exceptional case of the striatum
requires more analysis, since its enormous size makes it
significantly larger, approximately 145 times in rats [29],
than the other BG structures. Therefore, in this simulation
the striatum is modelled using only 600 D1-like and 600 D2-
like MSNs (FSIs are neglected due to their small number)
while STN, GPe and GPi/SNr comprise 150 neurons each.

Finally, lateral inhibition within the striatum has also been
neglected here as it is believed to be strong only locally [30]
and even this effect has been repeatedly challenged [15],
[31].

Our model implies that the N simulated channels encode
the same type of information that corresponds to competing
actions or behaviours. It is unknown, however, to what extent
these representations should be spatially located close enough
to be under the influence of lateral inhibition, and this is a
feature that requires further investigation.

B. Neural dynamics

The model that was employed to simulate the membrane
potential of individual neurons is the phenomenological
“simple model” proposed by Izhikevich [32], [33].

C
dv

dt
= k(v − vr)(v − vt)− u+ I + CN (0, σ2) (1)

du

dt
= a

(
b(v − vr)− u

)
(2)

where v is the membrane potential, u a phenomenological
recovery variable, I the dendritic and synaptic current, C the
membrane capacitance, vr the resting membrane potential, vt
the instantaneous threshold potential and finally a, b and k
are abstract parameters of the model. The neuron fires a spike
when the voltage exceeds the threshold value vpeak and the
variables of the model reset to

v → c

u→ u+ d
(3)

where c and d are further abstract parameters.
With the correct tuning of its parameters, this model is able

to exhibit all known types of dynamical behaviour in cortical
cells, and to quantitatively reproduce their sub-threshold,
spiking, and bursting activity in response to pulses of DC
current [33].

Although this model is shown to be equivalent to a
simpler form [32], which reduces the number of independent
parameters to four, we chose to use equations 1 and 2
because in this form, the majority of the parameters and
the variables acquire biophysical meaning. For instance, the
membrane potential is represented in mV olts and the current
in pAmperes.

In addition, the term N (0, σ2) of equation 1 represents a
general Gaussian noise factor that is added to the membrane
potential of each neuron in every simulation step with a
constant standard deviation of σ = 0.3mV .

Finally, in order to achieve a high level of heterogeneity in
the network, a degree of stochastic perturbation was applied
to the capacitance C of each neuron sampled from a Gaussian
distribution with mean Cµ and standard deviation 0.1×Cµ.

C. Synaptic dynamics

To determine the basic chemical synaptic input to the
simulated neurons, we followed a standard conductance-
based approach [34]. Each synapse that connects the pre-
synaptic neuron i to the post-synaptic neuron j is modelled
as

Sxij(t) =

{
gije

−(t−(ti+λ))/τx(Ex − vj) if t ≥ (ti + λ)
0 if t < (ti + λ)

(4)
where t is the current simulation time, ti is the time of last

firing of neuron i, x is the type of the synaptic receptor, λ is
the delay of the synapse, gij is the maximum conductance
of the synapse, i.e. the weight of the underlying connection,
Ex is the synaptic reversal potential and τx is the synaptic
decay time constant. When the effect of a new spike reaches
the post-synaptic neuron j, Sij jumps to the value gij and
decays exponentially with rate τ .

Different values of τ denote different pairings of neuro-
transmitter and synaptic receptor and represent the duration
of a neurotransmitter re-uptake and dispersal. The neuro-
transmitter that is thought to be dominant in the excitatory

1Transformation of the parameters found in [36], for R = 18MOhms,
τ = 6ms and vpeak = 20ms (the latter parameters were taken from [4])
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TABLE I
IZHIKEVICH NEURON PARAMETERS OF THE BASAL GANGLIA NUCLEI.

STRIATUM D1,D2
a 0.01 Taken from [35]
b -20 —”—
c -55 mV —”—
d 91 —”—
vr -80 mV —”—
vt -29.7 mV —”—
vpeak 40 mV —”—
Cµ 15.2 pF —”—
k 1 —”—
d1 30 % Taken from [4], (in D1)
d2 30 % Taken from [4], (in D2)

STN
a 0.005 Derived from [36]1

b 88.33 —”—
c -65.0 mV —”—
d 500.0 —”—
vr -61.0 mV —”—
vt -64.035 mV —”—
vpeak 20.0 mV Taken from [4]
Cµ 333.33 pF Derived from [36]1

k 13.33 —”—
d2 30 % Taken from [4]

GPe
a 0.05 Derived from [7]
b 2.5 —”—
c -60 mV —”—
d 70 —”—
vr -55.1 mV —”—
vt -54.7 mV —”—
vpeak 15 mV —”—
Cµ 40 pF —”—
k 0.706 —”—
d2 30 % Taken from [4]

GPi/SNr
a 0.05 Derived from [7]
b 3 —”—
c -65 mV —”—
d 200 —”—
vr -55.8 mV —”—
vt -55.2 mV —”—
vpeak 20.0 mV —”—
Cµ 80 pF —”—
k 1.731 —”—

synapses of this simulation is glutamine and the correspond-
ing receptors in the postsynaptic neurons are AMPA and
NMDA. Also, all the inhibitory neurons are gabaergic i.e.
the corresponding neurotransmitter is γ-Aminobutyric acid,
which binds to GABAA receptors.

The parameters that have been used to model the different
categories of synapses are given in table III.

Hence, the synaptic input current I of the equation 1 that
the neuron j receives over time is described as

Ij =
∑
i,x

Sxij + Ispon (5)

The first term of this equation represents the total synaptic
current Isyn = Iampasyn + Inmdasyn + Igabasyn and the parameter
Ispon represents a constant depolarizing current that, after
calibration, allows the model to show spontaneous activity of
the corresponding cells, similar to empirical data. Humphries
et al in [4] have tuned this parameter to match the firing
rates of the BG nuclei to empirical data of awake resting

TABLE II
SYNAPTIC MODEL WITH DOPAMINE [4].

Striatum D1 (Iampasyn + Inmdasyn )(1 + d1)

Striatum D2 (Iampasyn + Inmdasyn )(1− d2)

STN (Iampasyn +Inmdasyn )(1−α1d2)+I
gaba
syn (1−α2d2)+Ispon

Ispon = 11× 10−10Amp

α1,2 = 0.5

GPe (Iampasyn +Inmdasyn )(1−β1d2)+Igabasyn (1−β2d2)+Ispon

Ispon = 3.8× 10−10Amp

β1,2 = 0.5

GPi/SNr Iampasyn + Inmdasyn + Igabasyn + Ispon

Ispon = 3.9× 10−10Amp

TABLE III
SYNAPTIC PARAMETERS (TAKEN FROM [4]).

GENERAL
pcon 0.25
gij 1 nS
λCortex−SD1/2 10 ms
λCortex−STN 2.5 ms
λSTN−SNr 1.5 ms
λSTN−GPe 2 ms
λSD1−SNr 4 ms
λSD2−GPe 5 ms
λGPe−STN 4 ms
λGPe−SNr 3 ms
λGPe 1 ms
λSNr 1 ms

EXCITATORY
Eampa 0 mV
Enmda 0 mV
τampa 2 ms
τnmda 100 ms

INHIBITORY
Egaba -80 mV
τgaba 3 ms

rats. Although we used a different neuron model, crucial
physiological parameters such as the spiking thresholds vpeak
have been largely maintained and our model produced similar
firing rates. Hence, the values of the original model were kept
and they are shown in table II.

Additionally, the majority of the synapses in the network
are under the influence of dopamine, which either facilitates
or suppresses the input of the neuron, depending on the
dopamine receptor type that this neuron expresses. The
method to model the effects of dopamine in each BG nuclei
is a simplified adaptation from Humphries et al [4]. The level
of dopamine in the system is reflected in d1 / d2 for D1 / D2
- type receptors respectively, and under normal conditions
d1 = d2. Hence, the final input I of each type of neuron in
equation 1 takes the form that is also shown in table II.
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D. Cortical stimulation
The main input to the BG is glutamatergic and comes

from afferent axons of pyramidal neurons in layer V of
different areas of the cortex as well as the thalamus. Despite
this diversity, the BG consist of the same repeating internal
circuitry [12] which is also largely retained in most vertebrate
species [37]. This suggests that their function is very similar
and independent of what their input stands for. Following
this rationale, this study examines the oscillatory nature of
the input signals, rather than lower-level characteristics that
vary across cortical regions.

Hence, the stimulation of the BG model is realised through
a number (Ni) of inhomogeneous Poisson processes with rate
parameter

λi(t) = Aicos(2πfit+ ϕi) (6)

where Ai is the amplitude, fi the frequency, and ϕi ∈
[0, 2π) the phase of the oscillatory input Ti.

Similarly to previous models [2], [4] that also rely on
the action selection hypothesis, the amplitude of Ti, also
reflected in the firing rate of striatal neurons, represents the
salience of the corresponding input [1].

In this study, two competing oscillatory sources T1 and T2
have been used, with size N1,2 = 1000, ϕ1 = 0 and thus
ϕ2 representing the phase offset ϕoff = ϕ2 − ϕ1 between
T1 and T2. The amplitude of T1 is set to be A1 = 30
spikes/s while the second input is more salient with A2 = 60
spikes/s. Although we used only two inputs, a third channel
was simulated in order to observe the behaviour of adjacent
inactive BG areas as well as to maintain consistency with [4].

E. Effectiveness metric
To measure the effectiveness of the model as an action

selection mechanism, we define the metric ε that shows
how well the BG are able to select one out of a number
of distinctive parallel active channels. A good indicator of
this performance is the firing activity of the BG’s main
output nucleus, the SNr-GPi complex, which provide tonic
inhibition to the thalamus and brainstem. The action selection
hypothesis suggests that by stopping this inhibition in a spe-
cific area of the thalamus, the BG let information flow back
to the cortex motor areas and thus select the corresponding
microscopic channel [38], [1].

As mentioned before, this study relies on the assumption
that the firing rate of each channel at the level of the striatum
encodes the salience of the represented action. Therefore, it
is always straightforward to define which channel should be
selected each time by an ideal action selection mechanism.

Taking this into account, the first term of the metric ε
is defined as the average ratio of spike events in the active
channels of the SNr-GPi complex that should not be selected,
against the correct active channel. That is, if channel A is
the channel with the highest salience for each point of time,
B and C the competitor channels, and SPX the number of
spikes in channel X then

a =
SPB + SPC

SPA + SPB + SPC
(7)

Furthermore, it is important that inhibition of the remain-
ing channels occurs independently of the intensity of the
cortical input, in order to reduce the possibility of a false
selection. Thus, to secure that the inhibition in channels B
and C follows a similar pattern, the second term of the metric
ε is given as

b =
2 ·min{SPB , SPC}

SPB + SPC
(8)

Hence, the complete metric takes the following form.

ε = (100 · a4 · b)% (9)

The term a in equation 9 is raised to the power of 4
to emphasise the fact that even a small number of spike
events in the selected channel can influence significantly
the performance of the mechanism by causing unwanted
inhibition.

F. Numerics

The source code for this simulation was initially written in
the Python library Brian [39] and then reproduced in C++,
using NeMo spiking neural network simulator [40] to achieve
a massive parallelization using CUDA. The numerical inte-
gration of the model in Python was carried out using the
Euler method with an integration time step of dt = 0.25ms,
while the fourth-order Runge-Kutta method with the same
time step was later used in C++. Both methods produced
similar results.

IV. RESULTS

Following the methodology described in section III, we
conducted a series of simulations that varied the phase offset
ϕoff , the frequency of the oscillatory inputs f1,2 = f1 = f2
and the level of dopamine d1,2 = d1 = d2, to identify the
critical conditions that affect the efficiency ε of the selection
mechanism of the BG. An overview of the results is shown
in Figure 2.

Based on this figure, we can make a number of testable
predictions about the operation of the BG. First, our results
clearly indicate that the critical areas that can affect the
behaviour of the BG are all located in low frequencies while
gamma oscillations have no discernible effect. Second, high-
beta frequencies are able to facilitate selection significantly,
but only in the case that the input signals are coherent
and a strong signal precedes in time a second, weaker
signal with a small phase offset. Third, the frequency range
of this advantage is inversely proportional to the level of
dopamine in the system. Fourth, the system is ineffective
at frequencies lower than 20Hz and the phase offset, again,
plays a significant role, mainly in low-beta and theta bands.

Furthermore, our results indicate another frequency-
dependent effect of dopamine. As shown in Figure 2.B and
C, when the input signals oscillate at frequencies between 20
and 30Hz, increased levels of dopamine suppress the effect
that is caused by coherent phase-offset on BG selectivity. On
the other hand, in the first critical area of theta oscillations
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Fig. 2. Effectiveness ε of the model for each combination of dopamine
levels d1,2 and input frequencies f1,2. The colour bars represent the mean
(A) and the standard deviation (B) of a sample of 160 simulations with
random phase offsets ϕoff ∈ [0, 2π). C: Mean effectiveness for d1,2 = 0.3
and different phase offsets ϕoff . In all cases, the green baseline represents
ε under normal conditions and no oscillation, i.e. d1,2 = 0.3, f1,2 = 0Hz.
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Fig. 3. 5th degree polynomial regression of data that show ε for different
phase offsets and f1,2 = 7Hz. This curve was fitted for illustration purposes
from a sample of 640 simulations.

(5−10Hz), dopamine is clearly proportional to the existence
of this effect (Figure 3).

Our model’s behaviour in low frequencies is in line with
the intuition that the BG operate as a classical winner-takes-
all (WTA) mechanism. In this context, the two input signals
T1 and T2 can be considered the “competitors” while the

cycle of a slow oscillation represents a competition round.
A small phase offset ϕoff can be then interpreted as a
temporal advantage for T2 over T1. Indeed, the effectiveness
of the model was significantly stronger in the case of such a
temporal advantage for the most salient input T2 (ϕoff < π
in Figure 2.C). In addition, it is worth noting that small phase
offsets were proven to be more advantageous than ϕoff = 0,
when the two inputs are completely synchronized.

channel 1 channel 2

Fig. 4. Frequency spectrum of the SNr-GPi complex when both T1 and
T2 oscillate at f1,2 = 20Hz. The lines represent the mean value and the
gray area the SD of a sample of 100 simulations.

The variation of the BG effectiveness is also reflected
in the coherence between the cortical input and the SNr-
GPi complex, the output of the BG model. In Figure 4, a
Fourier transform of the binned spiking activity of SNr-GPi,
in 100 simulations with f1,2 = 20Hz, shows that although the
frequency of the input signal is generally maintained through
the BG structures, its intensity varies largely between the
BG’s microscopic channels, depending on the channel that
is currently selected. In the first case, when ϕoff = π

2 , the
system is very effective and clearly selects the most salient
input, in this case channel 2. For ϕoff = 3π

2 , the less-
salient channel 1 is selected, though both active channels
are entrained at the input frequency.

V. DISCUSSION

The neural model that is presented in this paper, uses
“Izhikevich” neurons with particular sets of parameters that
make them able to exhibit the dynamical behaviour found in
the real neurons of the BG nuclei. In initial experiments, we
also tried different less realistic models with simple event-
based synapses, more general parameters for the neuron
equations as well as different integration methods (Euler and
Runge-Kutta methods). However, these simulations produced
similar results and always indicated that, in low bands, a
small phase offset gives a clear advantage to the strongest
input signal and thus influences competition in the BG.

Revisiting the current literature, a number of studies show
interesting relations with our results.

The first important relation can be found in studies of
human patients with Parkinson’s disease that receive phar-
macological treatment. Local field potential recordings in
STN [41], [42] and GPi [42] as well as single neuron
recordings [17] have shown that when the patients are in the
“off” medication (Parkinsonian) state, oscillatory activity in
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the aforementioned areas exhibits two peaks, one in the beta
band (11 − 30Hz) in all patients and one in the low-theta
band (4 − 6Hz) in patients with tremor. However, after the
administration of the biochemical L-DOPA (or levodopa), the
balance of the oscillations in the BG changes dramatically.
In the above studies, patients showed a major reduction in
activity within the two bands that prevailed before and a
significant increment in the gamma band (> 60Hz) [41].
Furthermore, patients that developed levodopa-induced dysk-
inesia (LID), a side-effect after chronic administration of
L-DOPA, showed a second rather higher increment in the
hippocampal theta frequencies (4− 10Hz) [41].

Interestingly, the results that are depicted in Figure 2 also
make a clear distinction between the above frequency bands
and suggest that, for robust BG performance, cortical inputs
have to either be oscillating in high-frequency bands, as in
the case with L-DOPA, or be coherent in a particular manner.

Specifically, our interpretation of low-frequency oscillation
cycles defining short “competition rounds” in the BG’s action
selection mechanism provides a possible explanation of the
fact that Parkinsonian resting tremor, a very common symp-
tom of PD, is mainly associated with theta (and not beta [43])
BG activity [44], [17], [19]. Our simulations indicate that the
timing of a single competition round should be between 1

15
and 1

30 seconds because the 15−30Hz band is the critical area
where selectivity is enhanced (Figure 2.C). Hence, at theta
frequencies, an oscillation cycle can accommodate more than
one competition round and it is likely that two different
competing signals with a large phase offset will be able to
win in different rounds.

In addition, in [28], data from rats on a Y maze showed
that strong theta coherence between the PFC and the hip-
pocampus, two major inputs of the BG, peaks at the choice
point of a learnt rule, causing entrainment of the PFC activity
to hippocampal theta oscillations. Indeed, administration of
dopamine in the PFC was found to cause the same effects and
increase theta coherence between these two structures. This
led to the hypothesis that the intensity of theta coherence, at
this level, represents reward expectation. In our simulations,
we found critical effects in the selectivity of competing
theta-coherent inputs in our BG model. These effects are
modulated by dopamine, which promotes the variation of the
BG efficiency, depending on the phase offset ϕoff (Figure 3).
This is compatible with the above theory indicating that
dopamine increases the necessity for theta phase-locking (and
thus the necessity for coherence) at the level of the BG input.

The above two interpretations of the role of theta rhythms
do not contradict each other since, for the existence of resting
tremor, a large phase offset is assumed, while for ϕoff ' π

4 ,
the BG effectiveness is shown to be close to the baseline
(Figure 3). On the contrary, it is possible that in case that
theta activity is required at the level of the BG inputs,
maybe due to a memory-related or other cognitive process, an
increase of dopamine filters the non-coherent input signals,
while it also promotes theta coherence, achieved by phase
shifts of the PFC neurons [28].

Furthermore, our results are also consistent with the mod-
ern view that beta activity at the level of the BG, is inversely
proportional to the likelihood of a new goal-oriented move-
ment [25]. This hypothesis also states that the dopaminergic
system modulates the level of beta cortical entrainment of
the BG and, in tonic rates, it maintains BG beta activity in
low levels. According to our model, exaggerated beta activity
increases the advantage of a salient action over a less-salient
alternative, under particular conditions of their phase offset.
This relation with saliency suggests that when the BG are
entrained to cortical beta rhythms, potential attempts for new
voluntary actions, that have not yet been associated with
reward, will be suppressed.

Finally, dopamine was found to have a complementary
role to the BG oscillatory mechanisms. Rather than only
preventing beta synchronization [25], it was also shown to
suppress the effects of beta oscillations on the BG circuitry
(Figure 2.A and B).

VI. CONCLUSIONS

This paper has described a neural model of the standard
BG circuitry which, to our knowledge, is the first that is both
complete and based on Izhikevich’s simple model of spiking
neurons [32]. In addition, an analysis of the relationship
between frequency in cortical oscillations, dopamine and the
effectiveness of the BG as an action selection device revealed
an explanation of the importance of phase-locked oscillations
in low bands. However, how oscillations in these bands are
modulated or phase-locked in healthy cortical structures, still
remains an open question.

During our investigation, we made three fundamental
assumptions. First, we aligned with the premise that the
BG operates as a central action selection unit that is able
to resolve potential conflicts between motor or cognitive
resources [1], [2]. Second, we assumed that microscopic
channels of parallel isolated loops within the BG represent
different resources, and that the activation of each channel
at the level of the striatum encodes the salience of the
corresponding action [1], [4]. Third, we assumed that cortical
signals that reach the BG oscillate at frequencies between 0.1
and 100Hz.

We are currently extending our model to investigate how
the short- and long-term effects of plasticity influence the
BG selectivity or the critical frequencies in Figure 2. Finally,
we are planning to conduct further analysis based on more
meaningful cortical input, where coalitions of cortical oscil-
lators have more complex frequency spectrum and cooperate
in order to win the BG competition.
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