
 
 

 

  

Abstract—Tension detection is a key to improve 
performance of two-motor system under sensorless operation. 
This paper presents a new identification method for 
two-motor system based on artificial neural network and the 
left-inverse theory. Considering that the system parameters 
are time-variant and the mathematic model of left-inverse 
identification is complex, BP neural network is used to build 
the left-inverse model in this method, which is easy to 
implement. A simulation model of a two-motor system is 
developed. The simulated results verify the proposed method. 
By using this control strategy, the tension can be identified 
quickly and accurately, in which satisfactory robustness is 
offered. 

I. INTRODUCTION 
ulti-motor synchronous system is a multi-input 
multi-output (MIMO), strong coupling control and 
nonlinear system. It has been widely used in many 

applications such as electric vehicles, printing and urban rail 
transit [1-3]. The two-motor variable frequency 
speed-regulating system is a typical application, which is 
used to keep speed and tension invariable to transmit or 
enlace wire products. In order to improve quality and 
productivity, high precise control performance is required. 

In multi-motor system, tension control is an important 
factor to guarantee material rolling-up without accumulation 
or snap. To meet this requirement, the accurate measure of 
tension is very important. The tension is measured by 
mounting tension sensor in many conventional applications. 
However, it suffers from expensive cost, rigorous installation 
requirements and weak anti-interference performance. The 
sensorless operation theory has become a hot issue in recent 
years. The strategy of tension identification is introduced into 
the multi-motor system. Many research works focused on the 
tension identification strategy and obtained some effective 
methods. In [4], a nonlinear reduced-order tension observer 
was designed based on the dynamic mathematical model and 
the time-variant deviation equation of a two wound DC motor 
drive system. The friction torque, magnetic torque and inertia 
torque are used to identify the tension of unwinding machine 
and winder in the double drum winder machine tension 
control process [5]. In [6], according to the speed regulator 
output such as roll diameter, velocity, acceleration and 
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dynamic torque, a full-order observer is designed to predict 
the tension of a paper reminders machine. In [7], the 
parameter of three winding motor drive control distribution 
system such as winding cross-sectional area, membrane 
elasticity are selected to built the tension observation model 
system. Then, The Lyapunov function is used to analysis the 
convergence rate of observation errors. The above-mentioned 
studies are based on the accurate system model. However, it 
is hard to be obtained. In addition, there is a certain degree 
disturbance in multi-motor operation and parameter 
adjustment. These factors are not conducive to accurate 
identification of tension. 

Two-motor system is a MIMO, strong coupling control 
and nonlinear system. Therefore, it is necessary to identify 
tension no requiring model and parameters. Left inverse soft 
measurement method is recently proposed based on function 
approximation. It can directly identify unmeasured variables. 
The artificial neural network (ANN) can accurately 
approximate any nonlinear function and does not depend on 
the accurate identification model [8-13].  

This paper presents the tension identification strategy 
based on ANN left-inverse (ANNLI), which is combined left 
inverse system method. The proposed controller can 
liberalize and decouple the original nonlinear system. The 
ANNLI tension identification not only totally depends on 
motor mathematical model, but also can reduce the system 
error, which is caused by dynamics modeling and the internal 
and external disturbances. Moreover, it has an excellent 
robustness and clear physical meaning. This paper will be 
organized as follows. The mathematical model of two-motor 
system is derived and its inverse system will be proved in 
Section II. In Section III, the ANNLI will be verified. Then, 
the ANN left-inverse system will be constructed. Finally, the 
simulated results will be given to verify the proposed control 
method. 

II. MATHEMATICAL MODEL OF AND PROOF OF INVERSION 
SYSTEM  

A. Mathematical model 
The physical model of two-motor system two-motor 

system is shown in Fig. 1, in which motor roller1 is the master 
motor and motor roller 2 is the slave one [14]. Each motor and 
its inverter can be regarded as a modular cell. The belt-pulley 
is installed on the motor shaft, and two motors are combined 
by transmission belt on the pulley. When the two-motor 
system operates in vector control mode, both of the rotors 
pulls belt coordinately. 

Tension Identification of Two-Motor System Based on Neural 
Network Left-Inverse

Zhennan Cai, Guohai Liu, Wenxiang Zhao, Hao Zhang, Yan Jiang, and Yaojie Mi 

M
 

2014 International Joint Conference on Neural Networks (IJCNN) 
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 2167



 
 

 

 

 
Fig. 1.  Physical model of two-motor system. 

Then, the mathematic model of two-motor  system can be 
described as: 
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Where ωi is the synchronous angular speed of stator 
frequency and ωri is the electric angular speed of no. i motor. 
F is the tension of the belt, npi is the pole-pairs number of the 
number i motor, isdi is d-axis stator current. Ji, ψri, Lri 
respectively are rotor inertia, rotor flux and rotor 
self-inductance. Tri is electromagnetic time constant, TLi is 
load torque, K=E/v is the transfer coefficient. T=L0/Av is the 
time constant of tension variation; E is young's modulus of 
elasticity. v is the expected line speed. L0 is distance between 
racks; A is section area; ri is respectively the radius of belt 
pulley, ki is the speed ratio (i=1, 2). 

B. Construction of left-inverse 
When both inverters work in vector control mode, the 

mathematic model of two-motor system can be described as: 
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The following variables are chosen. 

State variable are: 
1 2 3 1 2[ , , ] [ , , ]T T

r rx x x x Fω ω= =  
Input variable are: 

1 2 1 2[ , ] [ , ]T Tu u u ω ω= =  
Output variable are: 

1 2 1[ , ] [ , ]T T
ry y Fω= =y  

State variable x1, x2 can be measured directly, and x3 is to be 
estimated. For the inherent sensor subsystem, the input 
variable is x3 and output variable are x1, x2. Which is assumed 

in induction motor system to estimate the rotor tension x3? 
The subsystem can be regarded as an inherent sensor that 
contains variables u1 and u2. When the left-inversion 
condition is satisfied, the left-inversion system consists of 
“inherent sensor” [15]. The left inverse identification based 
on inherent sensor is shown in Fig. 2. 
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Fig. 2.  Left-inverse identification based on inherent sensor. 

According to the left inverse soft measurement theory, 
this work selects x1=ωr1 as the directly measurable variable z 
and x3=F as the estimate variable x̂ . So, the directly 
measurable variable ωr1 can be expressed as: 
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The corresponding Jacobi matrix can be calculated and 
expressed as 
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Then, according to the negative function existing principle, 
the left-inversion of “inherent sensor” is existed. The 
assumed inherent sensor can be expressed as 
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So, the left-inversion used to estimate F exists and can be 
described by: 
 

( )1 1 1 2, , ,ϕ ω ω ω ω= r rF                                        (7) 
 

The left-inversion system is shown in Fig. 3. It is very 
difficult to obtain the left inverse mathematic model of 
complex nonlinear system, even if the system model is 
precise enough. In fact, this drawback limits the practical 
applications of left inverse soft measurement method. Neural 
network has strong approximation ability for the nonlinear 
function. In addition, the neural network has superior 
generalization ability and adaptive skills. This can greatly 
enhance the self-adaptive ANNLI soft measurement model 
and the robustness in theory [16]. The left inverse soft 
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measurement model is combined with static neural networks. 
It can break through the bottleneck of the above-mentioned 
problem of ANNLI. It consists of several differentiators and a 
static neural network structure. The differentiator 
characterizes the dynamic process of the soft sensor model, 
and the  neural network describes the nonlinear characteristics 
of soft measurement model. The model of ANNLI is shown in 
Fig 4. 
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Fig. 3.  Left-inversion soft measurement model of two-motor system 
two-motor system. 
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Fig. 4.  ANNLI soft measurement model. 

III. VERIFICATION 

A.  Training of ANN 
In this paper, two motor speed control system model are 

built in Matlab [17-18]. In order to improve performance, the 
two-motor system operates in the vector control mode. The 
random square-shape tension reference signal e (0-50kg) is 
selected. Then, the corresponding input and output signals 
will be collected. Different random square-shape amplitude 
tension is used as the supply signal to motivate the system 
characteristics of each band. The input and output should 
cover all possible operating ranges of the motor in order to 
verify the tension identification capability under the varying 
circumstances. Tension supply and tension response is 
compared in Fig. 5. 

 Three feed forward neural network are chosen as the 
primary network, namely hidden layer using “tansig” 
nonlinear function, the output layer using “purelin” linear 
function. Offline trained neural network adopts 
Levenberg-Marquardt algorithm. The number of neural 
network input and output nodes are determined by the 
expression of left inverse soft measurement model. The 
number of node in the hidden layer is generally double times 
the input node number. The number node of the input layer is 
4, the number nodes of hidden layer is10 and the number node 
of the output layer is 1. 

The original sample is normalized as the training data. The 
times of off-line training are 800-2000 . Generally the error 
for the training of precision-mean square is less than 0.0005. 
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Fig. 5.  Tension supply and tension response.  

B. Simulation 
In order to evaluate the predicting performances of ANNLI 

system, three quarters of the whole 500s samples are used to 
train a neural network and the other quarter of 500s samples 
to test the performance of the trained neural network. A 
suitable set of PID parameters are finally set after repeated 
training and simulation, namely (KP1, KI1 KD1) = (30, 2.75, 
0), and (KP2, KI2 KD2) = (10, 5, 32).The tension F is set to 
be random square change, as shown in Fig. 6. Fig. 7.  A good 
agreement can be obtained.  
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Fig. 6.  Comparison between desired value and ANNLI soft-sensingvalue 
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Fig. 7.  The error between desired value and ANNLI soft-sensing value 

2169



 
 

 

0

10

20

30

40

50

10 20 30 40 50 60 70 80 90 100t (s)

F
 (k

g)
Tension reference

Tension identification

 

Fig. 8.  Simulated dynamic responses based on ANNLI.  
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Fig. 9.  The error of ANNLI soft-sensing value when F suddenly changes. 

When PID is adopted as the closed-loop controller, the 
starting characteristics and dynamic tracking performance 
can be further improved. F is set to make square-shape 
changes and ωr1 is kept a constant of 100 rad/s. The tension 
reference F suddenly increases from 26 kg to 42.5 kg at 60s. 
The tension reference and the identification tension are 
compared in Fig. 8. It can be seen that the identification 
tension can track the reference tension very well and its 
dynamic response is fast. The steady-state waveform is not 
only smooth but also highly identification accuracy.  

It can be received that the error between desired value and 
ANNLI soft-sensing value is small and the fluctuations of 
error occur only at such places where tension suddenly 
increase or decrease, as shown in Fig. 9. The soft-sensing 
value tracks the reference value accurately and the error of 
steady state is almost negligible. 

IV. CONCLUSIONS 
A new strategy of the tension identification based on 

ANNLI for two-motor system has been proposed. It can be 
known that the proposed controller can successfully identify 
the tension value. The identification tension can follow the 
reference tension value accurately, in which the error between 
desired value and soft-sensing value is almost negligible. In 
addition, the proposed tension identification has excellent 
dynamic and static performances. Especially, the proposed 
tension identification strategy only requires the original 
motor control and speed signal, thus reducing the cost of 
hardware. 
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