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Abstract— Fast and accurate machine learning algorithms are
needed in many physical applications. However, the learning ef-
ficiency is badly subjected to the intensive computation. Know-
ing that hardware implementation could speed up computation
effectively, we use a FPGA hardware platform to implement an
on-line kernel learning algorithm, namely the kernel least mean
square (KLMS) which adopts the simple survival kernel as the
Mercer kernel. By using an on-line quantization method and
pipeline technology, the requirement of hardware resources and
computation burden can be reduced significantly and the data
processing speed can be accelerated apparently without losing
accuracy. Finally, a 128-way parallel FPGA platform which
works at 200MHz is implemented. It could achieve an average
speedup of 6553 versus Matlab running on a 3GHz Intel(R)
Core(TM) i5-2320 CPU.

I. INTRODUCTION

KERNEL adaptive filters (KAFs) [1] are a family of

nonlinear adaptive filtering algorithms, which have

been applied to machine learning [2] and signal process-

ing [3] successfully during the past few years, including

KLMS [4] [5], kernel recursive least squares (KRLS) [6] and

kernel affine projection algorithms (KAPAs) [7] etc. Among

these algorithms, KLMS is the simplest, which is easy to

implement without losing effectiveness.

However, when we make use of kernel adaptive filters, two

critical issues should be concerned cautiously. The first one

is to choose a dedicated kernel, such as Gaussian kernel [8]

and multiple-kernel [9], to ensure good performance of the

algorithms. The second one is that all kernel adaptive filters

suffer from the constantly growing network size, leading

to a serious memory and computation burden. Approximate

linear dependency criterion (ALD) [6], surprise criterion

(SC) [10], prediction variance criterion [11] and quantization

methods [12] are some main techniques that have been put

forward to constrain the network size.

While various kinds of techniques have been put for-

ward to reduce the complexity of machine learning meth-

ods, intensive computation is still the critical restriction

of on-line (real-time) learning. Note that hardware devices

could accelerate mathematical operations in orders of mag-

nitude [13] [14] [15], we consider to implement some
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algorithms with hardware platform, instead of conventional

software methods. Meanwhile, some specific work have been

done to improve the performance of software algorithms with

hardware implementation. For example, in order to deal with

the intensive computation, a VLSI of dynamic codebook

generator and encoder for image compression applications is

described in [16]. Furthermore, a VLSI is realized in [17]

to make the HVQ (hierarchical vector quantization) cost-

effective and computationally efficient.

In this paper, we implement a FPGA processing element

(PE) of KLMS. The kernel what we choose is a new

Mercer kernel, namely the survival kernel [18], which is

suitable for on-line KLMS because it is parameter-free and

computationally simple. Meanwhile, we adopt a quantization

approach [12] (so this new KLMS is called QKLMS) to relax

the memory and computation burden yet guarantee the accu-

racy of algorithm. Moreover, pipeline technology [19] [20]

is applied to explore the concurrency in or between each

operation and augment resource reuse rate. Finally, at very

low hardware cost, we finish the implementation of a parallel

FPGA platform which is used to process 128-way data

training simultaneously. When it works at 200MHz, it’s

6553 times faster than Matlab running on a 3GHz Intel(R)

Core(TM) i5-2320 CPU.

The remained part of this paper is organized as follows.

Section II gives a brief description of the KLMS algorithm,

quantization method and survival kernel. The architecture of

processing element is elaborated in section III. In section

IV, performance evaluation and implementation results are

shown. Finally, this work is concluded in section V.

II. KLMS, QKLMS AND SURVIVAL KERNEL

In this section, we will present some basic background

information related to our work. The first one is KLMS,

a kernel learning method what we implement with FPGA

in this paper. Then a quantization approach QKLMS used

to reduce the network size is briefly described. We also

introduce the survival kernel that we choose.

A. KLMS

In fact, KLMS is a stochastic gradient algorithm to solve

the least-square (LS) problem in reproducing kernel Hilbert

spaces (RKHS). A Mercer kernel is a continuous, symmetric,

positive-definitive function defined on X × X , i.e. κ :
X × X → R. It could be expressed in the formula of

κ(xm, xn). By the Mercer’s theorem, any Mercer kernel

induces a mapping Ψ between input space X and a feature

space F (which is an inner product space) such that:

κ(xm, xn) = Ψ(xm)TΨ(xn) (1)

2014 International Joint Conference on Neural Networks (IJCNN) 
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 2276



If we identify Ψ(x) = κ(x, .), feature space F is actu-

ally the same as RKHS induced by the kernel. Then, the

KLMS is the LMS algorithm performed on the example

sequence {(Ψ(x1), y1), ..., (Ψ(xn), yn)}, which is expressed

as follows:






f0 = 0
e(n) = d(n)− fn−1(xn)
fn = fn−1 + ηe(n)Ψ(xn)

(2)

where e(n), d(n), fn are the prediction error, desired signal

and learned nonlinear mapping at iteration n respectively, η

is the step size. We can get the access of fn−1(xn) through:

fn−1(xn) = η

n−1
∑

j=1

e(j)κ(xj , xn) (3)

Once an input sample comes, we need to allocate a

new kernel unit for input space with xi as the center and

ηe(i) as the corresponding coefficient. That’s to say, we

will get a continuously growing radial basis function (RBF)

network during the period of data training. This tricky

issue requires significant memory and computation burden,

a solution should be found to solve this problem.

B. QKLMS

As we said above, a technique that is able to compact the

RBF network structure of kernel adaptive filter is urgently

demanded. One can apply a quantization method to KLMS

(called QKLMS) so that the network size (the number of

centers) can be significantly decreased [12].

The key problems in quantization method including: 1)

how to decide whether a new input data should be omitted

or not, and 2) how to update the existing centers and

their coefficients. So far, there have been many quantization

algorithms in literature [21] [22] [23] [24], but their off-line

training of codebook (dictionary) does not lend them fitness

for on-line implementation. A quantization method in [12]

could train codebook directly from on-line samples and is

adaptively growing.

As for the first key issue said above, the distance between

the new input and the current codebook could determine

whether this input could be discarded or not. Let C(n) and

a(n) be the codebook and its corresponding coefficient vector

after the nth iteration, the distance between a new input xn

and codebook C(n− 1) could be calculated as:

dis(xn, C(n−1)) = min
1≤j≤size(C(n−1))

‖xn−Cj(n−1)‖ (4)

where Cj(n− 1) is the jth element of C(n− 1).
When we get the distance, the next-step is to update the

codebook and the corresponding coefficient according to the

distance. If dis(xn, C(n − 1)) is greater than the threshold

εX , it means that xn is not a “redundant” data. Then the

codebook and coefficient should be updated as:

C(n) = {C(n− 1), xn} (5)

a(n) = {a(n− 1), ηe(n)} (6)

Oppositively, if dis(xn, C(n− 1)) is less than the threshold

εX , it means that xn is closely related to the existing

codebook C(n− 1) and xn is a “redundant” data. Then the

only work we need to do is to update the coefficient vector

a(n− 1) as follows:

aj∗(n) = aj∗(n− 1) + ηe(n) (7)

j∗ = arg min
1≤j≤size(C(n−1))

‖xn − Cj(n− 1)‖ (8)

where aj∗(n−1) is the j∗th element of coefficient a(n−1).
Other elements of a(n − 1) keep unchanged. Finally, the

output of the kernel adaptive filter could be computed as:

fn(xn) =

size(C(n−1))
∑

j=1

aj(n− 1)κ(Cj(n− 1), xn) (9)

It’s obvious that the threshold εX is a very important

parameter for QKLMS. However, there is not a definite way

to determine the value for it. In general, we should make a

tradeoff between accuracy and complexity(network size). It

depends on the specific applications and cross validation is

an effective way to select the εX .

C. Survival Kernel

We select survival kernel to implement in our FPGA

platform. Assuming X = R
m
+

, where R
m
+

= {x ∈ R
m :

x = (x1, ..., xm), xi > 0, i = 1, ...,m}. The survival kernel

is defined by [18]:

κsur(x, y) =

∫

R
m

+

(I(x > t)I(y > t))dt (10)

where I(.) denotes the indicator function and if xi > ti, i =
1, ...,m, we say that x > t. The survival kernel of (10) can

also be expressed as:

κsur(x, y) =
m
∏

i=1

min(xi, yi) (11)

If we reduce input space X to a uni-dimensional space, (11)

will become:

κsur(x, y) = min(x, y) (12)

For the sake of simplicity, we only implement the one-

dimensional survival kernel in this paper.

Remark 1: The survival kernel is strictly positive-definitive

(SPD), parameter-free and easy to compute (just by opera-

tions of comparing and multiplication), it has great potential

to be used in on-line kernel learning. In the present work,

we focus mainly on the KLMS.

Remark 2: Even though survival kernel is defined on R
m
+

,

we can still apply it on R
m. Because the sample data of

physical applications are always bounded, we can get positive

data through simple translation.
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Fig. 1. Microarchitecture of PE

III. HARDWARE IMPLEMENTATION

High efficiency and throughput are the primary concerns

for our hardware implementation. QKLMS algorithm and

pipeline technology are employed to reduce the size of

required memory and enhance the reuse efficiency of func-

tional units. Meanwhile, benefiting from the usage of pipeline

technology, concurrent data training procedure is allowed,

accelerating the data training rate. Firstly, we will introduce

the microarchitecture of our proposed FPGA PE. Secondly,

data training procedure with our PE is explained step by step.

A. Microarchitecture of PE

In our PE, all the data are single precision float with

the format of IEEE-754 standard, so all data registers are

32bits. Figure 1 shows that our FPGA PE is composed

of two RAMs, one control unit and five functional units.

These hardware devices are arranged into five pipeline stages,

FETCH, SUB, MULT, COMP&ADD and WB are included.

Two RAMs are used to realize the codebook and its

corresponding coefficient. Simulation results show that if we

could set a reasonable threshold εX , QKLMS [12] could

reduce the size of codebook and coefficient to a constant

around 80 still with very high accuracy, regardless of the

time-length of data training period. However, memory size

needed in conventional KLMS is proportional to the data

training iterations. More precisely, if we conduct 1000-

time data training, the required memory size should be at

least 1000× 32bits (both codebook and coefficient RAM is

4KB,8KB in summary). Worse still, the size of RAMs will

be unaffordable as the time-length increases dramatically.

Hence, QKLMS makes a considerable reduction of memory

consumption, especially for a long data training interval.

Control unit implemented by finite state machine (FSM) is

in charge of the generation of different control signals during

the procedure of data training. At the beginning of data

training, it’s responsible for the initialization of codebook

and coefficient RAMs. Then, it guides functional units to

calculate the learned result fn(xn) and the distance from

input xn to codebook C(n − 1). After that, the codebook

and coefficient are updated if required, the process continues

until the data training is accomplished.

As shown in Figure 1, all pipeline stages are named after

operations they conduct. It’s obvious that input data xn and

desired learning result d(n) go into the circuit system through

FETCH stage whenever PE is available. Stage SUB makes

all subtraction operations needed during data training, such

as the computation of learning error e(n) and the operation

(xn − Cj(n − 1)), the latter is prepared for the calculation

of (xn, Cj(n− 1))2 in stage MULT. At the same time, SUB

is also responsible for the implementation of survival kernel,

i.e. the comparison between xn and Cj(n− 1) as shown in
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formula (12). The less one is selected by the most significant

bit (MSB) of subtraction result. If the result is positive and

MSB is zero, it means that xn is larger than Cj(n − 1).
Therefore, by using a subtractor to substitute the comparator

need in formula (12), an extra comparator is saved. All accu-

mulation items of learning result fn(xn) in equation (9) and

(xn−Cj(n−1))2 which is the square of distance from xn to

Cj(n− 1) are obtained from stage MULT. Other multiplica-

tion operations, such as ηe(n), are also made in MULT. Two

primary works are done in the COMP&ADD stage. The first

one is to complete the accumulation of learned result and the

second one is to evaluate dis(xn, C(n−1)) and j∗ in formula

(4) and (8) with a comparator. In addition, the comparison

between dis(xn, C(n−1)) and εX is also performed with the

comparator. In the last stage of PE, we finish the updating of

codebook and coefficient according to formula (5), (6) and

(7). If xn is “redundant”, i.e. dis(xn, C(n − 1)) is smaller

than εX , we only update the coefficient. Otherwise, codebook

and coefficient are updated with xn and ηe(n) respectively.

B. Data Training Procedure

After we introduced the microarchitecture of PE, let’s

take a look at how data are trained in the system. Data

training procedure can be divided into three steps in coarse

granularity.

Step 1. Initialization: At the beginning, when the circuit is

turned on, we should initialize the codebook and coefficient

with x1 and ηd(1) respectively. In order to get ηd(1),
operation “d(1)− 0” is carried out with subtraction unit and

the result is multiplied by η at stage MULT. Then, control

unit enables x1 and ηd(1) to be written in codebook and

coefficient as the first element.

Step 2. Evaluation of fn(xn), j
∗ and dis(xn, C(n−1)):

Theoretically, these three results are calculated sequentially.

However, we plan to get them simultaneously so as to

accelerate data training rate. This performance improve-

ment is achieved by adding one more multiplier in stage

MULT and let adder and comparator work concurrently in

stage COMP&ADD. Furthermore, not only the parallelism

among these three calculations is developed, but also the

concurrency of each computation is exploited because of the

adoption of pipeline technology.

Following the first data, subsequent input data are trained

in sequential order. Here, we will illustrate this step with

xn. Firstly, xn is subtracted by all elements of codebook

C(n− 1). We choose the smaller one according to the MSB

of subtraction result after each comparison. If the MSB is

“1”, xn is our option, otherwise the compared element of

codebook is selected out. Then the smaller one is multiplied

with the corresponding coefficient. Functional unit adder will

accumulate each product and output the final learning result

fn(xn).
According to formula (4) and formula (8), we need to

calculate dis(xn, C(n − 1)) and find out the location of

one element which has the least distance to xn among the

codebook, i.e. the value of j∗. Note that dis(xn, C(n− 1))
is only used to compare with threshold εX and the square

of a positive dataset has the same monotonicity as itself, so

we only need to compute the square of distance instead of

calculating the distance itself. Only (xn − Cj(n − 1))2 for

every n and j is calculated and compared. Then we could

avoid the design of a functional unit used to extract the square

root of (xn − Cj(n − 1))2 and save more hardware cost.

Meanwhile, because we cut down an operation, data training

could be faster. If the new value of distance is smaller than

the prior one, the older distance is replaced and the value of

j∗ is updated. Otherwise, they all keep their original values.

Step 3. Updating: After we get the result of dis(xn, C(n−
1)), we can determine whether need to update the codebook

and coefficient. But before the updating operation, the value

of e(n), ηe(n) and aj∗(n−1)+ηe(n) need to be calculated

firstly. These three values are computed sequentially by

pipeline stage SUB, MULT and COMP&ADD. Then we

should compare the square of dis(xn, C(n − 1)) and ε2X .

In the light of comparison result, updating of codebook

and coefficient are conducted. If dis(xn, C(n − 1)) is the

smaller one, codebook keep unchanged and the j∗th element

of coefficient is added with ηe(n). Otherwise, we have to

allocate a new space in codebook and coefficient to store xn

and ηe(n) just as described in formula (5) and (6).

Fig. 2. FPGA platform

IV. EVALUATION

This section presents the evaluation results to illustrate the

accuracy and data training rate of our FPGA implementation.

The FPGA platform we used is Xilinx Virtex-7 XC7V2000T

as shown in Figure 2, the state-of-the-art FPGA device.

A. Accuracy of Hardware Implementation

At first, we use a cosine function to testify the correctness

and accuracy of our processing element. The desired data are

generated by:

d(n) = cos(πxn) + v(n) (13)

Where input xn is uniformly distributed over [2,4], and

a zero-mean white Gaussian noise v(n) with variance 0.001

is added. ε2X and η are set to 1/1024 and 0.25 respectively.

The learned and desired mappings are plotted in Figure 3,

prediction error of every data training is plotted in Figure 4.
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In the experiment, 2000-time data trainings are processed.

In Fig.3, red dots represent the desired mappings and the

learned signals are shown with blue stars. As the data training

continues, blue stars becomes brighter and brighter. It is

evident that the blue stars which deviate from the desired

mappings are all lightly colored. Also, with the proceeding

of data training, learned signals are matched with desired

mappings more and more exactly. The curve of desired

mappings has even been fully covered by brighter blue stars.

We also record the variation trend of prediction error in

every data training, as shown in Fig. 4. At the beginning

of data training, prediction error vibrate in the range of [-

1.5,1.5]. But after a very short period of time, prediction error

is converged to zero precisely and keep this trend during

the following part of data training. As been observed, the

hardware implementation of the QKLMS algorithm functions

accurately.

B. Speedup versus Software

Furthermore, by simply instantiating our PE 128 times,

a hardware platform which could process 128-way data

learning in parallel is achieved. ε2X and η are set to 1/1024
and 0.25 respectively for every PE. Then we make an exper-

iment in which 128 data trainings are needed to complete

with our hardware platform and Matlab respectively. By

the comparison of their execution time for the different

training iterations, we can know about how many times

our hardware platform is faster than Matlab. In our 128-

way parallel hardware platform, these data trainings could

be performed simultaneously. Even though Matlab runs on a

computer which is configured with 2GB main memory and

Intel(R) Core(TM) i5-2320 CPU that works at 3.00GHz in

the experiment, it still cannot achieve the full parallelism like

us. Our parallel hardware platform works at 200MHz. Table

I shows that an average speedup of 6553 is achieved with

our hardware platform. Furthermore, the hardware platform

performs well in real-time at a sample rate of 2.4MHz

approximately.

TABLE I

SPEEDUP OF THE PARALLEL HARDWARE VERSUS MATLAB

Iterations FPGA(ms) Matlab(ms) Speedup

1024 0.400 2681.429 6704

2048 0.830 5524.324 6656

4096 1.690 11032.853 6528

8192 3.410 22007.986 6454

16384 6.850 43987.562 6422

C. Implementation Results

The proposed 128-way parallel hardware platform is im-

plemented in Verilog and synthesized with Xilinx EDA

tool called Vivado. Table II summarizes our hardware cost.

29.72% block RAMs are used to store the codebook and

the coefficient. This two memories in each PE could record

as much as 1024 data items. All functional units are imple-

mented by 32bits float DSP IPs, and 47.41% DSP devices

is sacrificed. Besides, the hardware platform requires merely

3.23% Flip-flop and 10.09% Lookup Table (LUT) which are

two main resources of FPGA. Therefore, we can definitively

claim that a hardware platform of KLMS algorithm has been

implemented at very low cost without losing accuracy.

TABLE II

IMPLEMENTATION RESULTS OF FPGA

Resources Utilized Available Utilization Rate(%)

Flip-Flop 78976 2443200 3.23

LUT 123264 1221600 10.09

Memory LUT 768 344800 0.22

I/O 100 1200 8.33

BRAM 384 1292 29.72

DSP48 1024 2160 47.41

BUFG 2 128 1.562

MMCM 1 24 4.167

V. CONCLUSION

In this paper, the KLMS algorithm used for machine

learning is implemented with FPGA at a very low hard-

ware cost. The survival kernel we used is a parameter-

free, strictly positive definitive and simple Mercer kernel.

Additionally, benefiting from the adoption of a quantization

method, we reduce the burden of memory requirement and

computation significantly. Moreover, pipeline technology is
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used to enhance the hardware reuse efficiency and operation

concurrency. When the 128-way parallel hardware platform

works at 200MHz, an average speedup of 6553 versus Matlab

running on a 3GHz Intel(R) Core(TM) i5-2320 processor is

achieved. Meanwhile, benefiting from such a large speedup,

less time will be spent for cross validation which is used to

select the εX as described in the last paragraph of section

II.B.

There are many work that need to be done in the future.

The first one is to optimize the microarchitecture of our

PE in order to get higher parallelism and speedup. For

example, if we could use the median comparison method

to reduce the number of comparison in survival kernel, the

PE will be sped up much more. As for the 128-way parallel

hardware platform, we want to apply it in the on-line analysis

of electroencephalograms (EEG) signals through processing

different data training in parallel, such as the detection of

causality among EEG signals.
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