
 
 

 

  

Abstract—Effective estimation of vehicle states such as the 
yaw rate and the sideslip angle is important for vehicle stability 
control. Unfortunately the devices are very expensive to 
measure the sideslip angle directly and are not suitable for 
ordinary vehicle. Therefore, it must be estimated. A novel 
sideslip angle soft-sensor using neural network left inversion 
(NNLI) is presented for the in-wheel motor driven electric 
vehicle (EV). The innovation of the presented algorithm is not 
only little concerned with reference model parameters 
identification, but also uses the characteristic of the in-wheel 
motor driven EV. Longitudinal acceleration, lateral 
acceleration, yaw rate, longitudinal velocity, steering angle, the 
torque of in-wheel motor which can be acquired by ordinary 
sensors are used as inputs. Co-simulations are carried out to 
demonstrate the effectiveness of the proposed soft-sensor with 
Simulink and CarSim. 

I. INTRODUCTION 
UE to energy conservation and environmental 
protection, electric vehicles (EVs) have been popular in 
both academic and industry. Compared with the 

conventional vehicles, EVs with in-wheel motors have 
several advantages in motion control [1]-[3]. The torque 
generated by in-wheel motor is accurate and fast. The driving 
torque of each wheel can be easily measured from the motor 
current and can be controlled independently. 

Nowadays vehicle stability control systems have been 
introduced to handle the problem that it’s difficult to drive a 
vehicle at low adhesion well. Such as the direct yaw-moment 
control (DYC) can be easier to realize because of the unique 
power trains of EVs, epically for multi-wheel independently 
driven EVs. In DYC system, it is required to accurately 
measure the yaw rate and the sideslip angle. Unfortunately, 
the direct measurement of the sideslip angle is only provided 
by special devices such as optical sensors or global 
positioning system (GPS) inertial sensors, which are very 
expensive and however unsuitable for the ordinary vehicles. 
Thus the sideslip angle must be estimated in real-time. 

Many kinds of estimation methods have been used to 
estimate the sideslip angle. Based on the linear vehicle model 
a state observer with kalman filter is designed to estimate the 
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sideslip angle [4], [5]. But these methods are not robust 
against the parameters changes in tire-road friction and 
driving conditions. To deal with the above problem, a fuzzy 
observer was proposed with non-linear vehicle model in [6]. 
In [7], extended and unscented kalman filters were presented 
to deal with its non-linearity. Based on the tire-road friction 
adaptation, an adaptive sideslip angle observer was presented 
in [8-9]. A novel method which combined the 
vehicle-model-based method and the kinematics-based 
method was proposed in [10]. In recent years, several 
researchers have presented the estimation using GPS without 
knowing the vehicle model [11]. 

To estimate the sideslip angle, some attempts of applying 
the neural network (NN) technique can be found in [12-14]. 
But the complex layout of the estimator generated a high 
computational effort. In [13], the function of the yaw rate and 
the lateral acceleration at instants was used to estimate the 
sideslip angle at the instant, but it’s unsuitable when changes 
happened in vehicle speed and tire-road friction coefficient. 
In [14] the NN-based observer with the non-linear vehicle 
model was obtained, but it was not ideal when the vehicle 
speed was changed. Furthermore, these NN-based methods 
were seldom theoretically proved for the parameters selection 
during the training. 

Given the above considerations, this paper will 
theoretically validate the input parameters selection of NN 
left inversion (NNLI). In the meantime, the presented 
soft-sensor considers the characteristics of EVs and imports 
the torque of motor as the input of the NNLI. This paper is 
organized as follows. Section II introduces the non-linear 
model of the multi-wheel independently driven EV. Sections 
III describes briefly the theory of NNLI and design a sideslip 
angle soft-sensor. In Section IV, the performance of the 
proposed soft-sensor is compared with CarSim. Finally, some 
conclusions are presented in Section V. The symbols are list 
in the appendix. 

II. VEHICLE MODEL 

A. Lateral Dynamics Model 
The non-linear two-track yaw plane vehicle is shown in 

Fig. 1. 
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Fig. 1.  Non-linear two-track yaw plane vehicle model. 

The vehicle speed obtains from ( ) 2/122
yx ννν +=  with the 

body sideslip angle ( )yx ννβ /arctan= . appears per page. The 

vehicle is assumed to have a low vehicle centre of gravity 
(CG) height with stiff suspension, and also the suspension 
dynamics and roll dynamics have no affect on the vehicle 
plane dynamics. 

The equations for the vehicle speed, the sideslip angle and 
the yaw rate dynamics are displayed in the follows: 
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The coordinate frame of the equations is based on the CG 
as its origin fixed and with the center line of vehicle as the 
x-axis. 

B. Tire Force and Tire Slip Angle 
To better understand the motion of vehicles, we must study 

the tire force. The longitudinal force of the vehicle is 
generated by the in-wheel motor and the wheel rotational 
motion is shown in Fig. 2. 

 

 
Fig. 2.  Wheel rotational motion. 

The longitudinal force is shown in the following equation: 
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With the assumption that the tire as a rigid body. So the 
rolling radius and rotational inertia are considered to be 

constant. 
As this study is mainly focused on the estimation of the 

sideslip angle in non-linear region, the Dugoff’s model is 
used as the tire model. The simplified non-linear lateral tire 
forces are shown in the follow: 

)(tan λα fCF iiyi −=                          (3) 

Where iC is the lateral stiffness, iα is the slip angle, 

and )(λf is shown as: 
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μ  is the road coefficient and ziF  is the normal load on the 
tires. In order to simplify the model we assume the conditions 
is pure slip. 

The normal load of the tire has three parts due to the effect 
of the lateral acceleration, the longitudinal acceleration and 
the roll of the vehicle. Without considering the roll of the 
vehicle, so the bank of angle is defined as 0=Φ . The normal 
load of each tire can be described as: 
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The tire slip angle iα is shown as follow: 
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III. NNLI SIDESLIP ANGLE SOFT-SENSOR 
This section will illustrate the assumed inherent sensor and 

the NNLI sideslip angle soft-sensor [18-20]. 

A. Left Inverse Soft-Sensor Theory 
A linear or non-linear system Σ with q-dimensional 

input T
quuut ),,,()(u 21 ⋅⋅⋅= and d-dimensional 

output Tyyyty ),,,()( d21 ⋅⋅⋅= can be represented by the state 
function: 
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The system statement is nT
n Rxxxx ∈⋅⋅⋅= ),,,( 21  and given 

a certain initial state 00 )( xtx = . 
For a general point of view, the mathematical model of this 

system is equivalent to a mapping from the input to the output. 
It can be described as the following: 

uuxy θθ =⋅=⋅ ))(,()( 0                           (9) 
Generally speaking, for a non-linear system, in its interior, 

it can be assumed that there exists an assumed inherent sensor 
subsystem as shown in Fig. 3. The variables to be estimated 
are the inputs of the subsystem while the variables which can 
be measured directly are the outputs. The variables are the 
input variables of the controlled system. If a left inversion of 
the assumed inherent sensor can be constructed and cascaded 
behind the assumed inherent sensor, then a so-called 
composite identity system whose outputs would be the 
identity mapping of its inputs is obtained. It means that the 
outputs of the assumed inherent sensor inversion will 
reproduce completely the inputs of the “assumed inherent 
sensor”. Therefore, the non-directly measured variables of the 
controlled system can be estimated from the variables which 
can be measured directly [17], [20]. 

 

 
Fig. 3.  The measuring principle based on left inversion. 

B. NNLI Sideslip Angle Soft-Sensor 
The static NN has the ability to approach the non-linear 

system. A NNLI sideslip angle soft-sensor based on the 
ability can be achieved. The basic idea of the NNLI sideslip 
angle estimator is as follows: 
1) Construct an assumed inherent sensor. 
2) Get the inversion of the assumed inherent sensor. 
3) Using a static NN to approximate this inversion system. 
4) Put the inversion system behind the assumed inherent 
sensor in series to produce a unified system, therefore, it is 
named as the NNLI.  
5) Through this NNLI, we can realize the estimation of the 
non-directly measured sideslip angle. 
For the system in (1), its state variable is 

( ) ( )T T
1 2 3 4 x xx ,x ,x ,x , ,v ,aγ β= =x               (10) 

The input of the system is 
T
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The non-directly measured variable is 
TTxx ][][ 1 β==                                      (13) 

According to the modeling algorithm, the Jacobian matrix 
rank is obtained. 
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Since the rank is not equal to the number of the non-directly 
measured variables, it can be further derivate. 
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As is shown in the following equation referred to (1): 
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The rank is as following: 
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Therefore, the model of the assumed inherent sensor is 
left invertible. The left inversion model of the sideslip angle 
according to these functions can be achieved. And the 
inversion of the assumed inherent sensor for the sideslip 
angle can be written as: 

1 2 3 4( , , , , , , , )x y d d d da a T T T Tβ φ ν δ=           (18) 
Since the vehicle is driven by two-rear-wheel, therefore 

021 == dd TT                                      (19) 
And the inversion of the assumed inherent sensor can be 
written as: 

3 4( , , , , , )x y d da a T Tβ φ ν δ=                      (20) 
As the system is complex in mathematical model, it is 

difficult to construct the inversion of the assumed inherent 
sensor by analytic means. Hence, a static NN is used to 
approximate the above nonlinear function in (20). Then, the 
NNLI dynamic soft-sensing model is finally completed, 
which is composed of a static NN and a series of 
differentiators. This simplifies the construction of the 
proposed NN-based soft-sensor in practical use, while it is 
strict enough in theory. The structure of the NNLI sideslip 
angle soft-sensor is shown in Fig. 4. 
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Fig . 4.  NNLI sideslip angle estimator. 

IV. SIMULATION RESULT 
The performance of the proposed soft-sensor is evaluated 

by Matlab/Simulink-CarSim co-simulation. A vehicle with 
two in-motors at the rear wheels is developed using CarSim. 
The NNLI soft-sensor is constructed by using 
Matlab/Simulink. 

A. NNLI Train 
A NN should be trained and tested by means of numerical 

data in the first step. In order to highlight the performance of 
the NNLI sideslip angle soft-sensor in non-linear condition, 
the range of vehicle speed is chosen comparatively high one. 

At the same time, the variable steering wheel angle is 
necessary for inspiring the NN sufficiently. The set of 
maneuvers for NN training is shown in Figs. 5 and 6. 
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Fig. 5.  Signal of steering wheel angle for training. 
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Fig . 6.  Signal of the vehicle speed for training. 

Meanwhile, a static back propagation NN with the 
structure of 11-18-1 with “tan sigmoid” transfer function on 
the nodes of one hidden layer, and “linear” transfer function 
on the node of output layer is adopted. The training mean 
squared error is 9.999e-4 after 515 times of training by using 

Levenberg-Marquardt algorithm. In addition, to improve the 
training performance and enhance the soft-sensing 
performance, all the data are normalized within [-1, 1]. 

B. NNLI Sideslip Angle Result 
Two Simulations are carried out under a single lane change 

maneuver and a step maneuver. In two maneuver simulations, 
the vehicle travels on a wet road (μ=0.4) at a constant speed of 
90 km/h. The estimated sideslip angle is compared with the 
output of CarSim in order to reflect the superiority of NNLI 
soft-sensor. 

As shown in Figs. 7 and 8, simulation results verify that the 
actual (denoted as CarSim) and estimated values (denoted as 
NNLI) of the sideslip angle agree well. Therefore, the NNLI 
soft-sensor can accurately predict the sideslip angle. The 
presented algorithm is proved perfect in theory verification 
and the simulation. 
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(b) Comparison of actual and estimated values of sideslip angle. 

Fig . 7.  Simulation under single lane change maneuver. 
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(b) Comparison of actual and estimated values of sideslip angle. 

Fig . 8.  Simulation under step maneuver 

V. CONCLUSION 
The system of the vehicle is non-linear and the common 

observe methods can hardly track the state of the vehicle. But 
the soft-sensor based on NNLI is perfect in estimating the 
non-linear state of the vehicle. In this paper, to estimate the 
sideslip angle, a new method for sideslip angle estimation has 
been presented. The NNLI has been treated as the dynamic 
soft-sensor, which consists of a NN and a series of 
differentiators. And its performance has been investigated 
through CarSim-Matlab/Simulink co-simulation. The vehicle 
with the proposed NNLI soft-sensor can successfully follow 
the sideslip angle trajectory. 

APPENDIX 
TABLE I 

NOMENCLATURE 

Symbol MEANING 
ax Longitudinal acceleration at CG (center of gravity) 
ay Lateral acceleration at CG 
νx Longitudinal speed at CG 
νy Lateral speed at CG 
d Track width 
g Acceleration due to gravity 
lf Distance from CG to front axle 
lr Distance from CG to rear axle 
i 1,2,3 and 4 corresponding to front left, front right, 

Rear left and rear right 

m Total mass of vehicle 
Ci Tire cornering stiffness at the ith tire 
Ri Rolling radius at the ith tire 
Fxi Longitudinal tire force at the ith tire 
Fxi Lateral tire force at the ith tire 
ν Vehicle speed at CG 
Jz Vehicle inertia around the z-axis 
Ji Wheel angular moment of inertia at the ith tire 
Ti In-wheel motor torque applied to the ith tire 
νi Wheel speed at the ith tire 
ωi Wheel angular velocity at the ith tire. 
β Vehicle sideslip angle 
δ Front steering angle 
γ Yaw rate 
KfΦ Roll stiffness coefficient of front axle 
KrΦ Roll stiffness coefficient of rear axle 
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