
Dynamic Neural Networks for Jet Engine Degradation Prediction
and Prognosis

S. Kiakojoori and K. Khorasani
Department of Electrical and Computer Engineering

Concordia University, Quebec, Canada
kash@ece.concordia.ca

Abstract—In this paper, fault prognosis of aircraft jet engines
are considered using computationally intelligent-based method-
ologies to ensure flight safety and performance. Two different
dynamic neural networks namely, the nonlinear autoregressive
neural networks with exogenous input (NARX) and the Elman
neural networks are developed and designed for this purpose. The
proposed dynamic neural networks are designed to capture the
dynamics of two main degradations in the jet engine, namely
the compressor fouling and the turbine erosion. The health
status and condition of the engine is then predicted subject to
occurrence of these deteriorations. In both proposed approaches,
two scenarios are considered. For each scenario, several neural
networks are trained and their performance in predicting multi-
flights ahead turbine output temperature are evaluated. Finally,
the most suitable neural network for prediction is selected
by using the normalized Bayesian information criterion model
selection. Simulation results presented demonstrate and illustrate
the effective performance of our proposed neural network-based
prediction and prognosis strategies.

I. INTRODUCTION

Safety, cost, and performance of aircraft operations are
highly dependent on gas turbine engines [1]. Jet engine prog-
nosis problems and research have been a matter of interest in
recent years due to the increasing demand on reliable operation
of these systems. Fault prognosis deals with the capability
of predicting the future health and state of components of a
system in a fixed time horizon or their time to failure [2]. Fault
prognosis information can be crucial in performing impor-
tant condition-based maintenance (CBM) decisions to reduce
maintenance costs as a result of unnecessary replacement of
components or shut downs. In the aerospace industry, jet
engines related costs constitute a large portion of the operating
costs of an aircraft. Consequently, fault prognosis allows one
to avoid high costs of engine failure or their overhaul.

Fault prognosis is primarily divided into two main cate-
gories, namely model-based and data driven-based approaches.
Model-based approaches rely on the mathematical and physi-
cal model of the system, while data driven-based approaches
are developed mostly from historical or real-time data from
the system measurements for predicting the future health and
state of the components. Given that generally one does not
have access to an accurate mathematical model of an engine,
developing model-based approaches would be a challenging
task. Data driven methods use real data to represent and model
the degradation of the components and predict the future
behavior of the system. Moreover, inherent nonlinearities
make the use of alternative computational intelligent-based

techniques as preferable and more practical. During the past
few years, artificial neural networks (ANN) that rely on real
and/or real-time data from the system components are mostly
used as a tool for prognosis [3]. The interest in application and
use of neural networks in fault prognosis is due to their ability
in modelling nonlinearities of dynamical systems. The aircraft
jet engine is a highly nonlinear dynamical system, therefore
in order to model time delays and memory associated with
the dynamics of the system, a dynamic neural network can be
argued as to be required for learning its dynamics.

Various neural network methods have been used in the
area of prognosis due to their flexibility in generating suitable
models. Vachtsevanos and Wang [4] introduced a prognostic
framework based upon the concepts of dynamic wavelet neu-
ral networks and its practicality was checked via a bearing
example. Polynomial neural networks have also been used
as estimation schemes for analysis of normal and defective
vibration signatures in helicopter transmissions [5]. Huang
et al. [6] predicted the life of ball bearings based on the
self-organizing maps and back propagation neural network
methods.

Different studies have shown the merits of ANN in terms of
their faster performance as compared to conventional system
identification techniques in multivariate prognosis [7] and in
capturing complex phenomenon without a priori knowledge.
Jianzhong et al. [8] demonstrated the concept of multiple layer
perceptron (MLP) neural networks to model the remaining
useful life of a NASA turbofan engine degradation simulation
data set. Artificial neural networks have also been used for
modeling and prediction of complex time series data [9].
In [10], Gebraeel and Lawley developed a modular neural
network-based degradation model that utilizes degradation
signals to determine the residual life of a degraded rolling
bearing. Dragomir et al. [11] utilized adaptive neuro-fuzzy
inference for stabilizing the error dynamics of the prognosis
process. Recurrent radial basis neural networks have also been
used by Zemouri for prognosis of nonlinear gas ovens [12].

Lee et al. [13] employed an Elman neural network for health
condition prediction. Wang et al. [14] compared the prediction
results of fault damage trend analysis using recurrent neu-
ral networks and neuro-fuzzy inference systems. They also
showed the robustness of the ANN approaches in their work.
Zhao et al. [15] developed an integrated prognostic method
for gear remaining useful life prediction.

Traditionally, maintenance is performed only at the break-
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downs. Thus, no analysis or planning is required, which in
turn results in unscheduled downtimes [16]. Unplanned or run-
to-failure maintenance is practical in industries with limited
maintenance resources [17]. However, in applications such as
aircraft engines, reactive maintenance causes critical problems;
failure of a component may occur at an inconvenient time or
it can cause damage to other parts of the system [18].

Another common maintenance technique is known as the
time-based preventive maintenance, which sets a periodic
interval to perform maintenance without considering the health
status of the system [19]. This strategy can provide relatively
higher system performance as compared to the previous ap-
proach above. However, this method is quite inefficient for and
cannot handle unexpected failures. Moreover, in pre-defined
maintenance policies, the system may be overhauled when it
may still be in a good health condition. This leads to a resource
and time consuming process that due to frequent replacements
of expensive components before end of their useful life as
most engineering components do not fail at periodic intervals.
It is also important to determine the maintenance intervals
to reduce the frequency of undesirable consequences of the
system interruptions. Age-related, usage, or failure distribution
have been used as means to obtain the time intervals. However,
as pointed out by Luo et al. [20], critical system failures cannot
only be determined based on the time of the system operation.
Consequently, in the past ten years many utilities replace their
time-based maintenance activities with efficient policies that
are based on the need of the system to fulfill their needs for
availability and safety [21].

In order to reduce both maintenance and repair costs and
probability of the failure, condition-based maintenance (CBM)
techniques have been introduced as efficient ways to increase
the production cycle for modern aircraft that are based on
the current health, operating and maintenance history of these
systems. Variables such as vibration, temperature and acoustics
can be used to collect information about the performance and
behavior of the system [22].

II. NARX NEURAL NETWORK

One of the most popular model representations and struc-
tures for performing time series prediction is the non-
linear autoregressive neural network with exogenous input
(NARX), where the current output value is dependent on
the lagged/delayed inputs and outputs that map through the
network nonlinear functions. This nonlinear transformation
can be described as a feed-forward neural network, polynomial
expansion, radial basis functions, wavelets, support vector
machines, etc. [23].

Although recurrent architectures have feedback from hidden
neurons, NARX network feedback comes only from the output
neurons. Gradient-descent learning for NARX networks is
more effective than in other recurrent networks due to the
embedded memory of these networks that reduces the sensi-
tivity to long-term dependencies [24]. It has also been pointed
out that convergence in these networks is much faster than
other networks [25]. Essentially choosing a suitable network

Fig. 1. NARX neural network architecture [25].

architecture in terms of the number of neurons and memory
or delays are among the most important considerations for
design of NARX networks that are to be used for the prediction
problems.

The NARX networks use a tapped delay line from the input
and delayed connections from the output layer to the input
layer. In this network the estimated output (the network’s
output represented as ŷ(k)) is fed back to the input of the
feed-forward neural network as part of the standard NARX
structure as shown in Figure 1, to yield

ŷ(k + 1) = f [yP (k);u(k)] =
f [ŷ(k), . . . , ŷ(k − dy + 1);u(k), . . . , u(k − du + 1)],

(1)

where du and dy denote the input and output delays, respec-
tively, and f denotes the nonlinear mapping function. Equation
(1) implies that the network receives the past and present
values of the input as well as the past and present estimated
values of the output as inputs and the next value of the output
as the target in the training phase. The trained network is then
used to estimate the next step value of the output for the unseen
data in the testing phase.

The NARX neural network can also be trained to predict
multi-steps ahead of the output based on equation (2) below
where the present and the past observations u(k),. . .,u(k−du+
2),u(k − du + 1) and the present and past estimated outputs
ŷ(k),. . .,ŷ(k−dy+2),ŷ(k−dy+1) are used as inputs, and the
output in the n-step ahead as the target value in the training
phase, that is

ŷ(k + n) = g(u(k − du + 1), u(k − du + 2), . . . ,

u(k), ŷ(k − dy + 1), . . . , ŷ(k))
(2)

where du and dy denote the input and output delays, respec-
tively, and g denotes the nonlinear mapping function.

Dynamic back propagation algorithm is used in this paper
to compute the gradients required for the network training
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Fig. 2. Elman neural network architecture [28].

step. The weights and biases update laws use the Levenberg-
Marquardt optimization scheme [26] which minimizes a com-
bination of the squared error of the estimated and actual values
of the output and weights, and then determines the optimal
combination for minimizing a nonlinear performance index.
These details are not included and can be found from [27].

III. ELMAN NEURAL NETWORK

An Elman neural network is in principle a regular feed-
forward network with local feedback that is used to construct
and introduce memory into the system. It consists of three
layers, namely the input, the hidden and the output layers. In
contrast to the NARX network, the output is not fed back to
the input layer. Instead, special units called the context units
save previous output values of the hidden layer neurons. These
units are hidden in the sense that they interact exclusively with
other nodes internal to the network, and not with the outside
world. These values are then fed back to the input layer as
additional inputs to the system [28]. An Elman network with
three layers is shown in Figure 2.

At time (t), the input units receive signals in the sequence
which might be a single scalar value or a vector depending
on the specifics of the problem. Both the input units and the
context units activate the neurons in the hidden layer. The
hidden neurons then activate the output neurons. They are
also fed back to activate the context units. The output is then
compared with the actual one and the back propagation of the
error is then used to adjust the weights. At the next time step
(t+1), this sequence is repeated. Therefore, the context units
contain exactly the hidden neuron values at time (t). These
context units thus provide the network with memory [28].

In the Elman network, the neurons of the input layer, hidden
layer and output layer are fully connected by the weight
matrices. Context units which save the previous values of the
hidden neurons are also connected to the hidden layer through
connection weights. Based on this methodology, the network
output is related to the current input data as well as the past and
historical input data due to the context neurons. This implies

that the output is a function of both previous activation states
and current data [29].

As pointed out above, the current inputs of the hidden
layer consist of input signals which are passed through the
hidden layer with connection weights and the previous time
steps of the hidden layer are fed back to the input layer.
Following the processing of these signals in the hidden layer,
they are sent to the output layer where a decision is made as
to whether the output is expected or not. If the output differs
from the expected one, the error is returned along with the
original connection path. This iteration is repeated until the
desired error for the network is achieved. These details are
not included in this paper and can be found in [28].

IV. JET ENGINE MATHEMATICAL MODEL

Gas turbine engines are used in many industrial and
aerospace applications. One kind of the gas turbine that is
called the jet engine is a reaction engine that is used to generate
high-speed thrust by the jet propulsion in accordance with
Newton’s laws of motion. Gas turbine performance degrades
during its operation due to the deteriorations resulting from
the gas path components [30]. Compressor fouling, foreign
object damage (FOD), blade erosion and corrosion, worn seals,
blade tip clearance increase due to wearing, etc. are among
the most common causes of degradations in an engine. These
degradations can then result in changes in the thermodynamic
performance of the engine.

The condition or the state of components can be represented
by a set of independent performance parameters. Component
efficiencies and flow capacities are mostly used as performance
parameters in the literature. These variables are not directly
measurable, and they are thermodynamically correlated with
the engine parameters such as the engine spool rotational
speeds, temperatures, pressures, fuel flows, etc. [31]. Equipped
with the knowledge of these observable measurements, one
can determine how an engine performance differs from its
healthy state.

The most popular approach for diagnostic and prognostic
is known as the gas path analysis (GPA) that utilizes the
above characteristics. This was introduced by Urban in 1970s
[32] and was then followed up by different developments and
extensions such as the optimal estimation based methods.

Based on the work of Naderi et al. [33] on modeling of an
aircraft jet engine, a MATLAB/Simulink model for a single
spool jet engine is developed. The simulation model was
constructed by using mechanical, aerodynamic and thermo-
dynamic relationships between the components of the system.
Data is generated from this model under different degradation
rates. These data are used to evaluate the prediction capability
of the neural networks.

The information flow among different parts of a single spool
jet engine is shown in Figure 3. The set of nonlinear equations
corresponding to a single spool jet engine is also obtained in
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Fig. 3. Information flow diagram in a modular modeling of the jet engine
dynamics.

[33] as follows:

ṪCC =
1

cνmCC
[(cPTCṁC + ηCCHuṁf − cPTCCṁT )

− cνTCC(ṁC + ṁf − ṁT )], (3)

Ṅ =
ηmechṁT cP (TCC − TT )− ṁCcP (TC − Td)

JN( π30
2)

, (4)

ṖT =
RTMi

VMi
(ṁT +

β

1 + β
ṁC − ṁn), (5)

ṖCC =
PCC
TCC

ṪCC +
γRTCC
VCC

(ṁC + ṁf − ṁT ), (6)

where TCC denotes the temperature in the combustion cham-
ber, N denotes the rotor speed, mCC denotes the mass flow
in the combustion chamber, cν denotes the specific heat at
constant volume, cp denotes the specific heat at constant
pressure, TC denotes the compressor temperature, ṁC denotes
the compressor mass flow rate, ηCC denotes the combustion
chamber efficiency, Hu denotes the fuel specific heat, ṁf

denotes the fuel flow mass flow rate, ηmech denotes the
mechanical efficiency, Td denotes the diffuser temperature,
ṁn denotes the mass flow rate in the nozzle, β denotes the
bypass ratio, TMi denotes the mixer temperature, VMi denotes
the volume of the mixer, and PCC denotes the combustion
chamber pressure.

The input to a single spool engine is considered as the
power level angle (PLA), which is related to the mass flow
rate through a variable gain. The dynamics of the fuel mass
flow rate is governed by

τ
dṁf

dt
+ ṁf = Gufd, (7)

where τ denotes the time constant, G denotes the gain
associated with the fuel valve, and ufd denotes the fuel
demand which is computed by using a feedback from the
rotational speed [34]. The engine model in this work has
six (6) measurements namely the compressor temperature, the
compressor pressure, the combustion chamber temperature,
the combustion chamber pressure, the rotor speed, the turbine
pressure, and finally the turbine temperature.

V. DEGRADATION MODELING

The operation of a gas turbine is due to interactions among
various components. It is affected by the wear and tear over
time that can adversely impact its operation [35]. Each type
of the aero-engine deterioration has an adverse effect on the
performance of the aircraft, resulting in reduced thrust and
increased costs [1]. It should be pointed out that due to the
variety of operational and design factors for various engine
components, it is usually difficult to control the speed of the
degradation [35].

Degradations are usually divided into two main categories,
namely: recoverable, in which the degradation mechanism can
be recovered, and non-recoverable, in which the degradation
mechanism cannot be recovered. The recoverable losses can
be reversed by operational processes such as keeping the inlet
and outlet pressures low, or the losses due to fouling that
can be regained by the compressor washing. Non-recoverable
degradations are the result of mechanical problems which
in turn cause damage to the aerofoils. Corrosion, erosion,
loss of surface finish on blades, and increased tip clearance
are examples of these deteriorations [36]. After the non-
recoverable losses occur, the component has to be replaced.
The two most common degradations in gas turbines that are
considered in this work are now described in more detail
below.

A. Compressor Fouling

Compressors consume up to 60% of the power produced by
turbines, therefore maintaining a compressor at its optimum
performance during the operation is of significant importance.
Compressor fouling is one of the main causes of the degra-
dation of the jet engine that accounts for 70 − −85% of the
total engine performance loss during its operation [37]. This
degradation can primarily reduce the mass flow capacity and
compressor’s delivery pressure, which is then followed by the
power reduction and an increase in the heat rate [38]. The
reference [39] has demonstrated that fouling can reduce the
mass flow rate by 5% and the output power by 13%, and
an increase in the heat rate by 5.5%. This fact shows the
importance of predicting the effects of the compressor fouling
on the performance of the engine. Fouling is caused by the
adherence of particles, such as impurities in the air, engine
oil leakages or fuel impurities to the compressor blades and
consequently, it increases the surface roughness, reduces the
flow passage and in some cases changes the shape of the
aerofoil [40].

B. Turbine Erosion

Erosion is the loss of material from the flow path by
hard particles, typically larger than 10µm. This is one of the
main causes of the deterioration in the turbine section of the
aero-engine applications. Given that the aircraft engines are
typically exposed to ingestion of sand or runway materials,
erosion is an important concern. Erosion decreases the turbine
efficiency and increases the mass flow rate. Erosion is more
important in the aero engine applications, since the particles
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larger than 10µm in diameter are generally removed in the
industrial gas turbine engines by using filtration systems [35].

VI. GAS TURBINE SIMULATION PROGRAM (GSP)

The gas turbine simulation program (GSP) [41] is a
component-based modeling environment which allows steady-
state and transient simulation of any gas turbine configura-
tion. It was developed by the National Aerospace Laboratory
(NLR). This software has been used for various applications,
such as performance analysis, control system design and
diagnosis [42]. It is also used for sensitivity analysis of
some variables such as ambient conditions and component
degradations. Moreover, flight conditions, degradation and
malfunctions of the control can also be analyzed.

The GSP is used in this work to validate the degraded
data that are generated with our jet engine model as provided
in Section IV. A simple turbojet engine model configuration
representing an engine similar to the General Electric J85 is
used for the data validation which is deteriorated with the same
degree as a single spool jet engine model that was described
earlier in Section IV. The details for the validation simulations
are not shown in this paper due to space limitations.

VII. ENGINE DEGRADATION PREDICTION PROBLEM

Both NARX and Elman neural networks are used to predict
the turbine temperature for certain number of flights ahead to
decide whether or not the turbine temperature exceeds certain
determined thresholds at specific flight or the next flights will
be safe. Data generated from a Simulink model of a single
spool jet engine in presence of compressor fouling and turbine
erosion are used to train and test these two neural networks. It
must be noted that the data are captured at the time when the
maximum fuel is applied to the engine so that the maximum
thrust is provided in the aircraft take-off mode. In order to
verify the effectiveness of these neural networks in terms of the
prediction horizon, two scenarios are considered and applied
to each of the models. Specifically, the compressor fouling of
3% and the turbine erosion of 3% are considered in this work.
In both case studies the engine goes through the specified
degradation rates in 200 simultaneous flights. Optimal neural
networks are obtained by using different number of training
data sets to predict 2 and 8 flights ahead turbine temperature
in presence of the compressor fouling and the 5 flights ahead
turbine temperature in presence of the turbine erosion.

VIII. PREDICTION RESULTS USING THE NARX NEURAL
NETWORK

After an extensive set of trial and error simulation stud-
ies (not shown due to space limitations), the NARX neural
networks with 3 input delays, 3 output delays, and 8 hidden
neurons was found to yield the optimal performance to predict
the 2 flights ahead turbine temperature. The hidden layer
activation function for the NARX neural network is selected as
a sigmoidal function. The selected NARX network was trained
by using 80% of the available data. This implies that 160 data

Fig. 4. The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using the NARX neural network in presence of the
compressor fouling.

TABLE I
A 2 FLIGHT AHEAD TURBINE TEMPERATURE PREDICTION ERROR FOR

COMPRESSOR FOULING USING THE NARX NEURAL NETWORK.

RMSE (K) Standard deviation (K) Mean (K)
2.1079 2.0649 0.5347

points (flights) are used in the training step and the remaining
40 points are used in the testing phase.

Dealing with uncertainties is inevitable. In order to over-
come the problem of uncertainty in measurements, two lower
and upper prediction bounds are defined to evaluate the
prediction performance of the NARX network. Monte Carlo
simulations are performed and according to the normal theory
a multiple of the standard deviations of the prediction error (for
a given confidence level that is 95%) is added and subtracted
from the prediction values. When the upper bound has been
reached one may declare that the engine should be taken off-
line as it requires maintenance action. Predicted and actual
values along with the prediction bounds are shown in Figure
4. The dashed lines show the upper and the lower prediction
bounds, the cross points represent the predicted temperature
while the circle points indicate the actual values. The Root
Mean Squared Error (RMSE), standard deviation, and the
mean of the prediction errors are summarized in Table I.

In order to predict 8 flights ahead turbine temperature in
presence of the compressor fouling, we have found after an
extensive set of trial and error simulation studies (not shown
due to space limitations) that the NARX neural network with
7 hidden neurons has the best performance as shown in Figure
5 where the RMSE, the standard deviation, and the mean of
the prediction errors are given as 3.4319 K , 3.4756 K, and
0.0146 K, respectively (these represent prediction errors that
are less than 0.2% of the actual values).

To predict the turbine temperature in presence of erosion,
the input and output delays are set to 3 after an extensive set
of trial and error simulation studies and training (not shown
due to space limitations). The NARX neural network with 7
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Fig. 5. The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using the NARX neural network in presence of the
compressor fouling.

Fig. 6. The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using the NARX neural network in presence of the turbine
erosion.

TABLE II
A 5 FLIGHT AHEAD TURBINE TEMPERATURE PREDICTION ERROR FOR

TURBINE EROSION USING NARX NEURAL NETWORK.

RMSE (K) Standard deviation (K) Mean (K)
2.7411 1.8936 2.0044

hidden neurons was used to predict the 5 flights ahead turbine
temperature. The prediction results are shown in Figure 6
along with the prediction bounds. The statistical measures of
the error are tabulated in Table II.

IX. PREDICTION RESULTS USING THE ELMAN NEURAL
NETWORK

The delay associated with the Elman neural network is set to
2 and the networks are trained and evaluated with the available
data. It was found through extensive set of simulation studies
(not shown due to space limitations) that the network with 3
hidden neurons has the best performance in the 2 flights ahead
turbine temperature prediction in presence of the compressor

Fig. 7. The 2 step ahead predicted/actual turbine temperature along with
prediction intervals using the Elman neural network in presence of the
compressor fouling.

TABLE III
A 2 FLIGHT AHEAD TURBINE TEMPERATURE PREDICTION ERROR FOR

TURBINE EROSION USING THE ELMAN NEURAL NETWORK.

RMSE (K) Standard deviation (K) Mean (K)
2.8646 1.7592 2.2778

Fig. 8. The 8 step ahead predicted/actual turbine temperature along with
prediction intervals using Elman neural network in presence of the compressor
fouling.

fouling. This Elman network was trained using 80% of the
available data points (flights). The results of the temperature
prediction for the 2 flights ahead are depicted in Figure 7.
The RMSE, standard deviation and mean of prediction error
are summarized in Table III.

The applicability of this network in jet engine degradation
prediction is also evaluated for 8 flights ahead where the
predicted turbine temperatures, actual values, and prediction
bounds are shown in Figure 8. The RMSE, standard deviation,
and mean of the prediction error are 4.1986 K, 2.0463 K,
and 2.9293 K (these represent prediction errors that are less
than 0.2% of the actual value). Finally, to predict the turbine
temperature in presence of erosion, the network delay is set to
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Fig. 9. The 5 step ahead predicted/actual turbine temperature along with
prediction intervals using the Elman neural network in presence of the turbine
erosion.

TABLE IV
A 5 FLIGHT AHEAD TURBINE TEMPERATURE PREDICTION ERROR FOR

TURBINE EROSION USING THE ELMAN NEURAL NETWORK.

RMSE (K) Standard deviation (K) Mean (K)
2.3569 1.8783 1.4544

2 after extensive set of simulation studies (not shown due to
space limitations). The network with 5 hidden neurons has the
optimal prediction performance. The 5 flights ahead prediction
results are shown in Figure 9 along with the prediction bounds.
A summary of the statistical prediction errors are shown in
Table IV.

X. COMPARISON BETWEEN THE NARX NEURAL
NETWORK AND THE ELMAN NEURAL NETWORK

There should be a measure or a metric to quantitatively
compare the capability of the NARX and the Elman neural
networks in prediction accuracy and performance. Using an
appropriate neural network can increase the accuracy of the
prediction for maintenance actions but it maybe achieved at the
expense of higher costs. Model selection refers to the problem
of using data to select a model from a list of models [43].

Model selection should be based on the fact that it is
impossible to find the “true” model that generates the data
one observed. However, it should be based on a well-justified
criterion to find the “best” model [44]. Model selection is a
trade-off between the bias (the distance between the average
prediction and the actual value) and the variance (spread of the
prediction around the actual points). In other words, there is
usually an improvement in the fit by increasing the parameters
in the model, but at the same time parameter estimates are
worse because there is less data per parameter, and there is
an increase in the computational time and cost [45]. There
are various model selection criteria that have been reported in
the literature, namely Akaike information criterion, Bayesian
information criterion, deviance information criterion, etc. [46].

Evaluation of our two proposed networks are now conducted
by using the Normalized Bayesian Information Criterion

TABLE V
NBIC VALUES FOR THE NARX NEURAL NETWORK.

Degradation type Number of flights ahead NBIC
Compressor fouling 2 7.9979
Compressor fouling 8 8.3015

Turbine erosion 5 7.0864

TABLE VI
NBIC VALUES FOR THE ELMAN NEURAL NETWORK.

Degradation type Number of flights ahead NBIC
Compressor fouling 2 3.9886
Compressor fouling 8 7.9798

Turbine erosion 5 7.8085

(NBIC), which has been widely used for model identification
in time-series studies [47]. Therefore, a suitable model can
be found in each scenario for the purpose of performing
prediction.

The NBIC can be defined as:

NBIC = ln(σ2) + k
ln(n)

n
(8)

where σ2 denotes the variance of the prediction error, k
denotes the total number of parameters in the neural network,
and n denotes the number of observations. It should be noted
that smaller the value for the NBIC implies that the model can
predict the values better. By comparing the calculated NBIC
in Table V for the NARX neural network and Table VI for
the same scenario for the Elman network, one can conclude
that the Elman network has lower NBIC. This implies that for
the same degradation and the same training and testing data
points, the Elman network outperforms the NARX network.
This is mainly due to the number of parameter k that plays
an important role in the calculation of the NBIC. The Elman
network has a lower number of delays and hidden neurons.
Thus, it can learn the trend of the degradations more efficiently
and quicker than the NARX network.

XI. CONCLUSION

In this paper, we have proposed two computationally
intelligent-based approaches for fault prognosis of the aircraft
jet engine. The reliability and performance of these networks
are evaluated to predict the turbine temperature under the
multi-flights ahead scenarios and in presence of various dete-
riorations and degradations in the engine such as compressor
fouling and turbine erosions. The prediction capabilities of our
proposed neural networks are compared. The first prediction
scheme is based on the use of the nonlinear autoregressive
neural network with exogenous input (NARX). The second
prediction scheme is based on the use of the Elman neural
networks. The capabilities of the NARX and the Elman neural
networks are compared by using the normalized Bayesian
information criterion. The results show that for the same
degradation and the same training and testing data points the
Elman neural network outperforms the NARX neural network
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for performing the prediction and health prognosis of an
aircraft jet engine.
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