
1

Finite Convergence of the Learning Algorithms for a

Modified Multi-Valued Neuron
Dongpo Xu and Shuang Liang

Abstract—The multi-valued neuron (MVN) has a strong mul-
ticlassification ability. However, the MVN learning algorithms
require the complex-valued learning rate and depends on the
unknown optimal weights. To address this issue, we introduce a
modified MVN that centers the neuron state in each sector. The
learning algorithms of the modified MVN are able to reuse the
real-valued learning rate and eliminate the dependencies on the
optimal weights. We prove the convergence of the modified MVN
learning algorithms with real-valued learning rate.

Keywords—Complex-valued neural networks, Multi-valued neu-
ron, Derivative-free learning, Convergence

I. INTRODUCTION

In recent years, the MVN has attracted widespread attention
in [3], [4], [5], [6], [7], [9], [12]. The MVN outperforms
many other neurons and MVN-based neural networks have
shown their high potential on multi-classification problems.
The discrete MVN has a learning algorithm based on the error-
correction rule. It is derivative-free, which makes it highly
efficient. This property and the MVN’s high functionality
make this neuron attractive for the development of different
applications.

The discrete MVN was introduced in [3], and its outputs
are the exact kth roots of unity (where k is a positive integer).
The discrete MVN activation function was proposed by N.N
Aizenberg et al in 1971 [10], and it is the first historically
known complex-valued activation function, which has been
widely used in practical problems [2], [1]. A single discrete-
valued MVN is a neuron with n variables f(x1, x2, · · · , xn),
which is either a function f : En

k → Ek, or a function

f : On → Ek, where Ek = {1, εk, ε2k, · · · , εk−1
k } is the set of

the kth root of unity, εk = ei2π/k is the primitive kth root of
unity, i is an imaginary unity, k is a positive integer, and O
is a set of points located on the unit circle. This function is
a threshold function of k-valued logic and therefore it can be
represented using complex-valued weights as follows

f(x1, . . . , xn) = P (w0 + w1x1 + · · ·+ wnxn) (1)

where X = (1, x1, . . . , xn) for xj ∈ Ek, j = 1, . . . , n is an
input vector and W = (w0, w1, . . . , wn) is a weighted vector.
The values of the function and of the variables are complex.

This work was supported by the National Natural Science Foundation of
China (No. 61301202), by the Research Fund for the Doctoral Program of
Higher Education of China (No.20122304120028), and by the Fundamental
Research Funds for the Central Universities.

Dongpo Xu and Shuang Liang are with the College of Science, Harbin En-
gineering University, Harbin 150001, China. (E-mail: dongpoxu@gmail.com).

P is the activation function of the neuron:

P (z) = ei
2πj
k , if

2πj

k
≤ arg z <

2π(j + 1)

k
(2)

where j = 0, 1, ..., k − 1, ε
j
k are the values of k-valued logic,

z = w0+w0x1+ . . .+wnxn is the weighted sum, and argz is
the argument of the complex number. Equation (2) is illustrated
in Fig. 1. The discrete MVN’s outputs are always the k-th roots

of unity εj = ei
2πj
k , j ∈ {0, 1, ..., k − 1}.

Fig. 1. The discrete MVN activation function

The activation function (2) divides a complex plane into k
equal sectors and maps the whole complex plane into a set
Ek of the kth roots of unity. If the weighted sum is located
in sector j, then the neuron’s output is εj . MVN training is
reduced to the movement along the unit circle. The MVN error-
correction learning rule generalizes the classical Rosenblat’s
error-correction learning rule [10]. This rule and the MVN
learning algorithm based on it are presented and analyzed in
detail in [4], where a modified proof of the convergence of the
learning algorithm has also been presented.

In the MVN error-correction learning, the direction, in
which the “incorrect” actual weighted sum should move, is
completely determined by the neuron’s error, which is the
arithmetic difference δr = εqr−εsr between the desired output
εqr and the actual output εsr located on the unit circle. If the
actual output is “incorrect”, we should move the weighted sum
in the direction of the desired output.

There are two MVN learning algorithms. The error-
correction learning rule of discrete MVN is [3]

Wr+1 = Wr +
Cr

n+ 1
(εqr − εsr)Xr (3)

2

and with the modification suggested in [6]

Wr+1 = Wr +
Cr

(n+ 1)|zr|
(εqr − εsr)Xr (4)

where r is the index of iteration, Xr is the complex conjugate
of the input vector Xr, Wr is the weighting vector, n is the
number of neuron inputs, zr = Wr ·Xr is the weighted sum
obtained on the r-th iteration, (·) is a dot product of the two
vectors, and Cr is the learning rate (it may always be equal
to 1).

The continuous MVN has been proposed in [6], [7], and its
activation function is

P (z) = exp(i(arg z)) = eiArg z =
z

|z| (5)

where Arg z is the main value of the argument of the complex
number z and |z| is its modulus. The learning rules (3) and
(4) will be modified for the continuous-valued case in the
following way:

Wr+1 = Wr +
Cr

n+ 1

(

εqr − zr

|zr|

)

Xr (6)

Wr+1 = Wr +
Cr

(n+ 1)|zr|

(

εqr − zr

|zr|

)

Xr (7)

The convergence of the continuous case means that the follow-
ing condition must be satisfied: |arg(εq) − arg(eiargz)| < λ,
where λ determines the precision of the learning.

Definition 1.1 ([3], [4]): The learning subsets A0, A1, ...,
Ak−1 are called k-separable, if it is possible to find a per-
mutation R = (α0, α1, ..., αk−1) of the elements of the set
K = {0, 1, ..., k − 1} , and an optimal weighting vector Wopt

such that Wopt ·X 6= 0 and

P (Wopt ·X) = εαj (8)

for X ∈ Aj , j = 0, 1, ..., k− 1. Without loss of generality we
may always supply (2) by P (0) = ε0 = 1. This means that the
function P is now determined on the entire set C of complex
numbers.

Theorem 1.1 ([3], [4], [5]): If the learning subsets
A0, A1, ..., Ak−1 are k-separable, then the MVN learning
algorithm with either of the learning rules (3), (4), (6) and (7)
converges after a finite number of steps.

II. EXAMPLE OF THE MVN LEARNING

Consider the following 2-separated learning subsets A0 =
{X1, · · · , XN−1} and A1 = {XN}. The initial weight is
denoted by W1 = (a1 + b1i, a2 + b2i, a3 + b3i). There
exists a permutation R = (α0, α1) of the elements of the
set K = (0, 1), and an optimal weighting vector Wopt such
that P (Wopt · Xj) = εα0 for j = 1, 2, · · · , N − 1, and
P (Wopt ·XN) = εα1 .

Theorem 2.1: The MVN learning algorithms (3) and (4)
do not converge for the 2-separated learning subsets A0 =
{X1, · · · , XN−1} and A1 = {XN}, if the following condi-
tions are satisfied

εα0Im (W1 ·Xj) > 0 (9)

Im
(

XN ·Xj

)

≤ 0 (10)

for j = 1, ..., N
Proof: We declare that

εα0Im (Wr ·Xj) > 0 (11)

holds for 1 ≤ j ≤ N and all r ∈ N. We argue it by induction.
For the base case r = 1, the equation (11) is true from (9),
which starts the induction.

Now suppose that (11) is true for some positive integer r,
then the weight only needs to be updated for the sample XN

Wr+1 −Wr =
Cr

n+ 1
(εα1 − εα0)XN (12)

Let us compute a dot product of both parts of (12) with Xj

Wr+1 ·Xj −Wr ·Xj =
Cr

n+ 1
(εα1 − εα0)XN ·Xj (13)

Note that εα1 6= εα0 ∈ {−1, 1} for the 2-valued logic, thus
εα1 = −εα0 and

Im (Wr+1 ·Xj)− Im (Wr ·Xj) = − 2Cr

n+ 1
εα0Im(XN ·Xj)

(14)
From (10) and (14), we have

[Im (Wr+1 ·Xj)− Im (Wr ·Xj)] ε
α0 ≥ 0 (15)

Case I: If εα0 = 1, then we get Im (Wr ·Xj) > 0 from (9),
so Im(Wr+1 · Xj) ≥ Im(Wr · Xj) > 0 from (15), and this
means that εα0Im (Wr+1 ·Xj) > 0.

Case II: If εα0 = −1, then we get Im (Wr ·Xj) < 0 from
(9), so Im(Wr+1 ·Xj) ≤ Im(Wr ·Xj) < 0 from (15), and this
means that εα0Im (Wr+1 ·Xj) > 0.

The result of the both cases is the equation (11) with r
replaced by r + 1, and this is the inductive step. Thus by
induction, the equation (11) is true for all positive integers r.

From (11), we get P (Wr ·XN) = εα0 for all r ∈ N, so
Wr needs to be updated for every iteration step r because of
P (Wopt ·XN) = εα1 . This indicates that the learning rule (3)
does not converge in a finite steps. The learning rule (4) can
be shown in a similar way.

Remark 2.1: The proof of Theorem 2.1 does not restrict that
the learning rate Cr is constant and only needs Cr ∈ R. The
conditions (9) and (10) only depend on the learning samples
{X1, · · · , XN} and the initial weight W1. There are N + 1
inequality equations and N + 1 unknown complex variables
{X1, · · · , XN ,W1}, which ensures that there exists at least
one solution to satisfy (9) and (10). A specific solution is given
in Example 2.1.

Example 2.1: According to (10), we choose the learning
subsets A0 = {X1, X2, X3} and A1 = {X4}, where

X1 =
(

1,
√
2
2 +

√
2
2 i, −

√
2
2 +

√
2
2 i

)

X2 =
(

1, 1
2 +

√
3
2 i, − 1

2 +
√
3
2 i

)

X3 =
(

1, 1
3 + 2

√
2

3 i, − 1
3 + 2

√
2

3 i
)

X4 = (1, i, i)

(16)

3

First we give the optimal weighting vector

Wopt =

(√
3

2
− 1

2
i, −1

2
+

√
3

2
i,

√
2

2
−

√
2

2
i

)

(17)

that established the followings
{

P (Wopt ·Xj) = ε0 = 1, j = 1, 2, 3
P (Wopt ·X4) = ε1 = −1

(18)

Set εα0 = 1 and take (16) into (9), we have

b1 +
√
2
2 b2 +

√
2
2 a2 −

√
2
2 b3 +

√
2
2 a3 > 0

b1 +
1
2b2 +

√
3
2 a2 − 1

2b3 +
√
3
2 a3 > 0

b1 +
1
3b2 +

2
√
2

3 a2 − 1
3b3 +

2
√
2

3 a3 > 0
b1 + a2 + a3 > 0

(19)

It is obvious that every weight that satisfies (19) can be the
initial weight of the MVN. Here we can take a complex-valued
initial weight

W1 =

(

i,
1

2
+

√
3

2
i,

√
2

2
−

√
2

2
i

)

(20)

or a real-valued initial weight

W1 = (0.1, 0.2, −0.1) (21)

Let t be the index of training epoch and j be the index of
the training vector, so initially t = 1 and j = 1. The MVN
training is performed as follows:

Epoch t:

1) Compute the weighting sum z = w0 +w1x1 + · · ·+wnxn

for the first (j = 1) pattern vector Xj

zj = Wj ·Xj (22)

and finally εsj = P (zj)
2) Compute the error. The actual output εsj is compared to

the desired output εqj

δj = εqj − εsj (23)

If the error δj is not zero, then go to 3) to update the weight,
otherwise, go to 1) and j = j + 1.

3) Weights update. Weight corrections can be performed using
(3) that results in the following weights:

Wr+1 = Wr +
Cr

n+ 1
(εqr − εsr)Xr (24)

4) Completion of the training epoch. Repeat steps 1)−3) for
all pattern vectors (till j = 4)

5) Termination of training. If the actual outputs of all samples
are equal to the desired outputs, then the learning process
stops. Otherwise, increase and perform steps 1)−4) again.

Remark 2.2: From Table I, we can see that the non-zero
error is repeated in the learning process not only for the
complex-valued initial weight and but also for the real-valued
initial weight. It shows that the learning rule (3) of the discrete
MVN falls into an invariant set, and convergence of the
learning rule (3) is related to the choice of the initial weight.
Note that the learning rate Cr can be taken as any positive

real-valued variable, which does not affect the conclusion of
this example.

Remark 2.3: Example 2.1 is only used to illustrate the
inefficiencies of the MVN learning algorithms (3) and (4) for
2-separated problems. Note that the continue MVN learning
algorithms (6) and (7) can solve this example by using real-
valued learning rate. However, the convergence of the MVN
algorithms (3), (4), (6) and (7) with real-valued learning rate
can not strictly be proved so far [8].

III. COMMENT

An common inconsistency in the proofs of Theorem 3.17
[4] and Theorem 1 [5] is as the following:

I) [2,(3.101)-(3.102)]: This inequality is invalid. The o-
riginal authors try to use |β| ≥ |Re(β)| and |ω1X1 ·
Wopt + · · · + ωrXr · Wopt| ≥ |Re(ω1X1 · Wopt) +
... + Re(ωrXr · Wopt))| ≥ ra, where wj = Cjδj and
a = min1≤j≤r |Re(ωjXj · Wopt)|. Note that the last
inequality is valid if and only if all Re(ωjXj · Wopt)
(1 ≤ j ≤ r) are same sign.

A correction to this problem has been given in [8], which
changed the learning rate Cr from real-valued to be complex-
valued such that

Re(CjδjXj ·Wopt) ≥ 0 (25)

that is, the learning rate Cj ∈ C has to be chosen such that

−π

2
≤ argCj + arg δj + arg(Xj ·Wopt) ≤

π

2
(26)

Remark 3.1: The inequality (26) indicates that the learning
rate Cj is dependent on the sample Wj and optimal weight
Wopt. Since the optimal weight Wopt is unknown in the
learning process of practical problems, so this correction loses
flexibility to determine the learning rate Cj . This shows that
the convergence of the MVN algorithms (3), (4), (6) and (7)
with real-valued learning rate is still an open problem.

IV. A MODIFIED MVN

In order to overcome the difficulty of the MVN, we intro-
duce a modified MVN in [11], its activation function is

Q(z) = ei
2πj
k , if

π(2j − 1)

k
≤ arg z <

π(2j + 1)

k
(27)

where j = 0, 1, ..., k − 1. The relation between the modified
MVN and traditional MVN is described by a rotation transform

P (z) = Q(z e−
πi
k), Q(z) = P (z e

πi
k) (28)

Note that the output of the modified MVN is different from
the MVN for the same inputs. This difference directly deter-
mines that the modified MVN has the following convergence
theorems.

Theorem 4.1: If the learning subsets A0, A1, ..., Ak−1 are
k-separable (k ≥ 2), then the modified MVN learning rules
(3) and (4) with the real-valued learning rate converges after
a finite number of steps.

4

TABLE I. THE MVN TRAINING OF EXAMPLE 2.1

Epoch Pattern Weights Weights Actual Error

t Vector j Output δ (23)

1 1 W1 =
(

i, 1

2
+

√
3

2
i,

√
2

2
−

√
2

2
i
)

W1 = (0.1, 0.2,−0.1) 1 0

2 W1 W1 1 0

3 W1 W1 1 0

4 W1 W1 1 -2

2 1 W2 = (−0.6667 + i, 0.5 + 1.5327i, 0.7071 − 0.0404i) W2 = (−0.5667, 0.2 + 0.6667i,−0.1 + 0.6667i) 1 0

2 W2 W2 1 0

3 W2 W2 1 0

4 W2 W2 1 -2

3 1 W3 = (−1.3333 + i, 0.5 + 2.1994i, 0.7071 + 0.6262i) W3 = (−1.2333, 0.2 + 1.3333i,−0.1 + 1.3333i) 1 0

2 W3 W3 1 0

3 W3 W3 1 0

4 W3 W3 1 -2

4 1 W4 = (−2 + i, 0.5 + 2.8660i, 0.7071 + 1.2929i) W4 = (−1.9, 0.2 + 2i − 0.1 + 2i) 1 0

2 W4 W4 1 0

3 W4 W4 1 0

4 W4 W4 1 -2

5 1 W5 = (−2.6667 + i, 0.5 + 3.5327i, 0.7071 + 1.9596i) W5 = (−2.5667, 0.2 + 2.6667i,−0.1 + 2.6667i) 1 0

2 W5 W5 1 0

3 W5 W5 1 0

4 W5 W5 1 -2

6 1 W6 = (−3.3333 + i, 0.5 + 4.1994i, 0.7071 + 2.6262i) W6 = (−3.2333, 0.2 + 3.3333i,−0.1 + 3.3333i) 1 0

2 W6 W6 1 0

3 W6 W6 1 0

4 W6 W6 1 -2

7 1 W7 = (−4 + i, 0.5 + 4.8660i, 0.7071 + 3.2929i) W7 = (−3.9, 0.2 + 4i − 0.1 + 4i) 1 0

2 W7 W7 1 0

3 W7 W7 1 0

4 W7 W7 1 -2

Proof: Since the learning subsets are k-separable, this
means that there exists an optimal weighting vector W ⋆ such
that

P (Wopt ·Xr) = εqr (29)

Let X
′

r = ε−qrXr, then the last equation is equivalent to

P (Wopt ·X
′

r) = ε0 = 1 (30)

Thus, by (2) we can get

0 ≤ arg[Wopt ·X
′

r] <
2π

k
(31)

Let θ = min1≤j≤N{ 2π
k − arg[Wopt · X

′

j]}, N is the number
of the learning samples, so θ > 0 and

0 ≤ arg[Wopt ·X
′

r] ≤
2π

k
− θ (32)

Let Vopt = e−i(π
k
− θ

2
)Wopt, then

−π

k
+

θ

2
≤ arg[Vopt ·X

′

r] ≤
π

k
− θ

2
(33)

The parameter θ is a measure of how close the solution
decision boundary is to the input patterns.

In the learning process, the weights need to be updated if
and only if εsr 6= εqr (that is sr 6= qr) holds, so Wr+1 6= Wr

is right for r ∈ N. The Theorem will be proven if we show
that r (the index of iteration) has a upper bound.

We transform the learning rule (3) to

Wr+1 = Wr +
Cr

n+ 1
(1− εqr−sr)X

′

r (34)

where sr 6= qr ∈ {0, 1, ..., k − 1}. We may iteratively solve

this equation for Wr+1 and obtain the result

Wr+1 −W1 =
1

n+ 1

r
∑

p=1

Cp(1− εrp)X
′

p (35)

where W1 is the initial weighting, rp = (qp − sp) mod k, and
1 ≤ rp ≤ k − 1. We compute a dot product of both parts of
(35) with Vopt

Vopt ·
(

Wr+1 −W1

)

=
1

n+ 1

r
∑

p=1

Cp(1− εrp)(Vopt ·X
′

p) (36)

From 1 ≤ rp ≤ k − 1, it is evident that

arg[Cp(1− εrp)] = −π

2
+

πrp

k
(37)

Taking into account that

arg[Cp(1− εrp)(Vopt ·X
′

p)]

= arg[Cp(1− εrp)] + arg[Vopt ·X
′

p] (38)

from the inequality (33) and equation (37), we obtain

π(rp − 1)

k
− π − θ

2
≤ arg[Cp(1− εrp)(Vopt ·X

′

p)]

≤ π(rp + 1)

k
− θ + π

2
(39)

Let us substitute minp≥1{rp} = 1 and maxp≥1{rp} = k − 1
in the left-hand and the right-hand sides of the last inequality,

5

respectively. Hence we obtain the following

−π − θ

2
≤ arg[Cp(1− εrp)(Vopt ·X

′

p)] ≤
π − θ

2
(40)

The last inequality shows that the complex numbers (1 −

Fig. 2. The diagram of angular inequality (40)

εrp)(Vopt ·X
′

p) belong to the right semi-planes, then

Re[Cp(1− εrp)(Vopt ·X
′

p)] ≥ 0 (41)

We estimate the minimum of 1
n+1Re[Cp(1− εrp)(Vopt ·X

′

p)]

α = min
p≥1

{

1

n+ 1
Re

[

Cp (1− εrp)
(

Vopt ·X ′
p

)]

}

≥ 1

n+ 1
min
p≥1

Cp min
p≥1

|1− εrp |min
p≥1

∣

∣Vopt ·X ′
p

∣

∣ cos
π − θ

2

=
1

n+ 1
min
p≥1

∣

∣Vopt ·X ′
p

∣

∣Cmin2 sin
π

k
cos

π − θ

2

=
1

n+ 1
min

1≤j≤N
|Wopt ·Xj | 2Cmin sin

π

k
sin

θ

2
> 0 (42)

where Cmin = minp≥1{Cp} and N is the number of the
learning samples. By (36) and (42), we have

Re
[

Vopt ·
(

Wr+1 −W1

)]

=
1

n+ 1

r
∑

p=1

Re
[

Cp (1− εrp)
(

Vopt ·X ′
p

)]

≥ rα (43)

By the last inequality and the Schwartz inequality, we obtain

rα ≤ Re
[

Vopt ·
(

Wr+1 −W1

)]

≤
∣

∣Vopt ·
(

Wr+1 −W1

)∣

∣ ≤ ‖Vopt‖
∥

∥

(

Wr+1 −W1

)∥

∥

= ‖Wopt‖
∥

∥

(

Wr+1 −W1

)
∥

∥ (44)

where ‖ · ‖ is the Euclidean 2-norm. Then it follows from the
last inequality that

rα

‖Wopt‖
≤ ‖Wr+1 −W1‖ ≤ ‖Wr+1‖+ ‖W1‖ (45)

or, equivalently,

rα

‖Wopt‖
− ‖W1‖ ≤ ‖Wr+1‖ (46)

Case I: rα
‖Wopt‖ − ‖W1‖ < 0, that is r < 1

α‖Wopt‖‖W1‖, then

the upper bound of the number of iteration r has been got.
Case II: rα

‖Wopt‖ − ‖W1‖ ≥ 0, (46) can be refined to

0 ≤ rα

‖Wopt‖
− ‖W1‖ ≤ ‖Wr+1‖ (47)

In Case II, we need to obtain another estimate. Let dp =
Cp

n+1 (ε
rp − 1), we can rewrite (3) in the form

Wp+1 = Wp +
Cp

n+ 1
(εrp − 1)εspXp

= Wp + dp εspXp (48)

By taking the squared Euclidean norm of both sides of the last
equation and observe that zp = Wp ·Xp, we obtain

‖Wp+1‖2 = Wp+1 ·Wp+1

=
(

Wp + dp εspXp

)

·
(

Wp + dp ε−spXp

)

= ‖Wp‖2 + |dp|2‖Xp‖2 + 2 Re
[

dp ε−spzp
]

(49)

Note that εsp = Q(zp) and Q(ε−spzp) = ε0 = 1. By using
(27), it can be shown that

−π

k
≤ arg[ε−spzp] <

π

k
(50)

Observe that 1 ≤ rp ≤ k−1 and dp =
Cp

n+1 (ε
rp −1), we have

arg[dp] =
3π

2
− πrp

k
(51)

From the inequality (50) and equality (51), we can obtain

3π

2
− π(rp + 1)

k
≤ arg[dp ε

−spzp] <
3π

2
− π(rp − 1)

k
(52)

Let us substitute max(rp) = k − 1 and min(rp) = 1 in
the left-hand and the right-hand sides of the last inequality,
respectively. Hence we obtain the following

π

2
≤ arg[dp ε

−spzp] <
3π

2
(53)

The last inequality shows that the complex numbers dp ε
−spzp

belong to the left semi-planes, then

Re[dp ε
−spzp] ≤ 0 (54)

We therefore deduce from (49) that

‖Wp+1‖2 ≤ ‖Wp‖2 + |dp|2‖Xp‖2 (55)

Adding the left-hand and right-hand sides of the last inequality
for p = 1, 2, ..., r, we get the inequality

‖Wr+1‖2 ≤ ‖W1‖2 +
r

∑

p=1

|dp|2‖Xp‖2 ≤ ‖W1‖2 + rβ (56)

where β ia a positive number given by

β = max
p≥1

|dp|2‖Xp‖2 ≤ max
p≥1

|dp|2 max
p≥1

‖Xp‖2

≤ 4C2
max

(n+ 1)
2 max

1≤j≤N
‖Xj‖2 (57)

6

where Cmax = maxp≥1{Cp}. The equation (56) states that
‖Wr+1‖2 grows at most linearly with the iteration index r.

Finally, we combine the inequalities (47) and (56) to con-
clude that

(

rα

‖Wopt‖
− ‖W1‖

)2

≤ ‖Wr+1‖2 ≤ ‖W1‖2 + rβ (58)

or, equivalently,

r ≤ 2

α
‖W1‖ ‖Wopt‖+

β

α2
‖Wopt‖2 (59)

According to the conditions of Theorem 4.1, (42) and (57), we
know that W1, Wopt, α and β are the constants. Therefore, the
number of iteration r always has an upper bound. That means
that the learning rule (3) will converge in a finite number of
iterations.

The finite convergence of the learning rule (4) can be proved
in a similar way. The only difference is Cr turns into Cr

|Zr| . So

we give that

Cmin , min
p≥1

Cp

|zp|
= min

p≥1

1

|Wp ·Xp|

≥ 1

maxp≥1 ‖Wp‖max1≤j≤N ‖Xp‖
(60)

The rest part is essentially the same.

Remark 4.1: The proof of Theorem 4.1 eliminates the re-
strictions on the learning rate in (26) and makes the learning
rate revert to be real-valued and be independent on the learning
samples and the optimal weight. This proof does not need the
finiteness condition of ‖Wr‖ required in [4] and [5].

Remark 4.2: The maximum number of iterations (changes
to the weight vector) is inversely related to α (cf.(59)). This
parameter is linearly related to sin π

k sin θ
2 (cf.(42)). This

means that if input classes are difficult to separate (are close
to the decision boundary) or k (value of k-valued logic) in (2)
is too large, it will take many iterations for the algorithm to
converge.

V. CONCLUSIONS

In this paper, we introduce a modified discrete MVN, which
enables the algorithms (3) and (4) to reuse the real-valued
learning rate for the k-separated problems (k ≥ 2). We have
given a rigorous convergence proof of the modified MVN
learning algorithms (3) and (4) with the real-valued learning
rate. Our proof does not require restricting the learning rate to
be complex-valued and the finiteness condition of ‖Wr‖.

ACKNOWLEDGMENT

We thank Prof. Igor Aizenberg, Prof. Danilo P. Mandic and
the anonymous reviewers for their valuable discussions and
insightful comments.

REFERENCES

[1] A. Hirose, Complex-Valued Neural Networks, Second Edition. Berlin,
Heidelberg: Springer, 2012.

[2] D. P. Mandic and V. S. L. Goh, Complex Valued Nonlinear Adaptive

Filters: Noncircularity, Widely Linear and Neural Models. New York,
USA: Wiley, 2009.

[3] I. Aizenberg, N. Aizenberg, and J. Vandewalle, Multi-Valued and

Universal Binary Neurons: Theory, Learning, Applications. Boston,
MA: Kluwer, 2000.

[4] I. Aizenberg, Complex-valued neural networks with multivalued neu-

rons. Springer-Verlag, Berlin Heidelberg, 2011.

[5] I. Aizenberg, “A periodic activation function and a modified learning
algorithm for a multi-valued neuron,” IEEE Trans. Neural Netw., vol.
21, no. 12, pp. 1939-1949, Dec. 2010.

[6] I. Aizenberg and C. Moraga, “Multilayer feedforward neural network
based on multi-valued neurons (MLMVN) and a backpropagation
learning algorithm,” Soft Comput., vol. 11, no. 2, pp. 169-183, Jan.
2007.

[7] I. Aizenberg, D. V. Paliy, J. M. Zurada and J. T. Astola, “Blur identi-
fication by multilayer neural network based on multi-valued neurons,”
IEEE Trans. Neural Netw., vol. 19, no. 5, pp. 883-898, May 2008.

[8] I. Aizenberg, “Adjustments to the proofs of the convergence the-
orems,” Availabe at: http://www.eagle.tamut.edu/faculty/igor/CVNN-

MVN book Convergence Proofs Adjustments.htm.

[9] M. K. Muezzino, C. Guzelis, and J. M. Zurada, “A New Design Method
for the Complex-Valued Multistate Hopfield Associative Memory,”
IEEE Trans. Neural Netw., vol. 14, no. 4, pp. 891–899, July 2003.

[10] N. N. Aizenberg, Yu L. Ivaskiv and D. A. Pospelov,“About one
generalization of the threshold function” Doklady Akademii Nauk SSSR

(The reports of the Academy of Sciences of the USSR)., vol. 196, no 6,
pp. 1286-1290 (in Russian), 1971.

[11] S. Jankowski, A. Lozowski, and J.M. Zwrada, “Complex-valued Mul-
tistate Neural Assoliative Memory,” IEEE Trans. Neural Netw., vol.7,
no 6, pp. 1491-1496, November 1996.

[12] T. Isokawa, H. Nishimura , and N. Matsui, “An Iterative Learning
Scheme for Multistate Complex-Valued and Quaternionic Hopfield
Neural Networks,” Proc. of IJCNN2009., pp. 1365–1371, INNS/IEEE,
June 2009.

