
Finding Convex Hull Vertices in Metric Space

Jinhong Zhong

USTC-Birmingham Joint Research

Institute in Intelligent Computation

and Its Applications (UBRI)

School of Computer Science and

Technology of USTC

Hefei, China

Email: jinhong@mail.ustc.edu.cn

Ke Tang

USTC-Birmingham Joint Research

Institute in Intelligent Computation

and Its Applications (UBRI)

School of Computer Science and

Technology of USTC

Hefei, China

Email: ketang@ustc.edu.cn

A. K. Qin

School of Computer Science and

Information Technology

Royal Melbourne Institute of

Technology

Melbourne, Australia

Email: kai.qin@rmit.edu.au

Abstract—The convex hull has been extensively studied in

computational geometry and its applications have spread over an

impressive number of fields. How to find the convex hull is an

important and challenging problem. Although many algorithms

had been proposed for that, most of them can only tackle the

problem in two or three dimensions and the biggest issue is that

those algorithms rely on the samples’ coordinates to find the

convex hull. In this paper, we propose an approximation

algorithm named FVDM, which only utilizes the information of

the samples’ distance matrix to find the convex hull. Experiments

demonstrate that FVDM can effectively identify the vertices of the

convex hull.

Keywords—convex hull; metric space

I. INTRODUCTION

Convex hull plays a crucial role in many mathematics and

computational geometry problems [3]. Its practical applications

can be widely found in pattern recognition, image processing,

statistics and static code analysis by abstract interpretation

[15][19-21]. It also serves as a major building block for a

number of computational-geometric algorithms such as the

rotating calipers method for computing the width and diameter

of a point-set. In particular, it is well known that there is a strong

link between Support Vector Machine (SVM) and convex hull.

Training an SVM on a separable data set is equivalent to the

problem of computing the nearest points between the convex

hulls formed by the positive and negative samples [5-7]. Hence,

quite a few of competitive SVM training algorithms had been

developed based on such equivalence [16-17].
Over the past decades, many efforts have been devoted to

develop convex hull algorithms for the planar point-set. In 1970,
Chand and Kapur [8] initially proposed a convex hull algorithm
with O(n2) time complexity by constructing the borders of
convex hull according to the geometric properties of a point-set.
Another algorithm with O(mn) time complexity was developed
by Jarvis [9], where m is the number of convex hull vertices.
Graham [4] provided a solution to compute the convex hull of a
finite linear set in a 2D plane. Adopting the dichotomy method,
many convex hull algorithms had been proposed. In [11], a
divide-and-conquer method was proposed for convex hull
extraction. In this method, the point-set was divided into two
roughly equal-sized subsets. Their convex hulls were
recursively computed respectively, and the entire convex hull
was obtained by merging those two convex hulls. In another

study, Chan [12] used pairs of points to calculate the line slopes
and determine the median values of these slopes, then divided
the point-set into two parts by median values and recursively
computed the convex hull. He proposed another algorithm [22]
that partitions the point-set and then computes the convex hull
of each group, respectively. The entire convex hull was finally
obtained by computing the union of the polygons. Similarly,
Quickhull [3] used a divide and conquer approach similar to that
of the quick sort. Because few convex hull algorithms remain
effective in the high dimensional space and all of these
algorithms are computationally expensive, many approximate
algorithms had been proposed to address these issues. For
example, Convex Hull Vertices Selection (CHVS) Algorithm
proposed by Wang et al. [14]. To reduce the intermediate storage
used in the computation of planar convex hulls, Brönnimann et
al. [13] investigated the storage space of some convex hull
algorithms.

Although many algorithms have been proposed for
identifying the convex hull of a dataset (point-set). All those
algorithms implicitly assume that the samples in the dataset lie
in a finite dimensional space, and the samples’ values in each
dimension are known and will be fed into the algorithms as
inputs. However, in some situation, information about the
samples’ values in each dimension is unknown, or the dataset
may not even be provided as a set of points in a multi-
dimensional space. For example, in most kernel-based methods,
e.g., SVM, the features of the kernel space are not really known
when a nonlinear kernel function is used. Moreover, only
similarities/dissimilarities between data points are available in
some real-world applications, e.g., Cooper et al. extracted
summary excerpts from audio and video using the similarity
matrix [25]. To the best of our knowledge, no existing algorithm
can effectively identify the convex hull of a dataset in these
situations.

In this paper, we propose an efficient approximation
algorithm, called Finding Vertices with Distance Matrix
(FVDM), to seek for the convex hull using merely the similarity
information (e.g., a similarity matrix or distance matrix)
between data points. The proposed method is based on two
theorems about the convex hull. Each theorem provides a
necessary and sufficient condition of a point being a convex hull
vertex. The effectiveness of FVDM is demonstrated by
comparing it against a naïve approach having high
computational complexity on both synthetic and real-world data.

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1587

mailto:jinhong@mail.ustc.edu.cn
mailto:ketang@ustc.edu.cn

The rest of this paper is organized as follows. Section II
presents the definition of the convex hull and proves two
necessary and sufficient conditions of a point being a convex
hull vertex. The FVDM algorithm is introduced in Section III.
In Section IV, experiments are conducted on synthetic and real-
world data to illustrate the effectiveness and efficiency of the
proposed method. Conclusions and discussions are given in
Section V.

II. ANALYZING CONVEX HULL IN METRIC SPACE

The convex hull of a set of points is the smallest convex set

that contains all the points [1]. From a computational

geometry’s point of view, an object in the Euclidean space is

convex if every pair of points falls inside the object, i.e., any

point along the straight line segment connecting every point

pair is within the object [2]. A set S is convex if for any 𝒙, 𝒚 ∈
𝑆 and any 𝑡 ∈ [0,1], the point (1 − 𝑡)𝒙 + 𝑡𝒚 belongs to S.

Moreover, if S is a convex set, for any 𝒙1, 𝒙2,…, 𝒙𝑟 ∈ 𝑆 and

any non-negative numbers{𝜆1, 𝜆2, … 𝜆𝑟} with ∑ 𝜆𝑖
𝑟
𝑖=1 = 1, the

vector ∑ 𝜆𝑖
𝑟
𝑖=1 𝒙𝑖 is called the convex combination of

𝒙1 , 𝒙2 ,…, 𝒙𝑟 and ∑ 𝜆𝑖
𝑟
𝑖=1 𝒙𝑖 belongs to S. According to the

above definitions, the convex hull can be defined in terms of

convex sets or convex combinations, so that the convex hull 𝑆𝑋

of a point-set X in the Euclidean space can be defined as:

 the minimal convex set containing X, or

 the intersection of all convex sets containing X. or

 the set of all convex combinations of points in X.

From the definition of the convex hull, the following two

theorems can be derived.

Theorem 1: In 𝑅𝑛, for any convex hull E and any point 𝒙 ∈ 𝐸,

there exists a point 𝒚 ∈ 𝑅𝑛 such that ‖𝒙 − 𝒚‖2 = 𝑚𝑎𝑥
𝒛∈𝐸

‖𝒛 −

𝒚‖2 is a necessary and sufficient condition for 𝒙 ∈ 𝜕𝐸. 𝜕𝐸 is

the boundary of E.

Proof:

a. Necessity

As shown in Fig 1, for any boundary point x of E, we shall

prove that ∃𝒚 ∈ 𝑅𝑛, 𝑠. 𝑡. ‖𝒙 − 𝒚‖2 = 𝑚𝑎𝑥
𝒛∈𝐸

‖𝒛 − 𝒚‖2.

We construct a hyperplane P at 𝒙, 𝑠. 𝑡. 𝑃 ∩ 𝐸 = 𝒙. Let 𝑛⃗
denote the hyperplane’s normal vector that points to the inside

of convex hull E and let y = 𝒙 + 𝑏𝑛⃗ (𝑏 > 0) . Any point z in E

can be represent by 𝒛 = 𝑿0𝜶, here 𝑿0 = [𝒙1 𝒙2 ⋯ 𝒙𝑚], and

𝒙𝑗 (1 ≤ 𝑗 ≤ 𝑚) are all the boundary points. And 𝜶 =
[𝛼1 𝛼2 ⋯ 𝛼𝑚]𝑇 , in which 𝜶 satisfies ∑ 𝛼𝑗 = 1𝑚

𝑗=1 , 𝛼𝑗 ≥ 0

(1 ≤ 𝑗 ≤ 𝑚).

So,

‖𝒛 − 𝒚‖2 = ‖𝑿0𝜶 − 𝒙 − 𝑏𝑛⃗ ‖2

 = 𝑏2 − 2𝑏(𝑿0𝜶 − 𝒙)𝑇 ∙ 𝑛⃗ + 𝜶𝑇𝑿0
𝑇𝑿0𝜶 (1)

∵ 𝒙𝒛⃗⃗⃗⃗ and 𝑛⃗ point to the same side of P.

∴ (𝑋0𝜶 − 𝒙)𝑇 ∙ 𝑛⃗ ≥ 0, the equality holds if and only if 𝑿0𝜶 −
𝒙 = 0.

From (1), we can know that if b is large enough, for all

𝜶, ‖𝒛 − 𝒚‖2 would reach its maximum if and only if 𝑛⃗ ∙
(𝑿0𝜶 − 𝒙) = 0.

So when ‖𝒛 − 𝒚‖2 reach its maximum, 𝑿0𝜶 − 𝒙 = 0.

That is 𝑿0𝜶 = 𝒙, and that is ‖𝒙 − 𝒚‖2 = 𝑚𝑎𝑥
𝒛∈𝐸

‖𝒛 − 𝒚‖2.

Fig 1

b. Sufficiency

Proof by contradiction, we suppose exist points x and y

subjected to ‖𝒙 − 𝒚‖2 = 𝑚𝑎𝑥
𝒛∈𝐸

‖𝒛 − 𝒚‖2 while 𝒙 ∉ 𝜕𝐸 . As

shown in Fig 2, we could connect y and x and extent to any

point w in E. Clearly, ‖𝒙 − 𝒚‖2 < ‖𝒘 − 𝑏‖2 , which

contradicts with ‖𝒙 − 𝒚‖2 = 𝑚𝑎𝑥
𝒛∈𝐸

‖𝒛 − 𝒚‖2, so the assumption

does not hold.

Fig 2

The theorem is thus proved.

 ☐
Theorem 2. In 𝑅𝑛, for any convex hull E and any point 𝒙 ∈ 𝐸,

there exists a point 𝒚 ∈ 𝑅𝑛\𝐸 , subjected to ‖𝒙 − 𝒚‖2 =
𝑚𝑖𝑛
𝑧∈𝐸

‖𝒛 − 𝒚‖2 is a necessary and sufficient condition for 𝒙 ∈

𝜕𝐸.

Proof:

a. Necessity
As shown in Fig 3, for any boundary point x of E, then, we

shall prove that ∃𝒚 ∈ 𝑅𝑛\𝐸, 𝑠. 𝑡. ‖𝒙 − 𝒚‖2 = 𝑚𝑖𝑛
𝒛∈𝐸

‖𝒛 − 𝒚‖2.

We construct a hyperplane P at 𝒙, 𝑠. 𝑡. 𝑃 ∩ 𝐸 = 𝒙. 𝑛⃗ is the

hyperplane’s normal vector which points to the inside of

convex hull E. Set 𝒚 = 𝒙 − 𝑏𝑛⃗ (b>0) . For any point z in E,

‖𝒛 − 𝒚‖2 = (𝐳 − 𝐲) ∙ (𝐳 − 𝐲)

 = (𝐳 − 𝐱 + b𝑛⃗) ∙ (𝐳 − 𝐱 + b𝑛⃗)

 = ‖𝒛 − 𝒙‖2 + 𝑏2 + 2𝑏(𝒛 − 𝒙) ∙ 𝑛⃗
∵ 𝒙𝒛⃗⃗ ⃗⃗ ⃗ and 𝑛⃗ point to the same side of P.

∴ (𝒛 − 𝒙) ∙ 𝑛⃗ ≥ 0

∴ ‖𝒛 − 𝒚‖2 ≥ ‖𝒛 − 𝒙‖2 + 𝑏2 ≥ 𝑏2 = ‖𝒙 − 𝒚‖2

∴ ∃𝒚 ∈ 𝑅𝑛, 𝑠. 𝑡. ‖𝒙 − 𝒚‖2 = 𝑚𝑖𝑛
𝒛∈𝐸

‖𝒛 − 𝒚‖2

x P

y

z
n

w

y

x

E

1588

Fig 3

b. Sufficiency

Proof by contradiction. Suppose exist points x and y

subjected to ‖𝒙 − 𝒚‖2 = 𝑚𝑖𝑛
𝒛∈𝐸

‖𝒛 − 𝒚‖2 but 𝒙 ∉ 𝜕𝐸.As shown

in Fig 4. we could connect y and x. As 𝒙 ∈ 𝐸\𝜕𝐸, then the line

𝒙𝒚̅̅̅̅ and 𝜕𝐸 would intersect at W. Clearly. ‖𝒙 − 𝒚‖2 > ‖𝒘 −
𝒚‖2, which contradicts with ‖𝒙 − 𝒚‖2 = 𝑚𝑖𝑛

𝒛∈𝐸
‖𝒛 − 𝒚‖2, so the

assumption does not hold.

Fig 4

The theorem is thus proved.

 ☐

III. ALGORITHMS OF FINDING THE CONVEX HULL VERTICES

In this section, two algorithms for finding the convex hull

vertices based on the similarity information between data points

are presented. Firstly, the FVDM algorithm will be presented.

After that, an intuitive approach, namely FVSVM will be

described. FVSVM can be used to identify the convex hull

using a special case of the similarity information, i.e., the kernel

matrix, and will be used to gauge the effectiveness of FVDM.

A. Finding the convex hull vertices with distance matrix

Suppose we need to identify the vertices of the convex hull

of a given dataset X. The two theorems presented in Section 2

can be used to determine whether a data point x is a vertex of

the convex hull. For each data point x in X, if a reference data

point y, which does not necessarily belong to X, satisfies the

condition given by either Theorem 1 or Theorem 2, x can be

identified as a vertex of the convex hull of X. Theoretically, it

is impossible to enumerate all possible y to check whether

either of the two theorems holds. In practice, however, we can

use a finite number of reference points to assess how likely the

two theorems hold for a given x. In this case, the set of reference

points may consist of not only all data in X but also any other

data that are provided together with X or even some randomly

generated synthetic data. Based on these considerations, we

proposed the FVDM algorithm, and its pseudo-code is given in

Algorithm 1.

Algorithm 1

Algorithm FVDM

Input: D , distance matrix; X, the point-set; O, the point

set outside the convex hull

Output: 𝑉, the set of convex hull vertices

1. Initial 𝑉=∅;

2. for every point x ∈ 𝑋

3. if there is y ∈ 𝑋 ∪ 𝑂,s.t. d(x, y)=max
𝒛∈𝐼

𝑑(𝒛, 𝒚)

4. 𝑉 = 𝑉 ∪ {𝒙};
5. elseif there is y∈ 𝑂 s.t. d(x, y)=min

𝒛∈𝐼
𝑑(𝒛, 𝒚)

6. 𝑉 = 𝑉 ∪ {𝒙};
7. endif

8. endfor

In algorithm 1, line 3 and line 4 correspond to Theorem 1. In

these two lines, we use dataset 𝑋 ∪ 𝑂 as reference points. Line

5 and line 6 correspond to Theorem 2, where only dataset 𝑂 is

used as reference points, because Theorem 2 requires y to be

outside the convex hull of X. It should be noted that the dataset

O is not mandatory for FVDM, albeit O will increase the

probability of FVDM for making the correct identification of

convex hull vertices. Fortunately, additional data that can be

used as O are natural available for some applications. For

example, in a classification problem, when one needs to

identify the convex hull of the data from one class, all the data

from the other classes can be used as O. In case the data for O

is not provided, one may either set O = ∅, or generate some

synthetic data to form O.

B. Finding the convex hull vertices with SVM

As discussed in Section 1, no existing approach can find the

convex hull of a dataset only based on the similarity

information (e.g., a similarity matrix) between data points. In

other words, there is no way to know whether a data point x is

on the convex hull for sure, and thus it is difficult to assess

whether FVDM works properly as we expect. Fortunately, if

we consider the case of SVM, for which the kernel matrix can

be viewed as a special form of the similarity matrix, there is a

naïve approach with which we can identify the true vertices of

the convex hull. To be specific, if a point x is a vertex of the

convex hull of X in the kernel space, it should be linearly

separable (in the kernel space) from all the other points in X, as

depicted in Fig. 3. Therefore, for each point x in X, one may

just apply a SVM classifier to check whether it is linearly

separable from the other points. This intuition leads to the

approach named finding Vertices with SVM (FVSVM). The

pseudo-code of FVSVM is given in Algorithm 2. It should be

noted that the FVSVM algorithm might not be appropriate for

practical use. First, it involves training SVM classifier for n

times, where n is the size of the dataset, and thus is very time

consuming. Second, it is only applicable for methods where a

kernel matrix is available, and may not well extended to

problems with other forms of similarity matrices. We present it

here because it can evaluate the correctness of FVDM.

x P

y

 Z

n

W

y

E

x

1589

 a b

Fig 3: The green points and red points represent the point-set

and the red points represent the convex hull vertices of the

point-set.

Algorithm 2

Algorithm FVSVM

Input: X, the point-set; K ,the kernel matrix of X

Output: 𝑉, the convex hull vertices set

1. Initial 𝑉=∅;

2. for every point x ∈ 𝑋

3. if there is a SVM classifier which can separate x

 from 𝑋/𝒙

4. 𝑉 = 𝑉 ∪ {𝒙};
5. endif

6. endfor

C. Complexity analysis

FVDM needs to find the minimum distance and the

maximum distance for every point. So, for every point, FVDM

should compare all the distances from it to the others n-1 points.

The complexity for every point is O(n-1). There are total n

points. So the total complexity of FVDM is O(𝑛2),

IV. EXPERIMENT

To assess the effectiveness of FVDM, we applied it to two

synthetic datasets as well as one real-world dataset. The major

aim of this empirical study is to evaluate how accurately FVDM

could identify the convex hull. For this reason, FVSVM was

applied to each point which is not identified as the convex hull

vertex by FVDM to confirm whether it is in the convex hull

identified by FVDM or not.

For FVSVM, the linear kernel is utilized, because the other

two commonly used kernel functions, i.e., RBF kernel and

polynomial kernel, map all data into the feature space in which

all data points become the convex hull vertices of the convex

hull. The proof for this issue is presented in the Appendix.

Furthermore, the experimental study only requires a kernel

matrix. Linear kernel is sufficient for this purpose.

Therefore, all our experiments will use the linear kernel.

A. Performance measure

Since the empirical study mainly concerns whether FVDM

can accurately find the convex hull. And the most important

characteristic of an approximate convex hull is how many

points in the dataset can be covered, a measure called convex

hull coverage was used for our evaluation, as given in (2).

 𝑅𝑐𝑜𝑣𝑒𝑟 =
|𝐼𝐸|

|𝑋\𝑉|
 (2)

where 𝑅𝑐𝑜𝑣𝑒𝑟 is the coverage of the convex hull formed by

convex hull vertices V, X is a point-set, V is the convex hull

vertices of X found by FVDM and IE =(X\V)∩ (Ev). Here, Ev is

the convex hull of V and the point-set IE is all the points of X\V

in the convex hull Ev. In other words, IE is the set of points that

lie in Ev. It is worth mentioning that a point x being in Ev is the

sufficient and necessary condition for satisfying that there

exists no hyperplane that can separate the point x from the

convex hull vertices V.

Intuitively, (2) measures how many points in X fall inside the

convex hull formed by V. In two or three dimensions, it is

intuitive. For example, Fig 5 represents two example results. It

is obvious that Fig 5(b) corresponds to a better case because the

convex hull covers all data points while Fig 5(a) have some data

points falling outside the convex hull (purple points). In fact,

the convex hull coverage is
6

10
 for in Fig 5(a) and

10

10
 for Fig 5(b).

(a) (b)

Fig 5: (a) and (b) represents two example results of finding the

convex hull vertices. The red points are the identified convex

hull vertices.

B. Experiments on low dimensional data

In the first experiment, we generated a 2-dimensional

synthetic data set based on normal distributions. The data set

consists of two classes, denoted as the “+” and “-” classes. The

probability density functions (PDF) of the two classes are

denoted by 𝑓+(𝑥) and𝑓−(𝑥), respectively. The two PDFs are

with different means but share the same covariance matrix,

which is [
0.4 0
0 0.4

]. The PDFs are as follow:

-1

+ + +

1 1
() exp(() ())

22 det()

Tf x x x 


    


-11 1
() exp(() ())

22 det()

Tf x x x 


      


where,
0.4 0

=
0 0.4

 
  

 
, and

+ [1 1]T  , [1 -1]T  

In the experiment, 400 positive points and 400 negative

points were first randomly generated according to

𝑓+(𝑥) 𝑎𝑛𝑑 𝑓−(𝑥) respectively. Then, FVDM and FVSVM were

employed to find the convex hull vertices of the positive and

negative point-sets, respectively. After that, the obtained

convex hull coverage, the number of identified CHVs (convex

hull vertices) and the computation time were calculated. This

experiment was repeated for ten times. The average coverage,

the number of CHVs and the computation time are reported in

Table I. The result of one example run of experiments is

1590

depicted in Fig 6.

a

b

Fig 6: (a) and (b) represent the results of FVDM and FVSVM

respectively. The star points and circle points represent data

points belonging to different classes, and the red points stands

for the convex hull vertices found by FVDM and FVSVM.

TABLE I

THE COMPARISON OF FVDM AND FVSVM ON LOW

DIMENSIONAL DATA

algorithm FVDM FVSVM

class + - + -

No. of instances 400 400 400 400

No. of CHVs 9.5 7 9.5 9.5

coverage 99.8% 99.78% 100% 100%

run time(seconds) 6.2134 3969.1

From the coverage values given in Table I, we can see that

FVDM satisfactorily identified the convex hull to cover almost

all data points. Similar observation is illustrated in Fig. 6, where

the convex hull vertices found by FVDM are very similar to

those found by FVSVM. However, from the computation time

reported in Table I, we can see that FVDM is far more time-

efficient than FVSVM.

C. Experiments on high dimensional data

To assess the effectiveness of FVDM on the high

dimensional data, we generated a 6-dimensional synthetic data

set of two classes. The PDFs of the positive and negative classes

are also normal distributions, Their covariance matrices are

both 0.4𝐈6×6, where 𝐈6×6 is an identity matrix, and their means

are 𝜇+ = [1 1 1 1 1 1]𝑇 and 𝜇− = [−1 − 1 − 1 − 1 − 1 −
1]𝑇

respectively.

In the experiment, 10000 points were generated for each class.

Since the FVSVM will be too time-consuming in this case, only

FVDM was applied to this dataset. The results are reported in

Table II
TABLE II

THE RESULT OF FVDM ON HIGH DIMENSIONAL DATA

class + -

No. of instances 10000 10000

No. of CHVs 79 85

coverage 87.09% 89.02%

run time(seconds) 7489.4

From the coverage in Table II, we can see that the

performance of FVDM, though still acceptable, is worse than

that of the 2-dimensional case. A possible explanation is that in

the high dimensional space, it is less likely that the set of

reference points contains the point that satisfies Theorem 1 or

2. In such as case, sampling a larger number of reference points

may improve the coverage of FVDM.

D. Experiments on real-world data

The data used in this experiment is Astroparticle, which was

used in [18]. In this experiment, we have a total of 4000 samples

(2000 for each class), and every data point has 4 attributes.

Principal Component Analysis [10] was first applied to the data

to preprocess them. Then, the data were normalized so that they

lie between the interval [0 1] on each dimension. After that,

FVDM was applied and the results are presented in Table III.

TABLE III

THE RESULT OF FVDM ON REAL-WORLD DATA

class + -

No. of instances 2000 2000

No. of CHVs 168 192

coverage 85.5% 96.35%

run time(seconds) 29.4753

From Table III, it can be found that FVDM achieved

satisfactory performance on both classes. However, its

performance on the two classes are quite different. This

observation suggests that FVDM might be sensitive to the

distribution of data, which could be an interesting issue

deserving further investigation.

V. CONCLUSION AND DISCUSSION

In this paper, an algorithm named FVDM was proposed to

approximately find the convex hull vertices of a data set.

Different from the existing methods, FVDM only takes the

similarity information between data points as input, without

relying on the attribute values. This characteristic will be

particularly useful for scenarios where little information about

the space in which the data lie is available, e.g., the kernel space.

Experimental results on two synthetic datasets and one real-

world dataset demonstrate the effectiveness of FVDM. In the

future, potential drawbacks of FVDM, e.g., sensitivity to data

distributions, will be analyzed and addressed. Real-world

applications of FVDM will also be further explored.

1591

VI. ACKNOWLEDGMENT

This work was supported in part by the 973 Program of China

under Grant 2011CB707006, the National Natural Science

Foundation of China under Grants 61175065 and 61329302, the

Program for New Century Excellent Talents in University

under Grant NCET-12-0512, the Science and Technological

Fund of Anhui Province for Outstanding Youth under Grant

1108085J16, and the European Union Seventh Framework

Programme under Grant 247619.

VII. APPENDIX

In this appendix, we prove that RBF kernel and polynomial

kernel (p ≥ 2), map all data points into the feature space in

which all data points become vertices of the convex hull.

If we use RBF kernel function K(𝐱, 𝐲) = 𝑒−∥𝐱−𝐲∥2/(2𝛿2) ,

since K(x, x)=1, the kernel function will remap the data points

into the kernel space K, and all data points will be remapped to

the surface of a unit hypersphere, so all data points become the

convex hull vertices in K. In polynomial kernel situation, we

can prove following theorem:

Theorem 3: If use polynomial kernel function K(𝐱, 𝐲) =
(𝐱 ∙ 𝐲 + 1)𝑝, the kernel function will remap all data points into

the convex hull vertices in the kernel space when 𝑝 ≥
2 and 𝑝 ∈ 𝑁.

Proof:

We prove the theorem by contradiction. Suppose the

conclusion is not true, i.e., there is a point 𝑥 in the feature space

which would be remapped to ϕ(𝒙) in the kernel space and

ϕ(𝒙) is not the convex hull vertices in the kernel space.

Suppose ϕ(𝒙𝑖)(i = 1,2,⋯m) is all the convex hull vertices in

the kernel space.

∴ ϕ(𝒙) = ∑ 𝛼𝑖ϕ(𝒙𝑖)
𝑚
𝑖=1 , here 𝛼𝑖 ≥ 0 and ∑ 𝛼𝑖 = 1𝑚

𝑖=1

∴ ϕ(𝒙) ∙ ϕ(𝒚) = ∑ 𝛼𝑖ϕ(𝒙𝑖)
𝑚
𝑖=1 ∙ ϕ(𝒚) holds for any 𝒚 ∈ 𝑅𝑛

∵ ϕ(𝒙) ∙ ϕ(𝒚) = 𝐾(𝒙, 𝒚) for any 𝒙, 𝒚 ∈ 𝑅𝑛

∴ K(𝒙, 𝒚) = ∑ 𝛼𝑖K(𝒙𝑖
𝑚
𝑖=1 , 𝒚)

That is

 (𝒙 ∙ 𝒚 + 1)𝑝 = ∑ 𝛼𝑖(𝒙𝑖 ∙ 𝒚 + 1)𝑝𝑚
𝑖=1 for any 𝒚 ∈ 𝑅𝑛

So, for first-order, we have

𝐶𝑝
1(𝒙 ∙ 𝒚) = ∑ 𝛼𝑖𝐶𝑝

1(𝒙𝑖 ∙ 𝒚)𝑚
𝑖=1 ⟹ 𝒙𝒚 = ∑ 𝛼𝑖(𝒙𝑖 ∙ 𝒚𝑚

𝑖=1) (3)

And for second-order

𝐶𝑝
2(𝒙 ∙ 𝒚)2 = ∑ 𝛼𝑖𝐶𝑝

2(𝒙𝑖 ∙ 𝒚)2𝑚
𝑖=1 ⟹ (𝒙 ∙ 𝒚)2 = 𝛼𝑖(𝒙𝑖 ∙ 𝒚)2

If we set 𝒚 = [𝑏 0 ⋯ 0]T (𝑏 ≠ 0). Then

(𝒙1𝑏)2 = ∑ 𝛼𝑖(𝒙𝑖
1𝑏)2𝑚

𝑖=1 ⟹ (𝒙1)2 = ∑ 𝛼𝑖(𝒙𝑖
1)2𝑚

𝑖=1

𝐠𝑖 represents the i-th component of 𝐠 . Here, 𝒙1 is the first

component of 𝒙.

Similarly, we can get

(𝒙𝑗)2 = ∑ 𝛼𝑖(𝒙𝑖
𝑗
)2𝑚

𝑖=1 for j=1,2,…n (4)

 ∴ ∑ 𝛼𝑖(𝒙𝑖 − 𝒙)2𝑚
𝑖=1 = ∑ 𝛼𝑖(𝒙)2 − 2∑ 𝛼𝑖𝒙𝑖 ∙ 𝒙 +𝑚

𝑖=1
𝑚
𝑖=1

 ∑ 𝛼𝑖(𝒙𝑖)
2𝑚

𝑖=1

 = (𝒙)2 − 2(𝒙)2 + ∑ 𝛼𝑖 ∑ (𝒙𝑖
𝑗
)
2

𝑛
𝑗=1

𝑚
𝑖=1

 = −(𝒙)2 + ∑ ∑ 𝛼𝑖(𝒙𝑖
𝑗
)
2

𝑚
𝑖=1

𝑛
𝑗=1

 = −(𝒙)2 + ∑ (𝒙𝑗)2𝑛
𝑗=1

 = −(𝒙)2 + (𝒙)2 = 0

∴ 𝛼𝑖 = 0 𝑜𝑟 𝒙 = 𝒙𝑖 for any i = 1,2,⋯m

So, ϕ(𝒙) is the convex hull vertices, which contradicts with the

assumption.

The theorem is thus proved.

REFERENCES
[1] Bayer, Valentina. "Survey of algorithms for the convex hull problem."

preprint (1999).

[2] Khosravani, Hamid R., Antonio E. Ruano, and Pedro M. Ferreira. "A

simple algorithm for convex hull determination in high dimensions."

Intelligent Signal Processing (WISP), 2013 IEEE 8th International

Symposium on. IEEE, 2013.

[3] Barber, C. Bradford, David P. Dobkin, and Hannu Huhdanpaa.

"The quickhull algorithm for convex hulls." ACM Transactions on

Mathematical Software (TOMS) 22.4 (1996): 469-483.

[4] Graham, Ronald L. "An efficient algorith for determining the convex hull

of a finite planar set." Information processing letters 1.4 (1972): 132-133.

[5] Bennett, Kristin P., and Erin J. Bredensteiner. "Duality and geometry in

SVM classifiers." ICML. 2000.

[6] Haasdonk, Bernard. "Feature space interpretation of SVMs with

indefinite kernels." Pattern Analysis and Machine Intelligence, IEEE

Transactions on 27.4 (2005): 482-492.

[7] Peng, Xinjun, and Yifei Wang. "Geometric algorithms to large margin

classifier based on affine hulls." Neural Networks and Learning Systems,

IEEE Transactions on 23.2 (2012): 236-246.

[8] Chand, Donald R., and Sham S. Kapur. "An algorithm for convex

polytopes." Journal of the ACM (JACM) 17.1 (1970): 78-86.

[9] Jarvis, Ray A. "On the identification of the convex hull of a finite set of

points in the plane." Information Processing Letters 2.1 (1973): 18-21.

[10] Jolliffe, Ian. "Principal component analysis." John Wiley & Sons, Ltd,

2005.

[11] Preparata, Franco P., and Se June Hong. "Convex hulls of finite sets of

points in two and three dimensions." Communications of the ACM 20.2

(1977): 87-93.

[12] Chan, Timothy M. "Optimal output-sensitive convex hull algorithms in

two and three dimensions." Discrete & Computational Geometry 16.4

(1996): 361-368.

[13] Brönnimann, Herve, et al. "Space-efficient planar convex hull

algorithms." Proc. Latin American Theoretical Informatics. 2002.

[14] Wang, Di, et al. "Online Support Vector Machine Based on Convex Hull

Vertices Selection." (2013): 1-1.

[15] Bordes, Antoine, and Léon Bottou. "The Huller: a simple and efficient

online SVM." Machine Learning: ECML 2005. Springer Berlin

Heidelberg, 2005. 505-512.

[16] Mavroforakis, Michael E., and Sergios Theodoridis. "A geometric

approach to support vector machine (SVM) classification." Neural

Networks, IEEE Transactions on 17.3 (2006): 671-682.

[17] Cooper, Matthew, and Jonathan Foote. "Summarizing video using non-

negative similarity matrix factorization." Multimedia Signal Processing,

2002 IEEE Workshop on. IEEE, 2002.

[18] Hsu, Chih-Wei, Chih-Chung Chang, and Chih-Jen Lin. "A practical guide

to support vector classification." (2003). Bennett K P, Bredensteiner E J.

"Duality and geometry in SVM classifiers." ICML. 2000: 57-64.

[19] Goshtasby, Ardeshir, and George C.Stockman. "Point pattern matching

using convex hull edges." Systems, Man and Cybernetics, IEEE

ransactions on 5 (1985): 631-637.

[20] Ceulemans, Eva, and Henk AL Kiers. "Selecting among three‐mode

principal component models of different types and complexities: A

numerical convex hull based method." British Journal of Mathematical

and Statistical Psychology 59.1 (2006): 133-150.

[21] Halbwachs N. "Delay analysis in synchronous programs Computer Aided

Verification." Springer Berlin Heidelberg, 1993: 333-346.

[22] Chan, Timothy M. "Output-sensitive results on convex hulls, extreme

points, and related problems." Discrete & Computational Geometry 16.4

(1996): 369-387.

1592

