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Abstract—The convex hull has been extensively studied in 

computational geometry and its applications have spread over an 

impressive number of fields. How to find the convex hull is an 

important and challenging problem. Although many algorithms 

had been proposed for that, most of them can only tackle the 

problem in two or three dimensions and the biggest issue is that 

those algorithms rely on the samples’ coordinates to find the 

convex hull. In this paper, we propose an approximation 

algorithm named FVDM, which only utilizes the information of 

the samples’ distance matrix to find the convex hull. Experiments 

demonstrate that FVDM can effectively identify the vertices of the 

convex hull. 

Keywords—convex hull; metric space 

I. INTRODUCTION 

Convex hull plays a crucial role in many mathematics and 

computational geometry problems [3]. Its practical applications 

can be widely found in pattern recognition, image processing, 

statistics and static code analysis by abstract interpretation 

[15][19-21]. It also serves as a major building block for a 

number of computational-geometric algorithms such as the 

rotating calipers method for computing the width and diameter 

of a point-set. In particular, it is well known that there is a strong 

link between Support Vector Machine (SVM) and convex hull. 

Training an SVM on a separable data set is equivalent to the 

problem of computing the nearest points between the convex 

hulls formed by the positive and negative samples [5-7]. Hence, 

quite a few of competitive SVM training algorithms had been 

developed based on such equivalence [16-17].   
Over the past decades, many efforts have been devoted to 

develop convex hull algorithms for the planar point-set. In 1970, 
Chand and Kapur [8] initially proposed a convex hull algorithm 
with O(n2) time complexity by constructing the borders of 
convex hull according to the geometric properties of a point-set. 
Another algorithm with O(mn) time complexity was developed 
by Jarvis [9], where m is the number of convex hull vertices. 
Graham [4] provided a solution to compute the convex hull of a 
finite linear set in a 2D plane. Adopting the dichotomy method, 
many convex hull algorithms had been proposed. In [11], a 
divide-and-conquer method was proposed for convex hull 
extraction. In this method, the point-set was divided into two 
roughly equal-sized subsets. Their convex hulls were 
recursively computed respectively, and the entire convex hull 
was obtained by merging those two convex hulls. In another 

study, Chan [12] used pairs of points to calculate the line slopes 
and determine the median values of these slopes, then divided 
the point-set into two parts by median values and recursively 
computed the convex hull. He proposed another algorithm [22] 
that partitions the point-set and then computes the convex hull 
of each group, respectively. The entire convex hull was finally 
obtained by computing the union of the polygons. Similarly, 
Quickhull [3] used a divide and conquer approach similar to that 
of the quick sort. Because few convex hull algorithms remain 
effective in the high dimensional space and all of these 
algorithms are computationally expensive, many approximate 
algorithms had been proposed to address these issues. For 
example, Convex Hull Vertices Selection (CHVS) Algorithm 
proposed by Wang et al. [14]. To reduce the intermediate storage 
used in the computation of planar convex hulls, Brönnimann et 
al. [13] investigated the storage space of some convex hull 
algorithms. 

Although many algorithms have been proposed for 
identifying the convex hull of a dataset (point-set). All those 
algorithms implicitly assume that the samples in the dataset lie 
in a finite dimensional space, and the samples’ values in each 
dimension are known and will be fed into the algorithms as 
inputs. However, in some situation, information about the 
samples’ values in each dimension is unknown, or the dataset 
may not even be provided as a set of points in a multi-
dimensional space. For example, in most kernel-based methods, 
e.g., SVM, the features of the kernel space are not really known 
when a nonlinear kernel function is used. Moreover, only 
similarities/dissimilarities between data points are available in 
some real-world applications, e.g., Cooper et al. extracted 
summary excerpts from audio and video using the similarity 
matrix [25]. To the best of our knowledge, no existing algorithm 
can effectively identify the convex hull of a dataset in these 
situations.  

In this paper, we propose an efficient approximation 
algorithm, called Finding Vertices with Distance Matrix 
(FVDM), to seek for the convex hull using merely the similarity 
information (e.g., a similarity matrix or distance matrix) 
between data points. The proposed method is based on two 
theorems about the convex hull. Each theorem provides a 
necessary and sufficient condition of a point being a convex hull 
vertex. The effectiveness of FVDM is demonstrated by 
comparing it against a naïve approach having high 
computational complexity on both synthetic and real-world data.  
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The rest of this paper is organized as follows. Section II 
presents the definition of the convex hull and proves two 
necessary and sufficient conditions of a point being a convex 
hull vertex. The FVDM algorithm is introduced in Section III. 
In Section IV, experiments are conducted on synthetic and real-
world data to illustrate the effectiveness and efficiency of the 
proposed method. Conclusions and discussions are given in 
Section V.   

II. ANALYZING CONVEX HULL IN METRIC SPACE 

The convex hull of a set of points is the smallest convex set 

that contains all the points [1]. From a computational 

geometry’s point of view, an object in the Euclidean space is 

convex if every pair of points falls inside the object, i.e., any 

point along the straight line segment connecting every point 

pair is within the object [2]. A set S is convex if for any 𝒙, 𝒚 ∈
𝑆  and any 𝑡 ∈ [0,1], the point (1 − 𝑡)𝒙 + 𝑡𝒚   belongs to S. 

Moreover, if S is a convex set, for any 𝒙1, 𝒙2,…, 𝒙𝑟 ∈ 𝑆 and 

any non-negative numbers{𝜆1, 𝜆2, … 𝜆𝑟} with ∑ 𝜆𝑖
𝑟
𝑖=1 = 1, the 

vector ∑ 𝜆𝑖
𝑟
𝑖=1 𝒙𝑖  is called the convex combination of 

𝒙1 ,  𝒙2 ,…,  𝒙𝑟  and ∑ 𝜆𝑖
𝑟
𝑖=1 𝒙𝑖  belongs to S. According to the 

above definitions, the convex hull can be defined in terms of 

convex sets or convex combinations, so that the convex hull 𝑆𝑋 

of a point-set X in the Euclidean space can be defined as: 

 the minimal convex set containing X, or 

 the intersection of all convex sets containing X. or 

 the set of all convex combinations of points in X. 

From the definition of the convex hull, the following two 

theorems can be derived. 

Theorem 1: In 𝑅𝑛, for any convex hull E and any point 𝒙 ∈ 𝐸, 

there exists a point 𝒚 ∈ 𝑅𝑛   such that ‖𝒙 − 𝒚‖2 = 𝑚𝑎𝑥
𝒛∈𝐸

‖𝒛 −

𝒚‖2 is a necessary and sufficient condition for 𝒙 ∈ 𝜕𝐸. 𝜕𝐸 is 

the boundary of E. 

Proof:   

a. Necessity 

As shown in Fig 1, for any boundary point x of E, we shall 

prove that ∃𝒚 ∈ 𝑅𝑛, 𝑠. 𝑡. ‖𝒙 − 𝒚‖2 = 𝑚𝑎𝑥
𝒛∈𝐸

‖𝒛 − 𝒚‖2.   

We construct a hyperplane P at 𝒙, 𝑠. 𝑡. 𝑃 ∩ 𝐸 = 𝒙. Let  �⃗�  
denote the hyperplane’s normal vector that points to the inside 

of convex hull E and let y = 𝒙 + 𝑏�⃗�  (𝑏 > 0) . Any point z in E 

can be represent by 𝒛 = 𝑿0𝜶, here 𝑿0 = [𝒙1 𝒙2  ⋯ 𝒙𝑚], and 

𝒙𝑗 ( 1 ≤ 𝑗 ≤ 𝑚 ) are all the boundary points. And 𝜶 =
[𝛼1 𝛼2  ⋯ 𝛼𝑚]𝑇 , in which 𝜶  satisfies ∑ 𝛼𝑗 = 1𝑚

𝑗=1 , 𝛼𝑗 ≥ 0 

(1 ≤ 𝑗 ≤ 𝑚).

 

 

So,  

‖𝒛 − 𝒚‖2 = ‖𝑿0𝜶 − 𝒙 − 𝑏�⃗�  ‖2 

                  = 𝑏2 − 2𝑏(𝑿0𝜶 − 𝒙)𝑇 ∙ �⃗� + 𝜶𝑇𝑿0
𝑇𝑿0𝜶              (1)    

∵  𝒙𝒛⃗⃗⃗⃗   and  �⃗�  point to the same side of P. 

∴  (𝑋0𝜶 − 𝒙)𝑇 ∙ �⃗� ≥ 0, the equality holds if and only if 𝑿0𝜶 −
𝒙 = 0. 

From (1), we can know that if b is large enough, for all 

𝜶, ‖𝒛 − 𝒚‖2  would reach its maximum if and only if  �⃗�  ∙
(𝑿0𝜶 − 𝒙) = 0.  

So when ‖𝒛 − 𝒚‖2 reach its maximum, 𝑿0𝜶 − 𝒙 = 0. 

That is 𝑿0𝜶 = 𝒙, and that is ‖𝒙 − 𝒚‖2 = 𝑚𝑎𝑥
𝒛∈𝐸

‖𝒛 − 𝒚‖2. 

 

 
Fig 1 

 

b. Sufficiency 

Proof by contradiction, we suppose exist points x and y 

subjected to ‖𝒙 − 𝒚‖2 = 𝑚𝑎𝑥
𝒛∈𝐸

‖𝒛 − 𝒚‖2  while 𝒙 ∉ 𝜕𝐸 . As 

shown in Fig 2, we could connect y and x and extent to any 

point w in E. Clearly, ‖𝒙 − 𝒚‖2 < ‖𝒘 − 𝑏‖2 , which 

contradicts with ‖𝒙 − 𝒚‖2 = 𝑚𝑎𝑥
𝒛∈𝐸

‖𝒛 − 𝒚‖2, so the assumption 

does not hold. 

 

 
Fig 2 

 

The theorem is thus proved.                                                

 ☐ 
Theorem 2. In 𝑅𝑛, for any convex hull E and any point 𝒙 ∈ 𝐸, 

there exists a point 𝒚 ∈ 𝑅𝑛\𝐸 , subjected to ‖𝒙 − 𝒚‖2 =
𝑚𝑖𝑛
𝑧∈𝐸

‖𝒛 − 𝒚‖2 is a necessary and sufficient condition for 𝒙 ∈

𝜕𝐸. 

Proof: 

a. Necessity 
As shown in Fig 3, for any boundary point x of E, then, we 

shall prove that ∃𝒚 ∈ 𝑅𝑛\𝐸, 𝑠. 𝑡. ‖𝒙 − 𝒚‖2 = 𝑚𝑖𝑛
𝒛∈𝐸

‖𝒛 − 𝒚‖2.   

We construct a hyperplane P at 𝒙, 𝑠. 𝑡. 𝑃 ∩ 𝐸 = 𝒙. �⃗�  is the 

hyperplane’s normal vector which points to the inside of 

convex hull E. Set 𝒚 = 𝒙 − 𝑏�⃗�  (b>0) . For any point z in E,  

‖𝒛 − 𝒚‖2 = (𝐳 − 𝐲) ∙ (𝐳 − 𝐲) 

                  = (𝐳 − 𝐱 + b�⃗� ) ∙ (𝐳 − 𝐱 + b�⃗� ) 

                  = ‖𝒛 − 𝒙‖2 + 𝑏2 + 2𝑏(𝒛 − 𝒙) ∙ �⃗�   
∵  𝒙𝒛⃗⃗ ⃗⃗  ⃗  and  �⃗�  point to the same side of P. 

∴ (𝒛 − 𝒙) ∙ �⃗� ≥ 0 

∴ ‖𝒛 − 𝒚‖2 ≥ ‖𝒛 − 𝒙‖2 + 𝑏2 ≥ 𝑏2 = ‖𝒙 − 𝒚‖2 

∴ ∃𝒚 ∈ 𝑅𝑛, 𝑠. 𝑡. ‖𝒙 − 𝒚‖2 = 𝑚𝑖𝑛
𝒛∈𝐸

‖𝒛 − 𝒚‖2 
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Fig 3 

b. Sufficiency 

Proof by contradiction. Suppose exist points x and y 

subjected to ‖𝒙 − 𝒚‖2 = 𝑚𝑖𝑛
𝒛∈𝐸

‖𝒛 − 𝒚‖2 but 𝒙 ∉ 𝜕𝐸.As shown 

in Fig 4. we could connect y and x. As 𝒙 ∈ 𝐸\𝜕𝐸, then the line 

𝒙𝒚̅̅̅̅  and 𝜕𝐸  would intersect at W. Clearly. ‖𝒙 − 𝒚‖2 > ‖𝒘 −
𝒚‖2, which contradicts with ‖𝒙 − 𝒚‖2 = 𝑚𝑖𝑛

𝒛∈𝐸
‖𝒛 − 𝒚‖2, so the 

assumption does not hold. 

 

 
Fig 4 

The theorem is thus proved.                                                

 ☐ 

III. ALGORITHMS OF FINDING THE CONVEX HULL VERTICES 

In this section, two algorithms for finding the convex hull 

vertices based on the similarity information between data points 

are presented. Firstly, the FVDM algorithm will be presented. 

After that, an intuitive approach, namely FVSVM will be 

described. FVSVM can be used to identify the convex hull 

using a special case of the similarity information, i.e., the kernel 

matrix, and will be used to gauge the effectiveness of FVDM. 

A. Finding the convex hull vertices with distance matrix 

Suppose we need to identify the vertices of the convex hull 

of a given dataset X. The two theorems presented in Section 2 

can be used to determine whether a data point x is a vertex of 

the convex hull. For each data point x in X, if a reference data 

point y, which does not necessarily belong to X, satisfies the 

condition given by either Theorem 1 or Theorem 2, x can be 

identified as a vertex of the convex hull of X. Theoretically, it 

is impossible to enumerate all possible y to check whether 

either of the two theorems holds. In practice, however, we can 

use a finite number of reference points to assess how likely the 

two theorems hold for a given x. In this case, the set of reference 

points may consist of not only all data in X but also any other 

data that are provided together with X or even some randomly 

generated synthetic data. Based on these considerations, we 

proposed the FVDM algorithm, and its pseudo-code is given in 

Algorithm 1. 

 

Algorithm 1 

Algorithm FVDM 

Input: D , distance matrix; X, the point-set;  O, the point 

set outside the convex hull 

Output: 𝑉, the set of convex hull vertices 

1. Initial 𝑉=∅; 

2. for every point x ∈ 𝑋 

3.      if there is y ∈ 𝑋 ∪ 𝑂,s.t. d(x, y)=max
𝒛∈𝐼

𝑑(𝒛, 𝒚) 

4.           𝑉 = 𝑉 ∪ {𝒙}; 
5.       elseif there is y∈ 𝑂 s.t. d(x, y)=min

𝒛∈𝐼
𝑑(𝒛, 𝒚) 

6.           𝑉 = 𝑉 ∪ {𝒙}; 
7.       endif 

8. endfor 

 

In algorithm 1, line 3 and line 4 correspond to Theorem 1. In 

these two lines, we use dataset 𝑋 ∪ 𝑂 as reference points. Line 

5 and line 6 correspond to Theorem 2, where only dataset 𝑂 is 

used as reference points, because Theorem 2 requires y to be 

outside the convex hull of  X. It should be noted that the dataset 

O  is not mandatory for FVDM, albeit O  will increase the 

probability of FVDM for making the correct identification of 

convex hull vertices. Fortunately, additional data that can be 

used as O  are natural available for some applications. For 

example, in a classification problem, when one needs to 

identify the convex hull of the data from one class, all the data 

from the other classes can be used as O. In case the data for O 

is not provided, one may either set O = ∅, or generate some 

synthetic data to form O. 

B. Finding the convex hull vertices with SVM 

As discussed in Section 1, no existing approach can find the 

convex hull of a dataset only based on the similarity 

information (e.g., a similarity matrix) between data points. In 

other words, there is no way to know whether a data point x is 

on the convex hull for sure, and thus it is difficult to assess 

whether FVDM works properly as we expect. Fortunately, if 

we consider the case of SVM, for which the kernel matrix can 

be viewed as a special form of the similarity matrix, there is a 

naïve approach with which we can identify the true vertices of 

the convex hull. To be specific, if a point x is a vertex of the 

convex hull of X in the kernel space, it should be linearly 

separable (in the kernel space) from all the other points in X, as 

depicted in Fig. 3. Therefore, for each point x in X, one may 

just apply a SVM classifier to check whether it is linearly 

separable from the other points. This intuition leads to the 

approach named finding Vertices with SVM (FVSVM). The 

pseudo-code of FVSVM is given in Algorithm 2. It should be 

noted that the FVSVM algorithm might not be appropriate for 

practical use. First, it involves training SVM classifier for n 

times, where n is the size of the dataset, and thus is very time 

consuming. Second, it is only applicable for methods where a 

kernel matrix is available, and may not well extended to 

problems with other forms of similarity matrices. We present it 

here because it can evaluate the correctness of FVDM. 
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                a                                                            b 

Fig 3: The green points and red points represent the point-set 

and the red points represent the convex hull vertices of the 

point-set. 

 

Algorithm 2 

Algorithm FVSVM   

Input: X, the point-set;  K ,the kernel matrix of X 

Output: 𝑉, the convex hull vertices set 

1. Initial 𝑉=∅;  

2. for every point x ∈ 𝑋 

3.     if there is a SVM classifier which can separate x  

    from 𝑋/𝒙  

4.          𝑉 = 𝑉 ∪ {𝒙};  
5.     endif  

6. endfor 

 

C. Complexity analysis 

FVDM needs to find the minimum distance and the 

maximum distance for every point. So, for every point, FVDM 

should compare all the distances from it to the others n-1 points. 

The complexity for every point is O(n-1). There are total n 

points. So the total complexity of FVDM is O(𝑛2),  

IV. EXPERIMENT 

To assess the effectiveness of FVDM, we applied it to two 

synthetic datasets as well as one real-world dataset. The major 

aim of this empirical study is to evaluate how accurately FVDM 

could identify the convex hull. For this reason, FVSVM was 

applied to each point which is not identified as the convex hull 

vertex by FVDM to confirm whether it is in the convex hull 

identified by FVDM or not.  

For FVSVM, the linear kernel is utilized, because the other 

two commonly used kernel functions, i.e., RBF kernel and 

polynomial kernel, map all data into the feature space in which 

all data points become the convex hull vertices of the convex 

hull. The proof for this issue is presented in the Appendix. 

Furthermore, the experimental study only requires a kernel 

matrix. Linear kernel is sufficient for this purpose. 

Therefore, all our experiments will use the linear kernel. 

A. Performance measure 

Since the empirical study mainly concerns whether FVDM 

can accurately find the convex hull. And the most important 

characteristic of an approximate convex hull is how many 

points in the dataset can be covered, a measure called convex 

hull coverage was used for our evaluation, as given in  (2).  

                                 𝑅𝑐𝑜𝑣𝑒𝑟 =
|𝐼𝐸|

|𝑋\𝑉|
                                         (2) 

where  𝑅𝑐𝑜𝑣𝑒𝑟  is the coverage of the convex hull formed by 

convex hull vertices V, X is a point-set, V is the convex hull 

vertices of X found by FVDM and IE =(X\V)∩ (Ev). Here, Ev is 

the convex hull of V and the point-set IE is all the points of X\V 

in the convex hull Ev. In other words, IE is the set of points that 

lie in Ev. It is worth mentioning that a point x being in Ev is the 

sufficient and necessary condition for satisfying that there 

exists no hyperplane that can separate the point x from the 

convex hull vertices V. 

Intuitively, (2) measures how many points in X fall inside the 

convex hull formed by V. In two or three dimensions, it is 

intuitive. For example, Fig 5 represents two example results. It 

is obvious that Fig 5(b) corresponds to a better case because the 

convex hull covers all data points while Fig 5(a) have some data 

points falling outside the convex hull (purple points). In fact, 

the convex hull coverage is 
6

10
 for in Fig 5(a) and 

10

10
 for Fig 5(b). 

 

               
(a)                                       (b) 

Fig 5: (a) and (b) represents two example results of finding the 

convex hull vertices. The red points are the identified convex 

hull vertices. 

B. Experiments on low dimensional data 

In the first experiment, we generated a 2-dimensional 

synthetic data set based on normal distributions. The data set 

consists of two classes, denoted as the “+” and “-” classes. The 

probability density functions (PDF) of the two classes are 

denoted by 𝑓+(𝑥) and𝑓−(𝑥), respectively. The two PDFs are 

with different means but share the same covariance matrix, 

which is [
0.4 0
0 0.4

]. The PDFs are as follow: 

-1

+ + +

1 1
( ) exp( ( ) ( ))

22 det( )

Tf x x x 


    


 

-11 1
( ) exp( ( ) ( ))

22 det( )

Tf x x x 


      


 

where,
0.4 0

=
0 0.4

 
  

 
, and 

+ [1  1]T  , [ 1  -1]T    

In the experiment, 400 positive points and 400 negative 

points were first randomly generated according to 

𝑓+(𝑥) 𝑎𝑛𝑑 𝑓−(𝑥) respectively. Then, FVDM and FVSVM were 

employed to find the convex hull vertices of the positive and 

negative point-sets, respectively. After that, the obtained 

convex hull coverage, the number of identified CHVs (convex 

hull vertices) and the computation time were calculated. This 

experiment was repeated for ten times. The average coverage, 

the number of CHVs and the computation time are reported in 

Table I. The result of one example run of experiments is 
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depicted in Fig 6. 

 

 
a 

 
b 

Fig 6: (a) and (b) represent the results of FVDM and FVSVM 

respectively. The star points and circle points represent data 

points belonging to different classes, and the red points stands 

for the convex hull vertices found by FVDM and FVSVM. 

 
TABLE I 

THE COMPARISON OF FVDM AND FVSVM ON LOW 

DIMENSIONAL DATA 

algorithm FVDM FVSVM 

class + - + - 

No. of instances 400 400 400 400 

No. of CHVs 9.5 7 9.5 9.5 

coverage 99.8% 99.78% 100% 100% 

run time(seconds) 6.2134 3969.1 

 

From the coverage values given in Table I, we can see that 

FVDM satisfactorily identified the convex hull to cover almost 

all data points. Similar observation is illustrated in Fig. 6, where 

the convex hull vertices found by FVDM are very similar to 

those found by FVSVM. However, from the computation time 

reported in Table I, we can see that FVDM is far more time-

efficient than FVSVM. 

C. Experiments on high dimensional data 

To assess the effectiveness of FVDM on the high 

dimensional data, we generated a 6-dimensional synthetic data 

set of two classes. The PDFs of the positive and negative classes 

are also normal distributions, Their covariance matrices are 

both 0.4𝐈6×6, where 𝐈6×6 is an identity matrix, and their means 

are 𝜇+ = [1 1 1 1 1 1]𝑇  and 𝜇− = [−1 − 1 − 1 − 1 − 1 −
1]𝑇

 
respectively. 

In the experiment, 10000 points were generated for each class. 

Since the FVSVM will be too time-consuming in this case, only 

FVDM was applied to this dataset. The results are reported in 

Table II 
TABLE II 

THE RESULT OF FVDM ON HIGH DIMENSIONAL DATA 

class + - 

No. of instances 10000 10000 

No. of CHVs 79 85 

coverage 87.09% 89.02% 

run time(seconds) 7489.4 

 

From the coverage in Table II, we can see that the 

performance of FVDM, though still acceptable, is worse than 

that of the 2-dimensional case. A possible explanation is that in 

the high dimensional space, it is less likely that the set of 

reference points contains the point that satisfies Theorem 1 or 

2. In such as case, sampling a larger number of reference points 

may improve the coverage of FVDM.   

D. Experiments on real-world data 

The data used in this experiment is Astroparticle, which was 

used in [18]. In this experiment, we have a total of 4000 samples 

(2000 for each class), and every data point has 4 attributes. 

Principal Component Analysis [10] was first applied to the data 

to preprocess them. Then, the data were normalized so that they 

lie between the interval [0 1] on each dimension. After that, 

FVDM was applied and the results are presented in Table III. 

 
TABLE III 

THE RESULT OF FVDM ON REAL-WORLD DATA 

class + - 

No. of instances 2000 2000 

No. of CHVs 168 192 

coverage 85.5% 96.35% 

run time(seconds) 29.4753 

From Table III, it can be found that FVDM achieved 

satisfactory performance on both classes. However, its 

performance on the two classes are quite different. This 

observation suggests that FVDM might be sensitive to the 

distribution of data, which could be an interesting issue 

deserving further investigation.  

V. CONCLUSION AND DISCUSSION 

In this paper, an algorithm named FVDM was proposed to 

approximately find the convex hull vertices of a data set. 

Different from the existing methods, FVDM only takes the 

similarity information between data points as input, without 

relying on the attribute values. This characteristic will be 

particularly useful for scenarios where little information about 

the space in which the data lie is available, e.g., the kernel space. 

Experimental results on two synthetic datasets and one real-

world dataset demonstrate the effectiveness of FVDM. In the 

future, potential drawbacks of FVDM, e.g., sensitivity to data 

distributions, will be analyzed and addressed. Real-world 

applications of FVDM will also be further explored.  
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VII. APPENDIX 

In this appendix, we prove that RBF kernel and polynomial 

kernel (p ≥ 2), map all data points into the feature space in 

which all data points become vertices of the convex hull. 

If we use RBF kernel function K(𝐱, 𝐲) = 𝑒−∥𝐱−𝐲∥2/(2𝛿2) , 

since K(x, x)=1, the kernel function will remap the data points 

into the kernel space K, and all data points will be remapped to 

the surface of a unit hypersphere, so all data points become the 

convex hull vertices in K. In polynomial kernel situation, we 

can prove following theorem: 

Theorem 3: If use polynomial kernel function K(𝐱, 𝐲) =
(𝐱 ∙ 𝐲 + 1)𝑝, the kernel function will remap all data points into 

the convex hull vertices in the kernel space when 𝑝 ≥
2 and 𝑝 ∈ 𝑁. 

Proof:  

We prove the theorem by contradiction. Suppose the 

conclusion is not true, i.e., there is a point 𝑥 in the feature space 

which would be remapped to ϕ(𝒙)  in the kernel space and 

ϕ(𝒙) is not the convex hull vertices in the kernel space.  

Suppose ϕ(𝒙𝑖)(i = 1,2,⋯m) is all the convex hull vertices in 

the kernel space.  

∴  ϕ(𝒙) = ∑ 𝛼𝑖ϕ(𝒙𝑖)
𝑚
𝑖=1  , here 𝛼𝑖 ≥ 0 and ∑ 𝛼𝑖 = 1𝑚

𝑖=1  

∴ ϕ(𝒙) ∙ ϕ(𝒚) = ∑ 𝛼𝑖ϕ(𝒙𝑖)
𝑚
𝑖=1 ∙ ϕ(𝒚) holds for any 𝒚 ∈ 𝑅𝑛 

∵ ϕ(𝒙) ∙ ϕ(𝒚) = 𝐾(𝒙, 𝒚) for any 𝒙, 𝒚 ∈ 𝑅𝑛 

∴ K(𝒙, 𝒚) = ∑ 𝛼𝑖K(𝒙𝑖
𝑚
𝑖=1 , 𝒚)  

That is 

 (𝒙 ∙ 𝒚 + 1)𝑝 = ∑ 𝛼𝑖(𝒙𝑖 ∙ 𝒚 + 1)𝑝𝑚
𝑖=1  for any 𝒚 ∈ 𝑅𝑛 

So, for first-order, we have 

𝐶𝑝
1(𝒙 ∙ 𝒚) = ∑ 𝛼𝑖𝐶𝑝

1(𝒙𝑖 ∙ 𝒚)𝑚
𝑖=1 ⟹ 𝒙𝒚 = ∑ 𝛼𝑖(𝒙𝑖 ∙ 𝒚𝑚

𝑖=1 )    (3) 

And for second-order  

𝐶𝑝
2(𝒙 ∙ 𝒚)2 = ∑ 𝛼𝑖𝐶𝑝

2(𝒙𝑖 ∙ 𝒚)2𝑚
𝑖=1 ⟹ (𝒙 ∙ 𝒚)2 = 𝛼𝑖(𝒙𝑖 ∙ 𝒚)2   

If we set 𝒚 = [𝑏 0 ⋯ 0]T (𝑏 ≠ 0). Then 

(𝒙1𝑏)2 = ∑ 𝛼𝑖(𝒙𝑖
1𝑏)2𝑚

𝑖=1  ⟹ (𝒙1)2 = ∑ 𝛼𝑖(𝒙𝑖
1)2𝑚

𝑖=1    

𝐠𝑖  represents the i-th component of 𝐠 . Here,  𝒙1  is the first 

component of 𝒙. 

Similarly, we can get 

(𝒙𝑗)2 = ∑ 𝛼𝑖(𝒙𝑖
𝑗
)2𝑚

𝑖=1  for j=1,2,…n                                    (4) 

 ∴  ∑ 𝛼𝑖(𝒙𝑖 − 𝒙)2𝑚
𝑖=1 = ∑ 𝛼𝑖(𝒙)2 − 2∑ 𝛼𝑖𝒙𝑖 ∙ 𝒙 +𝑚

𝑖=1
𝑚
𝑖=1

                                           ∑ 𝛼𝑖(𝒙𝑖)
2𝑚

𝑖=1   

                                       = (𝒙)2 − 2(𝒙)2 + ∑ 𝛼𝑖 ∑ (𝒙𝑖
𝑗
)
2

𝑛
𝑗=1

𝑚
𝑖=1  

                                       = −(𝒙)2 + ∑ ∑ 𝛼𝑖(𝒙𝑖
𝑗
)
2

𝑚
𝑖=1

𝑛
𝑗=1   

                                       = −(𝒙)2 + ∑ (𝒙𝑗)2𝑛
𝑗=1  

                                       = −(𝒙)2 + (𝒙)2 = 0        

∴   𝛼𝑖 = 0 𝑜𝑟 𝒙 = 𝒙𝑖 for any i = 1,2,⋯m    

So, ϕ(𝒙) is the convex hull vertices, which contradicts with the 

assumption. 

The theorem is thus proved.                                                
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