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Abstract — This work describes the methodology to create a 
reliability estimate for individual predictions in regressions. 
This estimate is defined as a binary variable which indicates if 
the regression prediction error of an individual unseen 
observation is likely to be critical or not, according to a 
meaningful criterion previously defined by the regression 
model user. The approach is based on the construction of a 
model to separate these two classes of error. The method was 
evaluated on sixteen experiments applied to short-time load 
forecasting regression problem using eight databases from ISO 
New England. In these experiments, the models for pattern 
recognition were built as ensembles composed of three 
classification models: K-Nearest Neighbors, Artificial Neural 
Network Committee Machine, and Support Vector Machine. 
The obtained results showed that the Ensemble Classifiers were 
able to detect critical error cases. 

I. INTRODUCTION 
egression models performance are commonly estimated 
by averaged error measures like Root Mean Squared 

Error (RMSE), and Mean Absolute Error (MAE), or 
probabilistic confidence measures [1]-[3]. However, having 
additional information about single prediction reliability 
would be an unquestionable benefit, manly in risk-sensitive 
areas. 

For this reason, research in the field of evaluation of 
reliability of individual predictions has significantly 
increased during the last decades.  

The technical literature [4]-[7] usually divides the 
methods related to this area in two groups. The first group 
contains the methods that work with model-specific 
approaches. In this case, the methods are based on the 
regression model mathematical definition, and can even 
provide analytical solutions. The second group covers 
model-independent methods that handle the regression 
model as a “black-box”, considering just its inputs and 
outputs. As a result, these methods can be more widely 
applied but rarely provide analytical solutions. 

The majority of model-independent methods described in 
the literature are based on estimates generated using 
sensitivity analysis of the models outcomes affected by the 
insertion of perturbed data, such as: local sensitivity analysis 
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reliability estimates [4], estimates generated by variance of 
bagged models [8], local cross-validation estimates [9], and 
density-based reliability estimates [10].  

The results presented by these studies demonstrate that the 
methods can provide useful additional assessment, although 
they can be quite time consuming depending on the size of 
the dataset. 

The methodology presented in this paper is a model-
independent method; nonetheless, it uses an approach 
completely different from the previously mentioned ones.  

It does not intend to replace or outperform anyone of 
them, on the contrary, the goal is to provide complementary 
information that may be used in combination with them or as 
an alternative when perturbed data generation is an issue. 

The basic idea is to estimate if the regression prediction 
error of an unseen individual observation will be critical or 
not, according to a previously determined criterion that 
defines the critical error condition. Such criterion must be 
defined by the regression model user and has to be 
meaningful for the specific application of the regression 
system. It can be, for example, when the error falls out of a 
specific confidence interval or when it is higher than a 
threshold value. 

Taking in account this predefined critical error criteria, the 
method proposes to classify the observations in positive (if 
the regression prediction error of the observation is critical) 
or negative (otherwise), and then constructing a model to 
separate these two classes of pattern. 

The model for pattern recognition constructed and 
calibrated using the training dataset will attempt to capture 
the numerical limitations of the regression model and, when 
it is applied to testing dataset observations, it is expected to 
be able to estimate which ones are positive, i.e., more likely 
to produce regression prediction errors considered critical. 

As it will be detailed ahead, one important challenge in 
this whole process is the design of the pattern recognition 
model because the dataset to be handled is probably highly 
imbalanced, due to the fact that, assuming that the regression 
model performs reasonably, the percentage of occurrences of 
critical errors is supposed to be small. 

For the purposes of this study, the method was applied to 
short-term load forecasting regression problems, evaluated 
on sixteen experiments using databases from ISO New 
England, a regional transmission organization (RTO), 
serving Connecticut, Maine, Massachusetts, New 
Hampshire, Rhode Island and Vermont. 

The regression models were built using feedforward 
multilayered perceptron Artificial Neural Networks and the 
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models for pattern recognition were constructed using 
Ensemble Models composed of three classification models: 
K-Nearest Neighbors, Artificial Neural Network Committee 
machine and Support Vector Machine. 

The goal of this paper is developing and expanding the 
initial concept of this methodology that was first described 
in our previous work presented in 2013 [11].  

II. METHODOLOGY 
As mentioned before, the method uses pattern recognition 

techniques applied to errors analysis to provide regression 
model individual prediction assessment. 

The objective is to estimate if the regression prediction 
error of an individual observation will be critical or not, 
given a previously defined Critical Error Criterion (CE 
Criterion); let us call it CE Criterion, from now on. 

The proposition is to use the errors produced by the 
regression model over the training dataset to create a new 
variable, Critical Error Flag (CEFlag).  

The CEFlag of an observation is set to 1 (positive case) if 
the regression prediction error of that observation is 
considered critical according to the CE Criterion; otherwise, 
it is set to 0 (negative case).  

Thereby, this new binary variable CEFlag can be used to 
design a model to separate these two classes of pattern. In 
this text, this model will be called Critical Error Flag 
Estimation Function (CEFE Function).  

The CEFE Function, as shown in (1), is calibrated using: 
-- As input, the regression model training dataset, ܺ௧, and 
its outcome, ௧ܻప ; 
-- And, as output, the CEF Flag of the training dataset. ݈݃ܽܨܧܥ௧ ൌ ,ሺܺ௧݊݅ݐܿ݊ݑܨ ܧܨܧܥ  ௧ܻపሻ        ሺ1ሻ 

Thus, the CEFE Function is conditioned to the constraints 
and limitations imposed by the regression model and the 
training dataset.  

Assuming that training and testing datasets observations 
were generated by the same process, when applied to the 
testing dataset, the CEFE Function is prone to estimate the 
CEFlag values of the unseen observations.  

In this case, the positive case (CEFlag equal 1) would 
indicate that the regression prediction error of the 
observation is likely to be critical, contrarily; the negative 
case would signalize low risk of critical error occurrence. 

As a result of this new reliability estimate availability, the 
CEFlag prediction, we are able to treat distinctively the 
observations estimated as positive cases: they can be 
analyzed in detail for better support of decision-making 
process, or, when viable, just be discarded due low 
reliability.  This is done ahead in the experiments dealing 
with real data presented in Section IV. 

Supposing that the regression model accuracy is 
acceptable, the number of positive cases is supposed to be 
much lower than the negative, and, for this reason, one 
relevant task to be accomplished is the design of the model 
for pattern recognition, because standard pattern recognition 
algorithms that use MSE (Mean Squared Error) value 

optimization strategy tend to work well with balanced data, 
but to be biased towards the majority class in the case of 
imbalanced data [12].  

For this reason, it is not recommended to use MSE value 
to evaluate or compare the CEFE Functions performance. 
 In this study, among several evaluation metrics described 
in the specialized literature [13]-[15], three of them in 
particular are observed: Precision, Sensitivity, and 
FMeasure. 

The first metric, Precision, measures the percentage of 
positive predictions made by the model that are correct (2).  ܲ݊݅ݏ݅ܿ݁ݎ ൌ ݁ݒ݅ݐ݅ݏܲ ݁ݑݎሺܶ݁ݒ݅ݐ݅ݏܲ ݁ݑݎܶ    ሻ         ሺ2ሻ݁ݒ݅ݐ݅ݏܲ ݁ݏ݈ܽܨ

The second metric, Sensitivity, also called Recall, 
measures the percentage of true positive patterns that are 
correctly detected by the model, or the accuracy on the 
positive cases (3).  ܵ݁݊ݕݐ݅ݒ݅ݐ݅ݏ ൌ ݁ݒ݅ݐ݅ݏܲ ݁ݑݎሺܶ݁ݒ݅ݐ݅ݏܲ ݁ݑݎܶ    ሻ     ሺ3ሻ݁ݒ݅ݐܽ݃݁ܰ ݁ݏ݈ܽܨ

The third metric, FMeasure or FScore, represents a 
harmonic mean between Precision and Sensitivity (4).  ݁ݎݑݏܽ݁ܯܨ ൌ  2 כ ݊݅ݏ݅ܿ݁ݎܲ כ ݊݅ݏ݅ܿ݁ݎሺܲݕݒ݅ݐ݅ݏ݊݁ܵ   ሻ               ሺ4ሻݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ

According to the literature [13]-[15], in the case of 
extremely imbalanced datasets, Sensitivity values are often 
very low. In practice, it means that rare cases are usually 
hard to identify. In theory, this metric could be improved if 
lower Precision values were tolerated for the sake of higher 
Sensitivity values. 

The harmonic mean of two numbers tends to be closer to 
the smaller one, so higher FMeasure values imply more 
balanced Precision and Sensitivity values. 

In the experiments developed in this study, we compared 
the outcomes using Prediction and FMeasure metrics to 
define the “best” specific parameters for each one of the 
classifier models. 

III. EXPERIMENTS 
Although model performance optimization is not the main 

focus of this research, all models were constructed to 
achieve reasonable performance, but they were not 
ultimately optimized.  

The proposed method was applied to the acknowledged 
time-series regression problem of short-term load 
forecasting that consists in forecast load variation one hour 
in advance [16]. The regression models were constructed 
based on Feedforward Multilayered Perceptron Artificial 
Neural Network (ANN). 

The models for pattern recognition (the CEFE Functions) 
were constructed using Ensemble Models (EM) composed of 
three classification models recognized by the machine 
learning community [21]: K-Nearest Neighbors Classifier 
(KNN), feedforward multilayered perceptron artificial 
Neural Network Committee Machine Classifier (NCC) and 
Support Vector Machine Classifier (SVM). 
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A. ANN Regression Models 
Following the architecture described and successfully 

proven by the several studies [17]-[20], the ANN regression 
models were constructed using three layers: Input, Hidden 
and Output. The number of neurons in the Input layer was 
defined by the number of input parameters. For the Hidden 
layer, twice the number of input parameters was used. The 
Output layer was created with one neuron. 

The training method applied to calibrate the ANN was the 
Levenberg-Marquardt backpropagation algorithm with MSE 
performance function. 
 The ANN regression models were trained using subsets of 
the training datasets defined according to the Bagging 
(bootstrap aggregating) [8] ensemble learning method. For 
each ANN, the original training dataset was divided into 
three bootstrap sample subsets: a training subset with 70% of 
the original data used to calculate the weights and bias of the 
neural network; a control subset with the 15% of the original 
data used for cross-validation to avoid overfitting; and a 
verifying subset with the remaining 15% used to choose the 
“best” ANN. The selection criterion was the smallest MSE 
value for the verifying subset. 

B. Critical Error Criterion (CE Criterion) 
The particular choice for the criterion for differentiating 

what is considered a critical level of error and what is not is 
defined by the user of the regression model, according to 
what he/she considers useful and appropriate for the specific 
application and in consonance with the practices in the 
specific field.  

The regression models were constructed to forecast load 
variation one hour in advance, however, in the field of load 
forecasting, regression model accuracy is conventionally 
evaluated by the measure of the Mean Absolute Percentage 
Error (MAPE) of the load value forecast, and a MAPE value 
around 1% is usually considered an indication of a high 
degree of accuracy [17]. 

For this reason, the error measurement adopted for the 
critical error criterion definition was the Absolute 
Percentage Error (APE) of the load value, instead of the 
Squared Error (SE) of the load variation. The CE Criterion 
for the experiments was defined as follows: if the load APE 
value is higher than 1.5% then the error is considered 
critical, and the CE Flag is set to positive. 

C. Design of the Critical Error Flag Estimation Function 
(CEFE Function) 

Classification of imbalanced dataset is an important 
problem in data mining that is present in the core of the 
design of the CEFE Functions.  

In our previous work [9], where the foundation of this 
methodology was first presented, the CEFE Function was 
constructed as a NCC classifier composed of twenty 
individual ANN classifiers. 

In this present work, this NCC classifier was combined 
with two other classifiers, K-Nearest Neighbors (KNN) and 
Support Vector Machine Gaussian radial basis function 
kernel (SVM), to build up the CEFE Function as an 

Ensemble Model (EM) with the outcome defined by simple 
majority voting. 

The choice of a classifier, using EM architecture, was 
based on its improved prediction, accuracy, strong 
robustness and generalization capability attested to by 
numerous researches [20]-[24].  

The training to calibrate the three classification models 
composing the ensemble was processed in two steps: 

Step 1 - Specific parameters calibration: it consists in 
define the values of specific parameters for each kind of 
model, for instance: the number of K-neighbors, in the case 
of KNN; the cost function matrix values to be applied during 
the ANN training process; or the soft margin value of the 
SVM. It involves training the model with different parameter 
values and choosing the “best” one. In order to avoid 
overfitting [22], the training dataset was split in two: a cross-
validation subset (20%) and training subset (80%). The 
criterion applied to choose the “best” parameter value was 
selecting the one that produced the highest FMeasure metric 
for the cross-validation subset. The same criterion was 
applied using the Precision metric. 

Step 2 – Final Model training: it is the final calibration of 
the model using the “best” parameters defined in Step 1, and 
the complete training dataset. 

Also, aiming to improve accuracy with imbalanced 
datasets, three techniques were applied to the training: 
1) Cost-sensitive learning [12]: instead of using the 

standard MSE function, we used a weighted MSE 
function considering a cost matrix (5) to balance the 
false-positive and false-negative misclassification. FP 
penalty is the value that penalizes the false-positive 
outcomes, and FN penalty, the false-negatives. ݔ݅ݎݐܽܯ ݐݏܥ ൌ   0 ݕݐ݈ܽ݊݁ ܰܨݕݐ݈ܽ݊݁ ܲܨ 0 ൨   ሺ5ሻ 

2) Cross-validation: besides its adoption to avoid 
overfitting, during ANN´s training process, cross-
validation was also used to define: the numbers of K-
neighbors and the values of the cost matrix of KNN 
models; the values of the cost matrix of the NCC 
Models; the soft-margins size of the SVM models. 

3) Adapted bootstrap sampling [8]: in cross-validation, the 
bootstrap sampling was adapted to produce subsets with 
the same imbalanced proportion of the whole training 
dataset.  

Additionally, in order to define the values of the specific 
parameters for the training runs described in Step 1, we 
propose the use of the proportion of positive cases from the 
training dataset, Prop, given by (6), as the underlying 
information to define the intervals of values to be tested.  ܲݎ ൌ ݏ݁ݏܽܥ ݂ ݎܾ݁݉ݑܰ ݈ܽݐܶݏ݁ݏܽܥ ݁ݒ݅ݐ݅ݏܲ ݂ ݎܾ݁݉ݑܰ      ሺ6ሻ 

C1. KNN Classifier: the numbers of K-neighbors were 
defined by testing values starting from a maximum numbers 
of neighbors, MAXN, decreasing it until two. The number 
MAXN was arbitrarily defined as the nearest integer to the 
inverse of Prop (7), i.e., the theoretical number of negative 
case neighbors of each positive case observation [26].  
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ேܺܣܯ ൌ ݔ݂݅ ൬  ൰    ሺ7ሻݎ1ܲ

The values of the cost matrix were defined by keeping the 
FP Penalty value fixed at one, and testing values for FN 
Penalty produced by values ranging from Prop until 0.5, as 
defined in (8):  ݕݐ݈ܽ݊݁ܲ ܰܨ ൌ  12 כ ݎܲ  , ݎܲ א ሾܲݎ, 0.5ሿ.  ሺ8ሻ 

Pr equal 0.5 means no penalty (FN Penalty = 1). The 
maximum FN Penalty value is given by the half to the 
inverse of the positive case proportion [25].  

 
C2. NCC Classifier: The same procedure described to 

define the FP Penalty in the case of KNN Classifiers was 
applied to the NCC Classifiers. 

 
C3. SVM Classifier: The values of the soft margins, SM1 

and SM0, were defined by testing values according to the (9) 
and (10). ܵܯଵ ൌ  12 כ ݎܲ  ሺ9ሻ         ܵܯ ൌ  12 כ ሺ1 െ Prሻ ሺ10ሻ 

 
Again, the testing values were produced ranging Pr from 

Prop until 0.5. 
In the case of Pr equal 0.5, both values, SM1 and SM0 are 

equal one that indicates symmetric soft margins. Smaller 
values of Pr produce wider soft margin for positive cases 
(higher SM1 values), and narrower soft margin for negative 
cases (lower SM0 values) [27].  

IV. DATA DESCRIPTION AND NUMERICAL RESULTS 
The methodology was evaluated on sixteen experiments 

using public data accessible on ISO New England website. 
From a total of sixteen variables available in the original 
data files (see APPENDIX I), five were selected to build the 
working datasets: 
-- Date: date in MM/DD/YYYY format. 
-- Hour: hour ending value. 
-- DEMAND: load used in the settlement process. 
-- DryBulb: dry bulb temperature in degrees Fahrenheit. 
-- DewPnt: dew point temperature in degrees Fahrenheit. 

These datasets were composed with one dependent 
variable (output), ௧ܸ, and eight independent variables 
(inputs), as shown in TABLE I. 

 
 
 
 
 
 
 
 
 
 
 
The variables ௧ܸ, ௧ܸିଵ, ௧ܸିଶସ, ௧ܸିଵ଼, and ܮ௧ିଵ were 

derived from the original DEMAND variable; ܿܪ௧ିଵ, from 
the original Hour variable; ܤ௧ିଵ, from the original Date 

variable; ݎܦ௧ିଵ, from the DryBulb; and ݁ܦ௧ିଵ, from the 
DewPnt. 

The data were collected from eight stations of ISO New 
England Control Area: Boston, Bridgeport, Burlington, 
Concord, Portland, Providence, Windsor Locks and 
Worcester. 

Two working datasets were created for each one of the 
eight stations, one to predict the load variation during winter 
season and another to predict it during summer. In this way, 
we have a total of sixteen predictive regressors. Each of the 
sixteen dataset was then split into two sub-datasets: training 
and testing. 

TABLE II shows the general description of the sub-
datasets composition. 

 
 
 
 
 
 
 
 
 
In this paper, the experiments will be identified by the 

first three letters of the control area followed by “W” for the 
winter datasets, and “S” for the summer.  

A. ANN Regression Models Outcomes 
All ANN regressions were structured as Integrated Auto 

Regressive with Exogenous Inputs models [3], as in formula 
(11) using the variables listed in TABLE I.  ௧ܸ ൌ ሺܩ ௧ܸିଵ, ௧ܸିଶସ, ௧ܸିଵ଼, ܺ௧ିଵሻ     (11) 

Exogenous Inputs: ܺ௧ିଵ ൌ  ሾ݁ܦ  ݎܦ  ܤ  ܪܿ  ܮሿ௧ିଵ 

They were implemented in MATLAB with Neural 
Network Toolbox, and constructed according to the design 
decisions described in Session III.A, and following best 
practices recommended by the literature [28], [29] to 
improve generalization, such as, early stopping and 
regularization.  

TABLE A and TABLE B in APPENDIX II, show the 
ANN regression models performance metrics obtained in our 
experiments for training and testing datasets, respectively: 
load variation RMSE, Adjusted R-Squared, and load value 
MAPE.  

According to these metrics, all ANN regression models 
achieved good performance in both cases (Adj-RSquared 
values higher than 0.940).  

Fig. 1. shows the scatter plot (observation against 
prediction) for training and testing datasets for the Portland 
control area forecast in winter (PorW experiment).  

 
 
 
 
 
 
 
 

TABLE II 
SUB-DATASETS DESCRIPTION 

Dataset 
In-Sample 
sub-dataset 

Out-of-Sample 
sub-dataset 

Winter From Nov 1st 2011, 1a 
Until Nov 30th 2012, 12p 

(9504 observations) 

From Dec 1st 2011, 1a 
Until Nov 30th 2012, 12p 

(744 observations) 
Summer From May 1st 2012, 1a 

Until May 31st 2013, 12p 
(9504 observations) 

From Jun 1st 2013, 1a 
Until Jun 30th 2013, 12p 

(720 observations) 

TABLE I 
MODEL VARIABLES 

Variable Description 
Vt  Load Variation in t, one hour in advance 
Vt-1 Load Variation  in (t-1), at the hour 
V t-24 Load Variation in (t-24), at the hour one day before 
V t-168 Load Variation in (t-168), at the hour one week before 
Lt-1 Load in (t-1), at the hour  
cH t-1 cos(Hour(t-1)*π/12); Hour values between 1 and 24 
B t-1 Boolean flag: is Busy day in (t-1)? No (0) or  Yes(1) 
Dr t-1 Dry bulb temperature in (t-1) in degrees Fahrenheit 
De t-1 Dew point temperature in (t-1) in degrees Fahrenheit 

 
Fig. 1.  Scatter plot for testing dataset of Portland forecast in Winter.  
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This regression was the one that produced the lowest 
Adjusted R-squared value in training datasets. It is possible 
to visually confirm that, even in this case, the regression 
achieved reasonable effectiveness. 

TABLE III shows the performance metrics average in 
testing datasets. 

 
 
 
 
 
 

B. Critical Error Criterion (CE Criterion) 
As mentioned in Session III.B., the CE Criterion adopted 

in the experiments was the load APE higher than 1.5% (12). ܮ௧ ൌ ௧ܸ  ௧ܮ   ሻ݁ݑ݈ܽݒ ݀ܽܮ ݈ܽݑݐ௧ିଵ       ሺܽܿܮ ൌ  ௧ܸ  ௧ܧܲܣ ሻ݁ݑ݈ܽݒ ݀ܽܮ ݀݁ݐݏܽܿ݁ݎ௧ିଵ ሺ݂ܮ ൌ ௧ܮሺݏܾܽ  െ ௧ܮ ሻܮ௧    ሺܧܲܣ ݀ܽܮሻ 

ε௧ܥ ൌ  ൜0 ; ௧ܧܲܣ ݂݅  1.5%1 ;  ሺ12ሻ             ݁ݏ݅ݓݎ݄݁ݐ

In average, 10.901% of the observations in training 
datasets were classified as positive, and 13.532% in testing 
datasets. The classifications defined by the CE Criterion 
were used to construct the models for pattern recognition. 

C. Critical Error Flag Estimation Function (CEFE 
Function) 

All CEFE Functions were implemented in MATLAB with 
Neural Network Toolbox and Statistics Toolbox, and 
constructed according to the references mentioned in Session 
III.C. 

The specific parameters of each one of the classifiers, 
KNN, NCC, and SVM, were defined according to the design 
process described in Session III.C. As mentioned, the final 
outcome was defined by simple majority voting. 

The values obtained using FMeasure and Precision 
metrics as selecting criterion, are listed on TABLE C and D 
in APPENDIX II. 

TABLE IV shows the metrics average produced by the EM 
CEFE Function for training and testing datasets, using 
FMeasure metric as specific parameters selection criterion. 

 
 
 
 
 
As expected, the EM CEFE Function performed better for 

the training datasets than for the testing datasets. Even so, 
the testing datasets Prediction metric average value 
(37.349%) was close to three times the theoretical random 
drawing rate given by the average proportion of the positive 
cases (13.532%), and the Sensitivity metric average value 
indicates that more than 40% of the critical error occurrences 

correctly were detected. 
TABLE V shows the same metrics using Precision 

metrics. 
 
 
 
 
 
In this case, as a consequence, higher Precision metric 

values were achieved but with much lower Sensitivity 
metric rates. 

The EM CEFE Functions performances for each one of the 
sixteen experiments for testing datasets are listed in TABLE 
E and F in APPENDIX II. 

Some of the central concepts of the methodology are 
illustrated in Fig. 2, 3, and 4. 

Fig. 2. shows an example of seventy two hours of actual 
observed load values against ANN regression predictions 
(predicted load variation plus one hour before observed load 
value) in the Bridgeport control area during winter, from 
Dec 26th 2012 (2am) until Dec 29th 2012 (1am). 

 
 
 
 
 
 
 
 
Fig. 3. depicts the APE load produced by the regression 

forecast, during the same time frame, the critical error 
threshold value (1.5%), the estimated positive cases (CEFlag 
equal 1), as well the negative cases (CEFlag equal 0), using 
the FMeasure metric.  

 
 
 
 
 
 
 
 
 
Fig. 4. shows the same information, using the Precision 

metric.  
 
 
 
 

 
  
 
 
  

In load demand management, the CEFlag prediction may 
be used in several areas. For instance, in operations, it can be 

 
Fig. 2.  Three days Load prediction (Bridgeport in winter).  

Fig. 3.  Three days CEF Flag estimation outcome for testing dataset of 
Bridgeport in Winter, using the FMeasure metric. 

TABLE V 
ENSEMBLE MODEL CEFE FUNCTION METRICS AVERAGE (PRECISION) 

Dataset Precision  Sensitivity FMeasure 
Training 85.090% 8.966% 0.160 
Testing 60.318% 5.453% 0.095 

TABLE III 
REGRESSION METRICS AVERAGE IN TESTING DATASETS 
RMSE 

(Load Var.)  
Adj-RSqr 

(Load Var.) 
MAPE 
(Load) 

21.566 0.958 0.788% 

TABLE IV 
ENSEMBLE MODEL CEFE FUNCTION METRICS AVERAGE (FMEASURE) 

Dataset Precision  Sensitivity FMeasure 
Training 44.556% 59.474% 0.503 
Testing 37.349% 40.367% 0.381 

 
Fig. 4.  Three days CEF Flag estimation outcome for testing dataset of 
Bridgeport in Winter, using the Precision metric. 
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checked to trigger load balance procedures with one hour in 
advance instead of in real-time, which would usually be 
riskier and more expensive.  

In maintenance, it can help to identify instrument failures 
or noisy data, since unseen observations with values affected 
by these kinds of problems tend to produce wrong 
predictions and to be estimated as positive cases. In energy 
trading, there is the option of do no trade when the 
information is not reliable, so the estimated positive cases 
could be just discarded. The exclusion of positive cases is 
supposed to avoid wrong actions or operations based in low 
reliable information. 

TABLE VI summarizes the effect of the exclusion of the 
observations estimated as positive case over the regression 
performance metrics in testing datasets. It shows the 
percentage of improvement over the regression metrics 
values in TABLE III. 

 
 
 
 
 
 
 
For comparison purposes, TABLE VII shows the same 

information, in the case of the use of Prediction metric. 
 
 
 
 
 
 

 
 
These results demonstrate that the use of FMeasure 

produced higher improvement rates and it would be 
recommended when the balance between sensitivity and 
precision is important.  

The improvement rates in all sixteen experiments are 
displayed in TABLE F - APPENDIX II. 

V. CONCLUSION 
The results of the experiments provide evidences that the 

models for pattern recognition were able to estimate 
individual positive cases in testing datasets. 

In other words, they demonstrated that the presented 
methodology is capable to provide reliability estimate for 
individual predictions in regressions, the CEFlag, which can 
be used as an additional assessment to better support tasks 
like decision making, measurement error detection, noisy 
data, outlier identification, and general data analysis and 
investigation.  

The procedure described in this paper imposes no 
restrictions on the type of the regression model to be used or 
the critical error criterion (CE Criterion) to be adopted. The 
only assumption is that training and testing datasets 
observations are generated by the same process. 

Due to space constraints, the outcomes and the evaluation 
metrics of the individual KNN, NCC, and SVM 
classification models are not present in this document. 

However, it is worth mentioning that, in the experiments, 
the Ensemble Model classifiers (EM CEFE Functions) 
achieved the best balanced performance reaching highest 
FMeasure values. In average, SVM classifiers accomplished 
higher Precision values and lower Sensitivity. On the other 
hand, NCC and KNN classifiers performed just the opposite. 

This indicates that CEFE Function modeling is still a 
work in progress. Further research should evaluate other 
strategies to solve the imbalanced class problem.  

An additional contribution of this work is the proposal of 
the used of the proportion of positive cases in the training 
dataset as underlying information to define the value of 
specific parameters of the classifiers: the numbers of K-
neighbors, the penalty values and the soft margin values. 

In this study, we observed the effects of the exclusion of 
observations estimated as positive case only from the testing 
datasets. Further research should investigate how the CEFlag 
information of the training datasets could be applied to help 
improving regression models accuracy.  

With regard to the nature of the estimate information, 
alternatively, we could explore the potential advantages of 
using softer index instead of the binary CEFlag. 

Finally, the research could continue in the direction of 
extend the utilization of the presented methodology in 
combination with other reliability estimate methods cited in 
Section I. 

As just mentioned, only the results of EM classifiers are 
listed in this paper. However, all experimental results of 
each one of the three individual classifiers are available and 
can be provided by the authors on request, as well the 
working datasets and the programming code used in the 
experiments. 

APPENDIX I: VARIABLES DESCRIPTION PROVIDED BY ISO 
NEW ENGLAND 

 
Date: date in MM/DD/YYYY format. 
Hour: hour ending value. 
DA_DEMD: day-ahead demand. 
DEMAND: load used in the settlement process. 
DA_LMP: day ahead location marginal price. 
DA_EC: energy component of the day ahead price. 
DA_CC: congestion component of the day a head price. 
DA_MLC: marginal loss component of the day ahead price. 
RT_LMP: real time locational marginal price. 
RT_EC: energy component of the real time price. 
RT_CC: congestion component of the real time price. 
RT_MLC: marginal loss component of the real time price. 
DryBulb: dry bulb temperature in degrees Fahrenheit. 
DewPnt: dew point temperature in degrees Fahrenheit. 
SYSLoad: actual system load. 
RegCP: Regulation clearing price. 
 
 
 

TABLE VI 
REGRESSION METRICS AVERAGE IN TESTING DATASETS AFTER 

POSITIVE ESTIMATED CASES EXCLUDED (FMEASURE) 
RMSE 

(% improv.)  
Adj-RSqr 

(% improv.) 
MAPE 

(% improv.) 
18.395 

(17.240%) 
0.962 

(0.434%) 
0.691% 

(12.340%) 

TABLE VII 
REGRESSION METRICS AVERAGE IN TESTING DATASETS AFTER 

POSITIVE ESTIMATED CASES EXCLUDED (PRECISION) 
RMSE 

(% improv.)  
Adj-RSqr 

(% improv.) 
MAPE 

(% improv.) 
21.101 

(2.158%) 
0.959 

(0.128%) 
0.773% 

(1.889%) 
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TABLE B 
ANN REGRESSION MODELS OUTCOMES FOR TESTING DATASET 

Experiment RMSE 
(Load Var.)  

Adj-RSqr 
(Load Var.) 

MAPE 
(Load) 

BosW 27.060 0.960 0.668% 
BosS 30.679 0.957 0.779% 
BriW 36.026 0.966 0.737% 
BriS 41.890 0.960 0.862% 
BurW 7.857 0.949 0.830% 
BurS 6.731 0.951 0.765% 
ConW 13.903 0.968 0.739% 
ConS 13.831 0.964 0.761% 
PorW 15.660 0.948 0.904% 
PorS 13.722 0.944 0.853% 
ProW 10.219 0.958 0.802% 
ProS 11.602 0.950 0.908% 
WinW 37.220 0.963 0.776% 
WinS 41.672 0.960 0.880% 
WorW 17.505 0.972 0.605% 
WorS 19.481 0.961 0.738% 

TABLE C 
CLASSIFIERS: SPECIFIC PARAMETERS (FMEASURE) 

Experiment KNN 
#Neighbors     Penalty 

NCC 
Penalty 

SVM 
Soft Margin 
(Pos.Case) 

BosW 11 6.155 6.155 2.689 
BosS 10 6.092 6.092 2.680 
BriW 6 2.332 4.194 2.332 
BriS 6 2.416 4.578 2.416 
BurW 10 2.562 5.345 2.562 
BurS 10 2.557 5.315 5.315 
ConW 9 4.884 4.884 2.478 
ConS 4 5.788 5.788 2.635 
PorW 6 2.013 3.040 2.013 
PorS 6 2.064 3.198 2.064 
ProW 7 3.562 3.562 2.171 
ProS 4 3.817 3.817 2.240 
WinW 7 4.090 4.090 2.307 
WinS 4 4.771 4.771 2.456 
WorW 6 2.682 2.682 2.682 
WorS 3 2.760 6.674 2.760 

TABLE E 
EM CEFE FUNCTION METRICS FOR TESTING DATASETS (FMEASURE) 
Experiment Precision  Sensitivity F-measure 
BosW 33.981% 47.945% 0.398 
BosS 31.481% 36.170% 0.337 
BriW 50.820% 68.889% 0.585 
BriS 40.816% 35.398% 0.379 
BurW 36.036% 38.095% 0.370 
BurS 26.582% 23.596% 0.250 
ConW 36.036% 50.000% 0.419 
ConS 35.484% 36.264% 0.359 
PorW 42.857% 26.087% 0.324 
PorS 28.302% 13.636% 0.184 
ProW 39.286% 42.308% 0.407 
ProS 39.535% 40.157% 0.398 
WinW 42.953% 64.000% 0.514 
WinS 38.961% 46.154% 0.423 
WorW 38.462% 44.643% 0.413 
WorS 36.000% 32.530% 0.342 

TABLE D 
CLASSIFIERS: SPECIFIC PARAMETERS (PRECISION) 

Experiment KNN 
#Neighbors     Penalty 

NCC 
Penalty 

SVM 
Soft Margin 
(Pos.Case) 

BosW 10 1,265 1,720 1,000 
BosS 8 1,000 1,000 1,000 
BriW 6 1,000 1,000 1,000 
BriS 2 1,000 1,641 1,243 
BurW 8 1,000 1,255 1,000 
BurS 5 1,000 1,683 1,000 
ConW 8 1,000 1,000 1,000 
ConS 6 1,000 1,000 1,705 
PorW 3 1,000 1,000 1,505 
PorS 4 1,000 1,207 1,524 
ProW 6 1,000 1,000 1,000 
ProS 5 1,000 1,000 1,000 
WinW 6 1,000 1,000 1,000 
WinS 4 1,000 1,246 1,246 
WorW 10 1,000 1,264 1,000 
WorS 8 1,000 1,000 1,270 

TABLE F 
EM CEFE FUNCTION METRICS FOR TESTING DATASETS (PRECISION) 
Experiment Precision  Sensitivity F-measure 
BosW 75,000% 4,110% 0,078 
BosS 0,000% 0,000% 0,000 
BriW 68,750% 12,222% 0,208 
BriS 0,000% 0,000% 0,000 
BurW 62,500% 4,762% 0,088 
BurS 0,000% 0,000% 0,000 
ConW 80,000% 10,000% 0,178 
ConS 100,000% 4,396% 0,084 
PorW 60,870% 10,145% 0,174 
PorS 75,000% 2,727% 0,053 
ProW 66,667% 9,615% 0,168 
ProS 80,000% 3,150% 0,061 
WinW 62,963% 17,000% 0,268 
WinS 100,000% 0,769% 0,015 
WorW 33,333% 7,143% 0,118 
WorS 100,000% 1,205% 0,024 

TABLE A 
ANN REGRESSION MODELS OUTCOMES  FOR TRAINING DATASET 

Experiment RMSE 
(Load Var.)  

Adj-RSqr 
(Load Var.) 

MAPE 
(Load) 

BosW 26.241 0.963 0.630% 
BosS 25.811 0.964 0.623% 
BriW 37.028 0.963 0.756% 
BriS 36.680 0.963 0.732% 
BurW 6.274 0.961 0.692% 
BurS 6.207 0.962 0.685% 
ConW 13.039 0.968 0.714% 
ConS 12.309 0.971 0.672% 
PorW 14.463 0.946 0.874% 
PorS 14.068 0.948 0.840% 
ProW 10.756 0.952 0.814% 
ProS 10.356 0.955 0.789% 
WinW 37.780 0.961 0.759% 
WinS 35.947 0.965 0.715% 
WorW 17.936 0.967 0.644% 
WorS 17.453 0.968 0.626% 
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TABLE G 
REGRESSION METRICS IN TESTING DATASETS AFTER POSITIVE 

ESTIMATED CASES EXCLUDED (IMPROV. OVER VALUES IN TABLE B) 

Experiment RMSE 
(Load Var.)  

Adj-RSqr 
(Load Var.) 

MAPE 
(Load) 

BosW 21.748 0.968 0.549% 
(Improv.%) 19.632% 0.841% 17.841% 
BosS 27.533 0.961 0.704% 
(Improv.%) 10.255% 0.381% 9.620% 
BriW 27.079 0.977 0.566% 
(Improv.%) 24.835% 1.144% 23.267% 
BriS 38.587 0.963 0.776% 
(Improv.%) 7.885% 0.286% 9.957% 
BurW 6.577 0.957 0.736% 
(Improv.%) 16.300% 0.843% 11.348% 
BurS 6.172 0.954 0.713% 
(Improv.%) 8.306% 0.351% 6.716% 
ConW 11.246 0.975 0.633% 
(Improv.%) 19.112% 0.670% 14.447% 
ConS 12.007 0.965 0.679% 
(Improv.%) 13.189% 0.094% 10.806% 
PorW 13.732 0.951 0.827% 
(Improv.%) 12.315% 0.378% 8.483% 
PorS 13.492 0.941 0.830% 
(Improv.%) 1.678% -0.354% 2.713% 
ProW 21.748 0.968 0.549% 
(Improv.%) 19.632% 0.841% 17.841% 
WinW 8.534 0.964 0.684% 
(Improv.%) 16.491% 0.586% 14.742% 
WinS 10.730 0.941 0.800% 
(Improv.%) 7.520% -0.898% 11.878% 
WorW 27.763 0.973 0.593% 
(Improv.%) 25.409% 1.046% 23.594% 
WorS 35.991 0.966 0.754% 
(Improv.%) 13.634% 0.584% 14.326% 
WinW 8.534 0.964 0.684% 
(Improv.%) 16.491% 0.586% 14.742% 
WinS 10.730 0.941 0.800% 
(Improv.%) 7.520% -0.898% 11.878% 
WorW 27.763 0.973 0.593% 
(Improv.%) 25.409% 1.046% 23.594% 
WorS 35.991 0.966 0.754% 
(Improv.%) 13.634% 0.584% 14.326% 
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