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Abstract—The cost of autonomous development is substantial.
Although supervised learning is effective, the cost demand on
teachers is often too high to be constantly applied. Reinforce-
ment learning can take advantage of physical reality due to
environmental feedback and inspections. Information required
in reinforcement learning is not as specific as is required in
supervised learning. Integration theories, methods, and analysis
of these two learning strategies are still rare in the literature
although such integration has been well known in the animal
kingdom. Based on our prior work on a general purpose frame-
work called Developmental Network and its embodiment Where-
What-Network, we present our theory, method, and analysis for
integration of supervised learning and reinforcement learning in
this paper. Different from all other known work on reinforcement
learning, this DN framework uses fully emergent representation
to avoid the brittleness and task-specific representations. Central
in the integration is not just to provide a freedom for the teacher
to choose the mode of learning, which is necessary especially
when the physical non-living world is an implicit teacher, but
the mechanism of scaffolding. In our experiment the scaffolding
is reflected by allowing the location motor(LM) neurons to
gradually refine representation through splitting(mitosis) in a
coarse to fine scheme. We report our experimental work in a very
challenging learning setting: both object and backgrounds are
unknown(cluttered settings) and concepts(e.g. location and type)
emerge from agent-environment interactions, instead of rigidly
handcrafted.

I. INTRODUCTION

Integrated learning is prevalent in animal kingdom. Parents

supervise their baby’s basic motor skills while the baby prac-

tice and refine his action based on environmental feedbacks.

On the other hand, computational models use separate modules

in different modes of learning, making the representation and

learned skills hard to transfer between modes.

Our prior work modeled effects of serotonin and dopamine

on motor neurons where serotonin discourages firing of the

motor neurons while dopamine encourages firing [9]. Our

work last year expanded the effect of these two neuromodula-

tors to all neurons in internal brain area of the developmental

network [17].

In this paper we incorporate the pathways into the Where-

What-Network, modeling the effect of reward and punishment

in the dorsal pathway and ventral pathway. Inspired by the

instructional scaffolding process proposed by A. N Applebee

in [1] when he was observing how young children learns to
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write, we implement a coarse to fine location concept learning

scheme to the network which allows the network to learn

finer location concepts using previously learned locations.

We formalize the definition of teaching cost and prove the

efficiency of integrated training scheme. We also demonstrate

the robustness of the network under several mixed training

schemes: (1) small percentages of errors in instructions when

learning is supervised, and (2) small percentages of errors in

reinforcement when using integrated learning training scheme.

This shows the temporal and spatial optimality of the inter-

nal brain function, which is constructed based on the Lobe

Component Analysis proposed by M. Luciw and J. Weng in

[16].

A. Novelty and importance

The approach in this paper is novel in several ways:

1) Integrated Learning: We integrate the reward and pun-

ishment learning pathways into Where What Network, which

originally uses supervised learning scheme. The network now

can be trained with supervised learning and reinforcement

learning algorithm, which is one step closer to mimic the

learning procedure of human infants. Our previous works in

reinforcement learning only implement these two pathways in

Developmental Network, which only has one concept zone.

WWN is much more complicated because two concepts need

to be learned separately.

Integrated learning systems has been found in Actor-

critic architecture [10], CLARION [13], and Unified Learning

Paradigm [2]. However, the first model is heavily based on TD

algorithms, which uses hand crafted computation to deal with

reinforcement. The last two models separate their computation

with different modules, which is not biologically plausible.

Likewise, the feed forward neural networks in [4] introduce

Q-learning into the network architecture, which is different

from our approach. The integrated system introduced in this

paper uses the same neural computation regardless of the

availability of supervision or reinforcement. It functions as

a developmental program and fully integrates reinforcement

learning using neuromodulation.

2) Coarse-to-fine learning: We use a coarse to fine learning

scheme, inspired by the concept of instructional scaffolding

as is explained in section I-D, for the network to learn spatial

concepts. This allows the network to use the already learned

concepts to learn finer spatial concepts. This also minimizes

the number of educated guesses when the network is trying to

figure out the correct action. We formally prove that coarse-to-

fine learning minimizes teaching cost compared to supervised

2014 International Joint Conference on Neural Networks (IJCNN) 
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1517



learning and reinforcement learning.

Similar concept is proposed by J.L.Elman in [3].

J.L.Elman’s network grows in size as the task is proven to be

beyond the ability of current network. In our work, however,

we scaffold by refining the motor area instead of changing

the network architecture. Splitting motor neurons to refine the

learned skills is novel as far as we are aware.

B. Where What Network

Where What Networks [5] are a visuomotor version of

the Developmental Network, modeling the dorsal (where)

stream and the ventral (what) stream of visual and behavioral

processing.

Where-What Networks (WWN) have been successfully

trained to perform a number of tasks such as visual attention

and recognition from complex backgrounds [7], stereo vision

without explicit feature matching to generate disparity outputs

[11], and early language acquisition and language-based gen-

eralization [8].

The lobe component analysis (LCA) [16] is used as an

algorithm for neural learning in a cortical area in WWN. It

uses the Hebbian mechanism to enable each neuron to learn

based on the presynaptic and post-synaptic activities that are

locally available to each synapse. In other words, the learning

and operation of WWN do not require a central controller.

The learning algorithm and the network architecture are

introduced in detail in section II-A.

C. Neuromodulation: reward and punishment

The Motivated Developmental Network uses biological

plausible neural computation methods to form the optimal

feature representation in the ❨ area [17]. In the previous

work, we built a motivational system that learns the reward

and punishment not only by excitation and inhibition in the

action area (done by S. Paslaski & C. VanDam [9]), but also

by extracting the representation of important events based

on neuromodulation. The dynamic learning rate allows the

network to form spatial and temporal optimal representation

over the important events when the input data set contains

irrelevant information.

The model consists of three pathways: an unbiased pathway,

a dopamine pathway to learn reward and a punishment path-

way to learn punishment. When the event is important, which

is defined as rewarded or punished when the agent choose an

action, the ❱ ❚❆ or ❘◆ would release dopamine or serotonin

based on the reinforcement. Corresponding pathway would

then link the event, the action and the reinforcement together.

The learning rate of the network would also be much higher

thus allocating more resources to learn the event. Reward

pathway would excite certain favorable behaviors and the

punishment pathway would inhibit certain behaviors leading

to punishment.

D. Coarse-to-fine learning

Coarse-to-fine learning is a learning process designed to

promote a deeper level of understanding using previously

learned knowledge. The concept has its origins in the work

of the psychologist Vygotsky as well as in studies of early

language learning [1].

Coarse-to-fine learning is desirable because it allows re-

inforcement learning in complicated tasks. The neuromodu-

lation approach in this paper requires the network to make

educated guesses before learning. The guess however, would

turn out to be totally irrelevant if the task is too complicated.

As we explain later in section III, the cost would increase

quadratically with respect to the task complexity. Coarse-to-

fine learning however, reduces the growth rate into a linear

function,allowing implementation on complicated tasks.

II. NETWORK ARCHITECTURE

A. Where What Network

Here we introduce how learning takes place in Where-What-

Network.

As illustrated in Figure 1, the network consists of one area

of neurons modeling the early sensory areas LGN/V1/V2. The

signals then diverge into two pathways, the dorsal (or where)

pathway, and the ventral (or what) pathway. The two pathways

are bidirectionally connected to the location area and the type

area in the frontal cortex, respectively. Unlike the sensory

cortex, we assume that the outputs from the location area and

the type area can be observed and supervised by teachers (e.g.,

via the motor areas in the frontal cortex).

Fig. 1. A schematic of the Where-What Networks (WWN). It consists of a
sensory cortex which is connected to the What area in the ventral pathway
and to the Where area in the in the dorsal pathway.

B. The learning algorithm

The learning algorithm of WWN is described in detail in

previous papers [6] [12] [14]. Here we only introduce the main

points of the algorithm to avoid redundancy.

1) Pre-response of the neurons: Each brain area uses

the same area function ❢ , which allows the internal area

to develop representations of the training data. Generally

speaking, each neuron in internal area stores two sets of weight

vector ✭✈❜✿✈t✮, representing bottom-up weight and top-down

weight separately. Similarly, neurons in motor area only have

bottom-up weight, while neurons in sensors only have top-

down weight. The top-down weight in sensors is useful when

we need to predict future images based on current internal
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Fig. 2. An example of activation patterns and neuronal changes during
learning process in the network. The network selects winning neuron based
on top-k competition over the top-down responses and bottom-up responses.
The pattern on the left shows the preresponse of the neuron, and the grid
on the right shows the final response of the neuron. The winning neuron is
marked in red at the final response layer.

responses. In the current program we do not need that set of

weight.

The pre-response value for each neuron is calculated as:

r✭ ❴✈❜❀
❴�❀ ❴✈t❀ ❴✁✮ ❂ ✭ ❴✈❜ ✂

❴� ✰ ❴✈t ✂ ❴✁✮✄✷ (1)

where � and ✁ are bottom up input and top down input

respectively. Each vector in equation (1) is normalized before

calculation:

❴✈ ❂ ✈✄❥❥✈❥❥

Each neuron in the ❨ area extracts local input from the

input image. The local window is called receptive field of that

neuron, depicted in Fig. 2 as the red box in the input image.

Neurons in the ❩ area accepts the global response values of

all the neurons in the ❨ area as bottom up input. The response

values are calculated based on top-k competition explained in

the following subsection.

2) Top-k competition: The final neuron response in ❨ area

is given by top-k competition. The k neurons with the highest

pre-response value would fire with the adjusted responses

while other neurons would be suppressed. To adjust the

response values based on their ranking:

r
✵
❂

☎
r ✂ ✭r ✆ r❦✝✶✮✄✭r✶ ✆ r❦✝✶✮ r✶ ✔ r ✔ r❦✝✶

✞ ♦✟❤❡r✇✐s❡

where r✶ is the highest response value; r❦✝✶ is the ✠ ✰ ✡th

highest response value.
3) Hebbian-like learning: If a neuron wins in the multistep

lateral competitions described above, its bottom up weight and

top down weight would update using the following Hebbian

learning rule:

☛✉☞✌ ✥ ✍✶☛✉☞✌ ✰ ✍✎r✌①t

where ✍✡ and ✍✷ determine retention and learning rate of the

neuron, respectively:

✍✶ ❂
♠✌ ✆ ✡ ✆ ✖✭♠✌✮

♠✌
❀ ✍✎ ❂

✡ ✰ ✖✭♠✌✮

♠✌
(2)

with ✍✶✰✍✎ ✑ ✡, ♠✌ is the neuron’s firing age, i.e. ♠✌ ❂ ✡ in

the beginning of training, and increments by one every time

the neuron wins lateral competition.

✖ is a monotonically increasing function of♠✌ that prevents

the learning rate ✍✎ from converging to zero as ♠✌ increases.

✖✭♠✌✮ ❂

✽
❃❃❁

❃❃✿

✞❀ if ♠✌ ✏ ✟✌

❝✭♠✌ ✆ ✟✶✮✄✭✟✎ ✆ ✟✶✮❀ if ✟✶ ✏ ♠✌ ✏ ✟✎

❝ ✰ ✭✟ ✆ ✟✎✮✄✒❀ ♠✌ ✓ ✟✎

We used typical value ✟✡ ❂ ✡✞❀ ✟✷ ❂ ✡✞✸❀ ❝ ❂ ✡❛♥❞✒ ❂ ✡✞✹

in the experiment.

The same Hebbian learning rule updates the top-down

weights of neuorns using similar equation:

☛✕☞✌ ✥ ✍✶☛✕☞✌ ✰ ✍✎r✌✗t

The firing ❩ neuron accepts Y area firing patterns as bottom

up input and updates using the same Hebbian learning rule.

C. Motor neuron splitting: use old knowledge to learn new

skills

When a young child learns to recognize the object at certain

location, he learns the spatial concepts gradually. He also

uses the already learned knowledge to help him acquire new

skills. [15] shows how children develop projective/Euclidean

understanding before they could comprehend in front of and

behind.

Our network currently models this procedure in the location

motor (LM), but similar procedures can be applied to type mo-

tor (TM) easily. Coarse to fine learning is achieved by splitting

each of the location motor neuron into four child neurons, each

representing a finer spatial concept, as is illustrated in Fig.3.

The following steps would take place when LM splitting

occurs:

1) Child location motor neuron copies ✈❜ from parent

neuron.

2) Firing age of child location motor neuron set to 1 (or a

very low number).

3) ❨ area neurons copy connection to the parent neuron ✈t
to the child location motor neuron.
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Fig. 3. LM splitting mechanism. Each location motor neuron splits into four
child neurons to learn finer spatial concepts.

D. Reward and punishment pathways

The architecture of the two pathways are introduced in detail

in the previous papers [9] [17]. Here we only give a brief

summary due to limited space.

Previous work modeled two neurotransmitters in human

brain: serotonin and dopamine. These two neurotransmitters

are released separately in rewarded or punished events. The

model simplifies the role of those two neurotransmitters,

i.e. dopamine is released when the agent is rewarded, and

serotonin is released when the agent is punished. The papers

demonstrated that the reward and punishment system built

based on Developmental Network enables the agent to learn

according to the sweetness(reward) and pain(punishment) it

receives when making educated guesses rather than specific

instructions of correct movement(supervision).

Although Fig.II-D has 11 areas on the plot, in the program

we simplify that architecture into three pathways: ❳✉ ✡

❨✉ ✡ ❩✉ is the unbiased pathway, ❢❳✉❀❳♣❣ ✡ ❨♣ ✡ ❩♣ is

the punishment pathway, and ❢❳✉❀❳♣❣ ✡ ❨s ✡ ❩s is the

reward pathway.

VTA and RN are treated as conceptual area that trigger

firing when reward or punishment is present, corresponding to

two if clauses in the program. ❨❱ ❚❆ and ❨❘◆ are the same

areas as ❨♣ and ❨s, using different neuromodulators.

The network calculates three responses: r✉ for response

value in the unbiased pathway, r♣ for response value in the

punishment pathway and rs for response value in the reward

pathway.

The final response value is given by:

�✐ ✥ �✐✉✭✶ ✰ �✐s ✁ ✌�✐♣✮ (3)

✌ is usually larger than 1, indicating that inhibition from the

pain pathway is much more effective compared to excitation

from the reward pathway.

Another effect of neuromodulators is that they would in-

crease the learning rate in the corresponding areas. This would

change equation 2:

☞✂ ❂ ✶ ✁ ☞✷❀ ☞✷ ❂ ☛ ✄
✶ ✰ ✖✭♠✐✮

♠✐
(4)

In the experiment, ☛ ❂ ☎.

Where What Network, being an upgraded version of Devel-

opmental Network with a dorsal stream and a ventral stream,

should be able to incorporate the reinforcement learning

schedule as well. The difficulty, however, lies in the enormous

✆✝ ✞✟✟✠✍✎✏

✆✑ ✞✒✠✒✏

✆✓ ✞✒✠✒✏

✔✝ ✞✕✒✠✕✒✏

✔✑ ✞✒✠✒✏

✗ ✞✘✎✠✘✏

✔✓ ✞✒✠✒✏

✔✙✚✞✒✠✒✏

✔✛✜✢ ✞✒✠✒✏

✣✤ ✞✒✠✒✏

✦✧★✞✒✠✒✏

●✩✪✫✬✩

●✩✪✫✬✩

●✩✪✫✬✩

●✩✪✫✬✩

●✩✪✫✬✩

●✩✪✫✬✩

●✩✪✫✬✩

●✩✪✫✬✩

●✩✪✫✬✩

●✩✪✫✬✩

▲✪♦✬✩ ✞✕✯✪✕✏

▲✪♦✬✩ ✞✕✯✪✕✏

●✩✪✫✬✩

●✩✪✫✬✩

Fig. 4. A DN with 5-HT and DA modulatory subsystems. It has 11 areas.
RN has serotonergic neurons. Neurons in ✱✲✳ or ✴ have serotoninergic
synapses. VTA has dopaminergic neurons. Neurons in ✱✵ ✸✹ or ✴ have
dopaminergic synapses. The areas ✱✺✻ ✱✼✻ ✱✽✻ ✱✲✳ ✻ ✱✵ ✸✹ should reside in
the same cortical areas, each represented by a different type of neurons,
with different neuronal densities. Within-area connections are simulated by
top-k competition.The number of neurons in the figure does not necessarily
corresponds to the number of neurons we use in the experiment. The figure
does not show all the neurons in the subareas due to limited space. The
✴ neurons compute unbiased response( the first column, using glutamate),
inhibition response ( second column, using serotonin), and excitation response
(third column, using dopamine). ”Global” indicates that the neurons accept
input from all neurons in the previous area. RN (raphe nuclei) is the subarea
inside human brain that secretes serotonin. VTA (Ventral tegmental area) is the
subarea that secretes dopamine. Basically Xp and Xs does not produce those
neurotransmitters but only sends input signals to those two brain areas. The
function of these two layers is for biological correctness. Thus each neuron
in ✾✼ ( or ✾✽) corresponds to one neuron in RN (or VTA). The link is one
to one, thus ”Local”.

amount of educated guesses generated by the combination of

two Z areas (5 types and 64 locations generate 320 possible

guess result). This is no longer a problem in the incremental

skill learning scheme. A new location, which corresponds to

a new neuron in ❩ area, inherits its bottom up weight and

other properties from its parent neuron, which corresponds to

a larger area enclosing the target location. Assuming the agent

learns the old set of location well enough, then the agent would

just need to distinguish the child neurons of one specific parent

neuron.
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III. ANALYSIS ON TEACHING COST

The goal of this integration system is to reduce the cost of

teaching by blending reinforcement learning and supervised

learning together. We are going to prove in this section that

coarse to fine learning process would reduce cost in teaching.

A. Definition

To justify the claim we need to formalize the definition of

cost of teaching. The intuition is that the cost of supervision,

when the task is complicated, should be higher compared to

the cost of given reward and punishment. Supervising the

act of the agent would require the teacher to give detailed

instruction to the learner, while giving reward and punishment

is much easier for the instructor. Thus we define the cost of

teaching as follows:

1) Cost of supervision. As is analyzed above, the total

cost of supervision is proportional to the cost in each

supervision and the number of instructions given. Thus

we have:

❈s ❂ ♥s✖s (5)

where ✖s denotes the cost in each detailed instruction,

and ♥s is the number of instructions. ✖s remains as a

constant because the teacher is assumed to have already

mastered the task and therefore can offer instruction at

constant cost.

2) Cost of giving reward and punishment. To give re-

ward/punishment, the teacher has to compare the ed-

ucated guess given by the agent with the correct move-

ment. The cost of the comparison remains constant

because the teacher already knows the answer. Thus the

cost ❈r to give reward or punishment is defines as:

❈r ❂ ♥r✖r (6)

where ♥r is the number of reward/punishment given

during learning. ✖r is usually much smaller than ✖s

because giving detailed supervision would require much

more elaborate instruction.

3) Total cost. Total cost of the teaching process is easy once

we define the two costs above.

❈ ❂ ❈s ✰ ❈r (7)

One thing to notice about the above definitions is that these

definitions are based on intuition and may suffer from inaccu-

racy due to lack of supporting literature. On the other hand we

found these definitions useful as a guidance in our integrated

system and these definitions are in accordance with our daily

experience.

B. Cost Analysis

Here we compare teaching cost in three different approaches

using the network architecture we introduced in previous

sections.

The tasks is to recognize ♥t types of objects, which would

appear at ♥❧ locations in the input image. For simplicity, let

us assume that ♥❧ is the power of 4, supervised learning and

reinforcement learning takes ❦ epochs, meaning that we train

each object at each location twice.

1) Supervised Learning: From eq. (5) and (7), total cost

can be calculated as:

❈ ❂ ♥s✖s

❂ ❦♥t♥❧✖s
(8)

2) Reinforcement Learning: Reinforcement learning is a

little bit complicated. The network has to make educated

guesses each time. Assuming we start from scratch (random

weight) when training the network, the expected number of

guesses ♥❣ at each given image is

❊✭♥❣✮ ❂ ♥t♥❧�✷ (9)

This is because the network has not learned anything for

the first epoch, so it can make all possible guesses with

equal probability. After the first epoch, however, the reward

pathway links the reward with the input and its correspond

correct action, thus ideally the network would always perform

correctly.

Thus the expected total cost can be calculated as:

❊✭❈✮ ❂ ❊✭❈r✮ ❂ ✖r✭❊✭♥
✶
r✮ ✰

✁✂✶❳

✐✄☎

❊✭♥
✐
r✮✮ (10)

where ♥✐r stands for the number of reward/punishment given

in the ✆th epoch. Based on previous discussion, ♥✶r ❂

♥t♥❧❊✭♥❣✮ ❂ ✭♥t♥❧✮
☎�✷ and ♥✐r ❂ ♥t♥❧, for ✆ ❃ ✝.

Following eq.(10), we have:

❊✭❈✮ ❂ ✖r✭✭♥t♥❧✮
☎�✷ ✰ ✭❦ ✞ ✝✮♥t♥❧✮

❂ ✖r♥t♥❧✭♥t♥❧�✷ ✰ ❦ ✞ ✝✮
(11)

3) Integrated Learning: With only one split in LM motor,

the integrated learning process can be separated into 3 steps:

1) learn ♥❧�✹ locations and ♥t types with supervision. The

number of supervision is lowered by 4 because we are

training at less locations. This step would take ❦ epochs

and the cost ❈s would be ❈s ❂ ❦ ✟ ✖s ✟ ♥❧ ✟ ♥t�✹.

2) split LM neuron as is introduced in previous section.

3) learn ♥❧ locations and ♥t types with reinforcement for k

epochs. The difference now is that the expected number

of guesses at the first epoch would no longer be ♥t♥❧�✷

as is in 9. Based on previous experience, the network

has learned to narrow the possible location into the four

child locations. The expected number of guesses is now

cut down to 2 in ideal cases. Thus we have:

❊✭❈r✮ ❂ ✖r✭❊✭♥
✶
r✮ ✰

P✁✂✶
✐✄☎ ❊✭♥

✐
r✮✮

❂ ✖r✭✷♥t♥❧ ✰ ✰✭❦ ✞ ✝✮♥t♥❧✮

❂ ✖r♥t♥❧✭❦ ✰ ✝✮

Putting all steps together, we have,

❊✭❈✐✮ ❂ ❈s ✰ ❊✭❈r✮

❂ ❦✖s♥t♥❧�✹ ✰ ✖r♥t♥❧✭❦ ✰ ✝✮

❂ ♥t♥❧✭❦✖s�✹ ✰ ✖r✭❦ ✰ ✝✮✮

(12)
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TABLE I
TEACHING COST IN DIFFERENT LEARNING SCHEMES

Learning Scheme Expected Cost

supervised ❦✖s♥t♥❧

reinforcement ✖r✭♥t♥❧❂✷ ✰ ❦ � ✶✮♥t♥❧

integrated ✭❦✖s❂✹ ✰ ✖r✭❦ ✰ ✶✮✮♥t♥❧

0 5 10 15 20 25 30

Task complexity(n
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Fig. 5. Teaching cost of three different learning schemes. Plot parameter:

✖s ✁ ✸❀ ✖r ✁ ✶❀ ❦ ✁ ✸. This plot is based on table I. Reinforcement
learning becomes more costly as the task complexity increases. The cost
of supervised learning and integrated learning remains proportional to the
complexity. Moreover, integrated learning cost less compared to supervised
learning.

4) Comparison and Discussion: The expected cost of all

three learning schemes is summarized in table I. Fig.5 illus-

trates how the cost changes with respect to the complexity of

the given task. For simple tasks, reinforcement learning would

cost less because there is limited number of educated guesses.

However, as the complexity increases (more locations/types to

learn), reinforcement learning would not be plausible because

the cost would increase quadratically instead linearly with

respect of ✂✄✂☎.

The cost of integrated learning, on the other hand, remains

linear with respect to the complexity of the given task. It is

also lower than the cost of supervised learning, which makes

it a desirable learning scheme. One thing to notice is that the

LM neuron only splits once in our analysis. We anticipate the

difference would be more noticeable with more splitting in the

LM neurons.

IV. EXPERIMENT

We show that the performance of our integrated learning

system in this section.

A. Coarse to Fine Learning

The network is first trained to learn rough locations of the

foreground object. During the first epoch we train only four

different locations: upper left, upper right, lower left and lower

right. The network architecture then splits each one of its mo-

tor neurons into four neurons to learn to discriminate in higher

precision. The new neurons copy the weights and connections

of its parent neuron. The four new motor neurons represents

Fig. 6. Sample training and testing images. Training images are generated
by stitching foreground objects onto different locations in the random natural
background images. In the experiments we used five different types of
foreground object: cat, dog, truck, pig and elephant.

four sub-locations of the parent neuron. The network then

goes through training process once again to refine those copied

neurons. More splitting and training would take place if higher

precision is required.

This is the base case of our experiment. Training is achieved

using supervised training scheme described in previous sec-

tions. The network learns to recognize 5 foreground objects at

16 places and 64 places.

Result is shown in table II.

Data: training object list, training location list

Result: foreground object type and location

initialization;

% Training phase starts ;

for each training object do

for each true location do

Generate training picture;

Get rough location;

Find firing neuron(object type, rough location,

training picture);

Update ✈❜, ✈✄ of firing neuron;

Update ✈❜ of firing ③ neuron in LM and TM;

end

end
Algorithm 1: Supervised learning environment

B. Supervised learning with errors in instruction

When trained in real time, the network would occasionally

receive mislabeled training data. Instead of trying to handcraft

a filter to get rid of these ”bad” data beforehand, our network

remembers those mislabeled data and tries to eliminate those

inconsistent labels via top-k competition.

In the experiment, we added in small portions of error in

labels when training the network. As one can easily expect,

recognition rate is lower with more errors in the training data.

C. Reinforcement learning

In this experiment we added in reinforcement learning

mechanism into the previous network setup. Two more path-

ways are added to the network as is described in section II-D

The first four rough locations are taught to the network using

supervised training scheme. The network then splits its motor

neurons to learn the foreground object in higher precision.

For a given input image, the network should be able to recall

its rough location, which corresponds to the spatial concept
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Data: training object list, training location list

Result: foreground object type and location

initialization;

% Training phase starts ;

for each training object do

for each true location do

Generate training picture;

Get rough location;

while guess num ✔ max guess num do

make educated guesses;

if guess wrong then

Give punishment;

else

Give reward;

end

if reward is delayed then

while delay do

Learn current behavior;

end

end

Learn reward or punishment;

end

end

end
Algorithm 2: Reinforcement learning environment

Data: training object list, training location list

Result: foreground object type and location

initialization;

% Training phase starts ;

Initialize network with 4 LM neurons ;

Train network supervised at 4 rough locations;

while LM neuron num ✔ target num do

split LM neurons;

while epoch num ❧❡q max epoch num do

if epoch num == 1 then

train network with supervision;

else

train network with reinforcement;

end

end

end
Algorithm 3: Integrated learning environment

TABLE II
SUPERVISED LEARNING WITH ERROR IN INSTRUCTION

TM error rate (%) LM distance (pixels) Error in instruction (%)

0 0.4595 0

3.44 0.6865 5

4.37 0.7892 10

6.25 1.0865 15

Fig. 7. Bottom-up weight in Y neurons. This picture shows the bottom up
weight of the ❨ area neurons, layer 1, after splitting 2 times and trained with
reinforcement, 9 epochs at each split. 5 more similar layers are used in the
network. The picture shows that the network successfully captures the features
of the foreground objects following algorithm 3.

Fig. 8. Top-down LM weight for Y neurons. This picture shows the top-down
weight for Y neurons in the first layer, after splitting 2 times and trained with
reinforcement, 9 epochs at each split. 5 more similar layers are used in the
network. The picture shows that the network successfully linked most neuron
with one corresponding location after training following algorithm 3.
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Fig. 9. LM average distance with error in reinforcement. The figure shows the
distance between the recognized location and the true location with different
percentages of error in reinforcement. The figure shows that the network can
tolerate small percentages of wrong instructions.
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Fig. 10. TM error rate with error in reinforcement. The figure shows the
error percentage of the type recognition result with different percentages of
error in reinforcement. The figure shows that the network can tolerate small
percentages of wrong instructions.

prior to splitting. This means that after splitting, only 4 neurons

in the new Z area would share the highest response value. Thus

the network would make at most four guesses before it receives

a reward for correct behavior. This approach minimizes the

number of educated guesses needed for the network to figure

out the correct answer.

In the experiment, the network is allowed to make at most

10 educated guesses at each picture.

D. Errors in reinforcement

As is explained in IV-B, training data may contain errors.

We added errors in the reward and punishment to further

exploit the network’s potential. The wrong reinforcement in

the experiment is issued as follows: a) if the educated guess

is correct, then give punishment at both pain sensor for

location motors and pain sensor for type motors. b)If the

educated guess is wrong, however, reward is given to the

network. Recognition rate in TM is plotted in Fig.10. Location

recognition distance is plotted in Fig.9.

V. CONCLUSIONS

This paper extends the previous work on Where-What-

Network in a new direction- integrated learning. In the new

learning mode, both the agent and the environment are allowed

to alter the mode of learning(supervised or reinforcement

learning). Our analysis showed that integrated learning have

a lower cost compared to purely supervised or purely rein-

forcement learning modes. The quality of either learning mode

affects the overall speed of learning.
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