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Abstract— The application of the Cognitive RAM (CogRAM) 
weightless neural net in testing a keystroke biometrics user 
authentication system for a numeric keypad is discussed in this 
paper.  The two-factor user authentication system developed 
here uses the common password that is complemented with the 
keystroke patterns of the users.  The keystroke pattern is 
represented by the force applied to constitute a fixed length 
passkey to compose a complete pattern for the entered 
password.  The system has been designed and developed around 
an 8 -bit microcontroller, based on the AVR enhanced RISC 
architecture.  The preliminary experimental results showed that 
the designed system can successfully authenticate the unique 
and consistent keystroke biometric patterns of the users. 

I. INTRODUCTION 
n the context of biometrics, recognition and 

authentication are two common but different applications of 
biometric technologies.  Recognition involves finding the one 
unique identity amongst the many stored identities, whereas 
authentication relates to matching or verifying the patterns 
against a single user’s stored identity.  Essentially, 
recognition is the claiming of an identity whereas 
authentication is the act of verifying or proving the claimed 
identity.  

Although a variety of authentication devices may be used 
to verify a user’s identity, passwords remain the most 
preferred method especially when a keyboard is the data entry 
device.  This is because password authentication is relatively 
inexpensive, intuitively familiar to most users, and supported 
by most operating systems.  However, unless it is used 
correctly, the level of security provided by passwords can be 
low.  Despite many years of widespread use, the issue of weak 
user password still exits. Hence, multi-factor approaches are 
needed to extend and strengthen the security level that 
passwords provide.  This reinforcement should be transparent 
and indiscernible to the users and does not require any 
additional efforts while they are entering the normal 
authentication information (user ID and password).  In 
addition to different and personalized passwords for each 
user, the users also have a unique way of using the keyboard 
to enter their passwords. For example, each user may type the 
characters that constitute the password at different speeds.  
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By leveraging on these differences, one can develop a 
methodology that may be used to improve security by using 
keystroke biometrics (or in some literature, typing 
biometrics) to reinforce password-authentication 
mechanisms.  Previous research [1-4] has shown that it is 
possible to identify a user via his or her typing patterns. 
Keystroke biometrics is the analysis of a user’s keystroke 
patterns.  An individual’s keystroke biometrics pattern can be 
based on any combination of the following features[3] [5], 

(a) the duration each keystroke is pressed, that is the 
amount of time a user takes to press and release 
when typing,  

(b) the duration between each pair of keystrokes,  
(c) the force exerted on the keys. 

Our current research focuses on using the force exerted on 
each button to create the individual and personalised typing 
pattern.  Based on the typing patterns obtained, the keystroke 
biometrics methodology first computes a typing template for 
the user. The authentication system would then save this 
against the associated identity along with the password.  On 
subsequent attempts to access the system, the user goes 
through the normal password authentication procedure that is, 
entering the user ID and password. At the same time, the 
system monitors the user typing patterns and computes a 
typing template based on the user’s ID and password just 
entered and compares this template with the stored template 
for this user. If the new password and typing template match 
those saved in the database, the system grants access to the 
user. However, if the password does not match, the normal 
password-authentication mechanism (without consulting the 
biometrics component) will reject the user or ask the user to 
reenter the authentication information. If the password does 
match, the biometrics system will provide a supporting 
recommendation that verifies whether the user is legitimate.  
If the user ID and password are correct, but the new typing 
template does not match the reference template, the security 
system has several options, which may be devised 
accordingly. 

In this study, we will be investigating how we may 
authenticate an individual’s keystroke biometric pattern 
based on the force (or amount of pressure) exerted on each 
key using a weightless neural network (WNN).  The hardware 
design has been implemented to achieve desired results with 
minimal hardware component utilization.  The biometric 
sensors of the system are force sensitive sensors which were 
used to translate the amount of force exerted on the keys into 
their equivalent electrical values, so as to give an accurate 
representation of the amount of force that each user applies 
while typing.   
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Two main authentication issues are emphasized during the 
overall design of the system, viz. 

(a) the numeric password representing the normal 
passkey entered by the user, consisting of numeric 
combination of the appropriate length created by the 
user and saved by the system. 

(b) the keystroke biometrics associated with the user’s 
password in the form of a "typing template".  This is 
the second factor which will be authenticated by the 
weightless neural net. 

Some prior work has been done on the use of keystroke 
biometrics as a password hardening technique[6-9].  The 
results reported of authenticating users based on just their 
keystroke have been encouraging.  Nonetheless, their work 
has been centered primarily on the common QWERTY 
computer keyboard.  While the QWERTY layout has been 
used extensively in the past, the simple and inexpensive 
numeric keypad is gaining popularity.  However, the typing 
style is significantly different for the QWERTY keyboard 
when compared with that of a numeric keypad.  Fig. 1 shows 
a common QWERTY computer keyboard on the left and a 
numeric keypad on the right.  

 
(a) QWERTY keyboard (b) Numeric 

keypad 

Fig.1. QWERTY keyboard and a numeric keypad 
In addition to the duration between each pair of keystrokes, 
Obaidat and Sadoun [10] investigated the use of the holding 
time for each key pressed, using a QWERTY computer 
keyboard. 

The remainder of this paper is organised as follows.  The 
next section discusses the hardware design of the keystroke 
biometrics user authentication system which examines the 
force exerted by users on a numeric keypad.  In section III, we 
describe the important details of weightless neural networks 
(WNN’s) for pattern recognition, with a brief description of 
related work. It also introduces the Cognitive RAM network 
(CogRAM) and details its architecture and learning rules.  
Section IV discusses the major design issues as well as the 
important aspects of the experiments and the results obtained.  
Finally, in section V we present some conclusions and 
potential areas for further work. 

 

II. HARDWARE DESIGN 
A  Force sensor 

Force sensitive resistors are usually made from a 
conductive polymer that changes resistance in a predictable 
manner following application of force to its surface[11].  It is 
made up of two parts. The first is a resistive material applied 
to a film. The second is a set of digitating contacts applied to 

another film.  Fig. 2 shows this configuration. 
 

(a) Force sensitive resistor (b) Schematic representation  

Fig.2. Force sensitive resistor 
 

The resistive material serves to make an electrical path 
between the two sets of separated conductors.  When a force 
is applied to this sensor, the resistivity between the contacts 
drops and the overall conductivity increases. Over a wide 
range of forces, it turns out that the conductivity is 
approximately a log-linear function of force ( αCF ∝  , 

αR
F 1∝  ), where α represents the sensitivity and linearity of 

the sensor. The FSR used in the user authentication system 
developed here has a sensing area of 1,75 inches ×  1.50 
inches, as shown in Fig. 3(a).  When no force is applied, the 
resistance will be about 1 MΩ and it can detect forces from a 
mere 100 g up to 10 kg.  Fig. 3(b) shows the resistance of the 
sensor as a function of force.  It is important to note that there 
are three regions of operation of the sensor. The first is the 
abrupt transition which occurs somewhere in the vicinity of 
10 grams of force. In this region the resistance changes very 
rapidly. Above this region, the force is approximately 

proportional to 
R
1  on the log-log scale until a saturation 

region is reached. When the applied force reaches this 
magnitude, any additional increase in the applied force will 
not decrease the resistance substantially. 

 

 

(a)  A large force sensitive resistor (b) Resistance vs force chart 

Fig.3. A commercially available force sensitive resistor 

 

B System design with Arduino 
The pressure from the keys pressed was acquired using the 

Arduino Leonardo microcontroller (shown in Fig. 4), which 
is based on the ATmega32u4 processor.  The ATmega32u4 is 
a low-power CMOS 8-bit microcontroller based on the AVR 
enhanced RISC (Reduced Instruction Set Computing) 
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architecture that has 32 8-bit general purpose working 
registers.  The AVR is a modified Harvard architecture 
machine where the program and data are stored in separate 
physical memory systems that appear in different address 
spaces, but has the ability to read data items from program 
memory using special instructions  

The Leonardo has 20 digital input-output pins (of which 7 
can be used as PWM outputs and 12 as analogue inputs), a 16 
MHz crystal oscillator, a micro USB connection, a power 
jack, an ICSP header, and a reset button.   

 
Fig.4. The Arduino Leonardo  

 
In order to construct an accurate keystroke biometric 

pattern, the data acquired was processed by the weightless 
neural net.  The system would capture the force for each key 
that the user has exerted on the key, and depending on the 
length of the numeric password, the biometric pattern would 
have a similar length. 

 

 
Fig. 5. The system showing the FSR in the centre, and the Arduino 

Leonardo on the right 

III. WEIGHTLESS NEURAL NETWORKS 
Artificial neural networks (ANNs) have been used to 

perform pattern recognition tasks but this has often been with 
the multi-layer perceptron network (MLP), trained using the 
backpropagation learning rule [12].  The weights between the 
nodes in the various layers are modified by this learning rule.  
The MLP can deal with nonlinear classification problems 
because it is able to form complex decision regions (rather 
than just hyperplanes).  Each node in the first layer can create 
a hyperplane, while the nodes in the second layer combine 
these hyperplanes to create convex decision regions.  In the 
third layer, the nodes can combine the convex regions to form 
additional concave regions.  Thus, in theory, it is possible to 
form any arbitrary region with two hidden layers and 
sufficient hidden units. 

However, supervised approaches such as 
Backpropagation are usually considered too slow for many 
problems where the input dimensionality may be very high 
and the data sets enormous.  Weightless Neural Networks 
(WNN’s) which only require a one pass learning have been 
around in various configurations since the 1960’s.  Ludermir 
et al [13][13] give a comprehensive review of the topic.  The 
WNN used here, shown in Fig. 2(a) is derived from the work 
of Igor Aleksander[14]. 

 

 
(a) The Probabilistic Logic Neuron 

(PLN) 
(b) Typical pyramid structure of 

the PLN 

Fig. 6. Weightless neural network 

In Fig. 6, we chose a very simple example for the purpose of 
easy explanation.  In reality there may be many input layer 
cells, with 4, or even 8-bit input address lines. The network 
will always be triangular shaped (and pyramidal for 
two-dimensional input data) as the network moves towards 
the output layer – Fig. 6(b).  If we require several output 
classes, we have to construct the appropriate number of 
pyramids, each with its own desired output value, but with a 
common input vector.   
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During training, the input vector, which (in this case) is a 4 bit 
binary number, acts as an address generator.  Initially, all of 
the cells’ contents in all three cells are set to an undefined 
state.  When an undefined location is addressed, a binary 
random number generator is called.  This produces an output 
from the cell of either a 1 or a 0 with equal probability.  
Further developments saw Filho et. al [15] proposing a 
different approach which does not use random number 
generators.  Instead, when an undefined location is selected 
by the input address to a cell, the output generates an 
undefined value and this is propagated forward to the next 
layer.  Their Goal Seeking Neural Network then provides 
rules to deal with this.   
The idea of having an addressable set and a set of simple rules 
was developed further by Bowmaker and Coghill to produce 
the Deterministic Adaptive RAM Network (DARN) [16]. 
Although the generalisation performance improved, the 
DARN’s capabilities are still poorer than those of the MLP.  
The Cognitive RAM network (CogRAM), which is an 
enhancement to the DARN has produced very promising 
results [17].  In the CogRAM, each addressed content is a 
signed register where all of the registers in the network’s cells 
are initially set to zero.  The zero is interpreted as an 
undefined value.  During learning the counter register may 
become positive, or negative. 

A Learning 
The desired output of every cell in the pyramid is the same as 
the desired output of the pyramid.  If the desired output of the 
neurons at the input layer is 1, the addressed location is 
incremented by one.  If the desired output is 0, the location is 
decremented by one.  This is illustrated in Fig. 7 where the 
input pattern ‘102’ addresses the location which was initially 
unassigned (undefined).  The desired output of ‘0’ was then 
stored at this location by decreasing its contents by one - -1. 

 

  

(a)  Before training (b) Desired output value ‘0’ (or -1) 
stored in selected location 
(‘10’) 

Fig. 7.  An example of training an input pattern in CogRAM. 

The method then involves calculating the address vectors for 
the next layer, moving towards the output.  The input address 
vector to each cell in the next layer is constructed by invoking 
the Recall function (described in the next section), on the 
previous layers from each connecting line in that next layer.  
The address vector is then applied to the cell inputs of the next 
layer, and the cell contents are again modified in a similar 
fashion.  This procedure is continued until the pyramid output 
is reached.  The same method is applied to each of the other 
pyramids, with the entire training pattern set presented just 
once.   

B Recall 
In the recall phase, again, the content of each addressed 
location, starting from the input layer, is interpreted as U 
(undefined), 0, or 1. In the event that the output of each cell 
propagates an undefined(U) output forward, the Goal Seeking 
Network (GSN) approach of propagating the addressable set 
forward to the next layer will be adopted.  Even though 
several locations may be selected at the same time, the 
following rules, which are essentially the same as for the GSN 
are adopted. 

TABLE 1 
Recall SCHEME 

If at least one zero is 
addressed and no ones 
are addressed, the 
output is zero. 

 

If at least one one is 
addressed and no 
zeroes are addressed, 
the output is one. 

 

Otherwise, the output 
is undefined. 

  

 
The Recall operation is propagated forward through the 
pyramid until the output is reached.   

The architecture of the CogRAM used for class ‘N’ is shown 
in Fig. 8(a).  The input layer consists of cells with 4-bit input 
address lines whereas the next layer has 8-bit input address 
lines.  If we have 3 classes to recognize, this basic architecture 
has to be repeated for total of 3 times. This is illustrated in 
Fig. 8 (b).   
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(a) CogRAM for only one class 

 

 

(b) CogRAM for 3 classes 
Fig. 8.  The architecture of the CogRAM used 

 
After the initial training has been completed, there would be 
many locations in each cell that are UNDEFINED. This is 
more pronounced in data sets which have a smaller number of 
training patterns.  For the CogRAM, such UNDEFINED cell 
locations can be reconciled to improve its performance.  This 
is done by looking at each of the UNDEFINED locations in 
the output cell and computing the nearest address up to a 
Hamming distance measure of d to a defined location's 
address (either 0 or 1). This is continued for the whole 
training set in this way.  The Hamming distance d should not 
be more than half of the cell size.  This reconciliation of the 

UNDEFINED addresses has seen a significant reduction of 
all the UNDEFINED values in the output cell of each class 
and Yee and Coghill [17] have found this contributing to a 
significant overall improvement in the classification results. 
However, we believe this may not be a good strategy as two 
patterns with a Hamming Distance of 1 may not necessarily 
mean that the two patterns representing the typing force 
exerted onto the key are similar due to the way in which the 
input patterns have been coded.  A ‘slightly’ different force 
that separates two patterns may end up with a very different 
binary value.  This is illustrated in Fig. 9 where for simplicity 
of explanation, each of the patterns is represented by a set of 4 
features.  In (a), the decimal equivalent of the patterns are 
significantly different even though they differ by just one 
Hamming Distance.  Hence, rather than just changing one bit, 
we should instead look at the overall picture where the binary 
representation of the similar pattern should also be reflective 
of the actual physical value.  As an example, a force of 0.7 
and 0.9 should share a high degree of similarity if this is the 
force exerted by the user onto a key.  If we use a simple linear 
transformation scheme where 0.7 is represented as  1 1 1 02 in 
binary, 0.8 is 0 0 0 12, 0.9 is 1 0 0 12, etc. and we then 
randomly generate a new pattern of 1 1 1 12.  This new pattern 
has just a one bit difference from the binary coded value of 
0.7, and the Hamming distance between the two is 1.  This is 
shown in Fig. 9 (a). Nevertheless, with the simple linear 
scheme, 1 1 1 12 would represent 1.5.  Clearly, the force 
represented by these two values is not similar, even though 
their binary patterns may share a high degree of similarity.  
We believe a more accurate similar pattern is one that would 
map back to the actual physical representation of the forces in 
the real world.  Thus, a similar pattern would be one that is at 
the next force level(s) which, depending on the binary coding 
scheme, may not be close in the Hamming distance sense.  
This is illustrated in Fig. 9 (b).  

Pattern #1 #2 #3 #4 
A 1 1 1 0 
     

A’ 1 1 1 1 
(a) 

 
Pattern #1 #2 #3 #4 

B 1 1 1 0 
     

B’ 0 0 0 1 
(b) 

Fig. 9.  Similar and dissimilar binary patterns 

IV. EXPERIMENTAL SETUP AND RESULTS 
In order to validate the Cognitive RAM (CogRAM) 

weightless neural net in testing the keystroke biometrics user 
authentication system for a numeric keypad, the force sensor 
was integrated into a microcontroller system so that the force 
for each key may be captured.  The microcontroller acquires 
the force exerted from each key for the CogRAM to process.   
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A total of 10 users who were all familiar with using the 
keyboard and use the keyboard in their daily work were 
selected.  In order to minimise any inconsistent typing 
rhythm, the volunteers were allowed to choose their own 
passkey which must be 8 numbers long.  The objective here is 
to see if they would produce a consistent keystroke biometric 
pattern for the password chosen.  This pattern is solely based 
upon the force exerted on the keys pressed.  While shorter 
passwords are easy to remember, they are not encouraged as 
they may be easier to hack and gain unauthorised entry too.  
In addition, the individual patterns may not be unique and 
inaccurate authentication may result.  Longer ones, while 
providing much better security, can be cumbersome to 
remember and easy to forget.  Each user was requested to 
key-in their password a total of 6 times.  The data was 
collected in an ordinary everyday environment without any 
undue stress, thus minimising any inconsistent keystroke 
patterns.  Table 2 (table 2) shows a set of typical keystroke 
forces for one user. 
 

TABLE 2 
An example of a set of keystroke forces  

sample #1 #2 #3 #4 #5 #6 #7 #8 
1 96 28 50 136 57 98 136 147 
2 158 32 215 141 22 157 210 189 
3 187 26 201 180 54 177 56 206 
4 162 9 12 216 142 136 1 271 
5 285 76 135 331 70 224 283 335 
6 96 28 50 136 57 98 136 147 

 
Some pre-processing had to be done so that they may be 
processed by the CogRAM, - in the range of (0.0, 1.0), using a 
non-linear sigmoid function (equation (1)). 
 

)exp(1
1)( xxf −+= λ  (1) 

 
where λ, a constant is set to 10. This sigmoid is shown in Fig. 
10. 

 
Fig. 10.  A typical sigmoid function 

 
The normalised values were then converted into the binary 
equivalent form.  
One class of pressure patterns at a time was selected for 
registration, and to train the system.  Half of the samples 
within this class were then randomly chosen to train the 
CogRAM with the remainder kept for testing. 

The accuracy of the system was measured by the True 
Positive (TP) values, - the number of patterns that it was able 
to identify correctly.  In the second experiment, the patterns 
from the remaining 9 classes were tested against the 1 class 
with the trained neural net in an attempt to confuse it. This 
would be used to evaluate the CogRAM’s ability to identify 
such patterns as invalid.  This would contribute to the True 
Negative (TN) measure.   In a perfect authentication system, 
these patterns would all be rejected by the system as they are 
invalid or incorrect - the TN would be 100%.  Each class of 
data was then tested 100 times, each time with a randomly 
chosen set of training patterns.  Fig. 11 shows the average TP 
and TN values obtained from 100 runs for each pattern class. 

 
 

 
Fig. 11. Average True Positive and True Negative results 

Most of the True Positive (TP) rates are generally acceptable 
with the exception of those involving #3, #8, #9 and #10 
where they are lower than those of the True Negative (TN) 
results.  Analysis of the normalized input data graphically 
shown in Fig. 12 for users #8 and #9 indicates a significant 
amount of variation in the typing pattern for these users.  In 
Fig. 12, the pressure values for each digit of the password are 
shown in each column and each of the vertical rows 
represents a different data sample. Larger values have a 
darker shade and smaller values, a lighter shade.  The 
maximum value of 1 is represented by black and 0, white.  
The (normalized) force for each key is shown along the 
x-axis. 
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(a) Set #8 

 
(b) Set #9 

Fig. 12. Irregular typing patterns 

However, there are also other users (# 1and #4) which seems 
to be able to provide a more consistent typing pattern – in the 
amount of force exerted onto each key.  Examples of such 
users are shown in Fig. 13. 
 

 

(a) Set #1 

 
(b) Set #4 

Fig. 13. Regular typing patterns 
 

The results of the False Positives (FP), - those patterns which 
have been incorrectly authenticated or accepted, is shown in 
Fig. 14.  These are the results of wrongly assigning the 
patterns from the remaining users as correctly belonging to 
the authentic class. 

 
Fig. 14. Average True and  False Positive results 

Finally, we also evaluated the CogRAM’s enrolment 
capability, which is the ability to learn the input patterns.  To 
evaluate this, the same patterns that were used during the 
learning phase were presented as test patterns on completion 
of the learning.  For perfect enrolment, the system should not 
have any difficulty in producing the correct output class when 
presented with these patterns IF the patterns have been learnt.  
The neural net’s capability was tested 100 times, each time 
with a randomly chosen set of training patterns.   With the 
data sets that we have, the CogRAM was able to correctly 
identify all the training patterns that had been used to train the 
system and this is shown in Fig. 15. 
 

 
Fig. 15. Enrollment capability of CogRAM 

V.   CONCLUSIONS AND FURTHER WORK 
Biometrics is needed in modern society because we no 

longer know every single person in our physical or virtual 
community – due to either the size of community, or the 
geographical span of the individuals in the community or a 
combination of both.  Hence, there has been some work done 
in developing biometrics for authentication or recognition.  

Weightless neural networks are known to be weak in 
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generalization.  Hence, to use WNNs for recognition may 
result in reduced accuracies.  However, such systems are able 
to learn well when trained with a smaller number of different 
class data.  Consequently they are also able to achieve good 
levels of recognition accuracies. Thus the experiments here 
were designed with this in mind where the CogRAM was 
trained with a small set of data and used to authenticate the 
typing patterns instead.  An advantage of using the CogRAM 
in such an application is that we can easily implement the 
neural net in hardware and some work has been done in this 
direction by Nitish and his co-investigators in 2007 [18]. 

In this paper, we discussed the development and testing of 
a two-factor user authentication system with the CogRAM 
weightless neural net.  The preliminary results from this piece 
of work do seem to suggest that the current one-factor 
password authentication system can be strengthened with an 
additional factor for numeric keypads.  Even though there has 
been some work being done to investigate the keystroke 
patterns using either timing or pressure features, these have 
been conducted with the common QWERTY computer 
keyboards - where the typing style is significantly different 
for most people when compared with that used on the 
numeric keypads.  Such keypads as a password entry system 
do involve a major shift in the typing style. The data captured 
from the micro-controller system has shown that many of the 
users were able to generate a repeatable typing pattern based 
on the force exerted onto each key from the hardware system 
that was developed.  Furthermore, the CogRAM can 
successfully identify some of the unique and consistent 
keystroke biometric patterns of the users.  Most of the True 
Positive (TP) results are generally acceptable with the 
exception of those involving #3, #8 , #9  and #10 where they 
are generally poorer compared with the rest.  However, it 
must be remembered that while biometric technologies can 
range from the highly physiological at one end, for example, 
fingerprints, iris, etc., there are also those at the other end of 
this continuum which exhibit a high level of behavioural 
traits, for example, signature, keystroke, etc. even though the 
same behaviour is expected to be repeatable.  Hence, the 
poorer results may be due to the inconsistent typing behaviour 
of the users in generating the keystroke.  The 
mis-authentication results are also due to the fact that the 
CogRAM was not able to decide upon the correct class and 
ended up with the locations that are undefined.  Minimising 
such poor results can be achieved by providing a larger 
number of typing patterns for the CogRAM to learn.  This is 
an issue that may be investigated further. The most consistent 
typing pattern was obtained from #4 and the TP results have 
confirmed this.  We have also started preliminary work in 
developing a standalone hardware implementation of the 
CogRAM to process the typing data as they are generated in 
situ.  Future work would be directed into investigating how 
different password lengths may affect the consistency of the 
user’s typing style and resultant pressure patterns for such 
numeric keypads.  The preliminary results from this 
investigation does seem to indicate that force-based keystroke 
biometrics for the numeric keypad can provide unique 
patterns that may be exploited to provide a two-factor user 
authentication system. 
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