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Abstract—This paper focuses on semi-supervised classifica-
tion problem by using Transductive Support Vector Machine.
Traditional TSVM for semi-supervised classification firstly train
an SVM model with labeled data. Then use the model to
predict unlabeled data and optimize unlabeled data prediction
to retrain the SVM. TSVM always uses a predefined kernel
and fixed parameters during the optimization procedure and
they also suffers potential over-fitting problem. In this paper
we introduce proposed quasi-linear kernel to the TSVM. An
SVM with quasi-linear kernel realizes an approximate nonlinear
separation boundary by multi-local linear boundaries with in-
terpolation. By applying quasi-linear kernel to semi-supervised
classification it can avoid potential over-fitting and provide
more accurate unlabeled data prediction. After unlabeled data
prediction optimization, the quasi-linear kernel can be further
adjusted considering the potential boundary data distribution
as prior knowledge. We also introduce a minimal set method for
optimizing unlabeled data prediction. The minimal set method
follows the clustering assumption of semi-supervised learning.
The pairwise label switching is allowed between minimal sets. It
can speed up optimization procedure and reduce influence from
label constrain in TSVM. Experiment results on benchmark
gene datasets show that the proposed method is effective and
improves classification performances.

I. INTRODUCTION

SEMI-SUPERVISED classification is a special form of
classification task [1] [2]. Traditional classifiers use only

labeled data to train. Considering that labeled data sometimes
difficulty and expensive to obtain and meanwhile unlabeled
data are easy to collect and there are few ways to use
them. The purpose of semi-supervised classification is to
use both labeled and unlabeled data to train a classifier,
aim to improve the generalization ability. Under certain
assumptions, unlabeled data can be used for training a semi-
supervised classifier. One classical assumption is that the
separation boundary should not across high density regions,
many methods has been developed such like information
regularization, Gaussian process, Graphic kernels and Trans-
ductive Support Vector Machine(SVM).

SVMs implement Structural Risk Minimization (SRM)
principle by maximizing a margin to minimize an upper
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bound of the generalization error rather than minimize the
training error, which result in good generalization perfor-
mance, the absence of local minima and the sparse repre-
sentation of solution [3]. The Transductive SVM [4], [3] can
be seen as an extended solution of SVM for semi-supervised
problems. The goal of Transductive SVM is to find a labeling
of the unlabeled data and a separation boundary has the
maximum margin on both the original labeled data and
unlabeled data.

In a Transductive SVM, an SVM classifier is firstly trained
from the labeled data and applied to unlabeled data. After
all unlabeled instances are given a predicted label, a hinge
loss function [2] is used on these unlabeled data for evaluate
and optimize the SVM classifier:

min
1

2
w2 + C

n∑
i=1

ξi + C∗
n+m∑
i=n+1

ξi, (1)

under the constraints:{
(w · xi + b) ≥ 1− ξi 1 ≤ i ≤ n
|w · xi + b| ≥ 1− ξi n+ 1 ≤ i ≤ n+m

(2)

where the first two phase evaluate the SVM and the
third phase evaluates the prediction of unlabeled data.
Many method having been introduced to optimizing TSVM.
Chapelle et al. [5] [6] proposed

`
SVM using a Graphic

kernel to train SVM model and a Gaussian function to
approximates the hat loss function, the graphic kernel can
be seen as a special RBF kernel with density similarity.
Collobert et.al [7] optimize the hard TSVM directly using an
concave-convex optimization procedure(CCCP). Sindhwani
and Keerthi [8] proposed a fast algorithm for linear TSVM,
which is suitable for large scale applications. And with the
branch and bound search Chapelle et al. [9] finds a global
optimal solution for small datasets.

The Transductive SVM methods use the powerful regu-
larization of SVMs and give many promising benefits, it
will also suffer potential problems like traditional SVM. One
problem is over-fitting when using SVM model with some
non-linear kernels like RBF kernel. Especially in TSVM, the
kernel and its parameter are always predefined and treated
like a black box tool in optimization process, the potential
over-fitting can leads incorrect prediction of unlabeled data
and harmful to optimizing the final SVM classifiers. Another
thought is TSVM predict the unlabeled data under constrain
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that the label ratio should be same with labeled data. The
fixed ratio constrain will misguide the unlabeled prediction
because it is hard to estimate the ratio between positive and
negative from unlabeled data.

In our previous research [10] [11] [12], we proposed a
quasi-linear SVM to solve the potential over-fitting prob-
lem in SVM. A quasi-linear SVM implements a nonlinear
separation boundary by aggregating multi-local linear sep-
aration boundaries with an interpolation function. Unlike
other multi-local linear models, in quasi-linear SVM we
use a composite kernel (quasi-linear kernel) to represent
the local linear information and the training of quasi-linear
SVM is like a standard single SVM method. According to
[13], the quasi linear kernel is flexible and adjustable. In
this paper, we aim to apply the quasi-linear kernel to semi-
supervise classification. Consider the characteristic of quasi-
linear kernel, the kernel of SVM model can also be optimized
during the optimization of TSVM. Unlike traditional TSVM
predefined a fixed kernel; we re-estimate the potential bound-
ary distributed area and then using this information to build a
quasi-linear kernel in each iteration of TSVM optimization.
We also propose a 1-NN method to optimize unlabeled data
prediction which allows the labeling constrain in TSVM can
be changed under a certain level.

The rest parts of the paper are organized as follows:
Section II describes the conception of quasi linear kernel
and how to implement quasi linear SVM. Section III pro-
poses how the Transductive SVM with quasi-linear kernel
is optimized. Section IV presents the simulation results of
proposed method and finally the conclusions are discussed
in Section V.

II. QUASI-INEAR SVM

Local linear SVM strategy approximates a nonlinear sep-
arating boundary by estimating a series of piecewise linear
boundaries. In this paper an SVM with quasi linear kernel is
proposed to implement the piecewise linear approximation by
using a kernel composition technique and aggregating local
linear boundaries in kernel level.

A. SVM with Quasi-linear Kernel

Suppose we have the following labeled training data points
of N samples (x1, y1), . . . , (xi, yi), . . . , (xk, yk), xi ∈ Rd is
the input vector corresponding to the ith sample labeled by
yi ∈ {−1,+1} depending on its class. A nonlinear separating
boundary fp(x) can which known as a priori knowledge be
approximated by M local linear boundaries with interpolation
as showed as:

fp(x) =
M∑
j=1

(ΩTj x+ bj)Rj(x) + b (3)
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Fig. 1. Multiple local linear models with interpolation for nonlinear
separation hyperplane

where Rj(x)’s are the radius basis function for interpolation,
Ωj’s are the coordinate parameter vectors of local linear
boundaries. Introducing two vectors Φ(x) and Θ defined by

Φ(x) =
[
R1(x), xTR1(x), . . . , RM (x), xTRM (x)

]T
(4)

Θ =
[
b1,Ω

T
1 , . . . , bM ,Ω

T
M

]T
(5)

We further express (3) as

fp(x) = ΘTΦ(x) + b (6)

Introducing the structural risk minimization principle into
the (6), the classification problem can be described as the
QP optimization problem as following:

arg min
Θ,b,ξ

Jp =
1

2
ΘTΘ + C

N∑
k=1

ξi

s.t.

{
yk[ΘTΦ(xk) + b] ≥ 1− ξk,∀k
ξk ≥ 0, ∀k

(7)

The Lagrange function has been constructed, via introduc-
ing new variables (αk, vk) called Lagrange multipliers:

L(Θ, b.ξ;α, v) = Jp(Θ, ξ)

−
n∑
k=1

(αkyk[ΘTΦ(xk) + b]− 1 + ξk)−
N∑
k=1

vkξk
(8)

with Lagrange multipliers αk ≥ 0, vk ≥ 0,∀k. The solution
is given by the saddle point of the Lagrange function:

max
α,v

min
Θ,b,ξ

L(Θ, b, ξ;α, v) (9)
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which leads to

∂L

∂Θ
= 0→ Θ =

N∑
k=1

αkykΘ(xk)

∂L

∂b
= 0→

N∑
k=1

αkyk = 0

∂L

∂ξ
= 0→ 0 ≤ αk ≤ c,∀k

(10)

The dual problem becomes as follow:

max
α

Jd =− 1

2

N∑
k,l=1

ΦT (xi)Φ(xj)αiαj +
N∑
k=1

αi

s.t.


N∑
k=1

ykαk = 0

0 ≤ αk ≤ C,∀k

(11)

In the quadratic form, the kernel trick is applied

K(xk, xl) =Φ(xk)TΦ(xk)

=(1 + xTk xl)
M∑
j=1

Rj(xk)Rj(xl),∀k
(12)

Hence, the nonlinear separating boundary model fp(x) is
reduced to a standard SVM based on a composite kernel
(Eq.12). Finally the nonlinear SVM classifier takes the fol-
lowing form:

y = sign[

N∑
k=1

αkykK(x, xk) + b] (13)

According to the description in Eq.12, a quasi-linear kernel
is a flexible model and turns in a form of inner product of
an explicit nonlinear mapping. The complexity of the quasi-
linear kernel can fill the gap between linear and nonlinear
kernel functions by adjusting the value of M . When M = 1,
it is a linear kernel, when M becomes large, it is close
to a general nonlinear kernel. Considering the adjustable
characteristic of quasi-linear kernel, it can be applied in a
TSVM optimized procedure.

B. Implementation of Quasi-linear SVM

According to the formulation of quasi-linear kernel above,
an implementation of quasi-linear SVM follow this proce-
dure:

1. Detecting data near to the separation boundary and
constructing a border data set. The definition of whether a
point belongs to border data set is: for a point x, if its k-
nearest neighbour contains points having different labels it
will be border data [14].

2. Using clustering method to partition the border data set
and decide M in quasi-linear kernel.

Fig. 2. Guided partition method to partition the input space along the
separating boundary

3. Using center and radius of each partition to construct
quasi-linear kernel.

4. Training quasi-linear SVM with the quasi-linear kernel.
Fig.2 shows how the step 2 and 3 works for constructing

a quasi-linear kernel.

III. TSVM WITH QUASI-LINEAR KERNEL

In this part we introduce the quasi-linear kernel to a Trans-
ductive SVM. A TSVM with quasi-linear kernel follows
under procedure:

1. Train an SVM with labeled data.
2. Predict unlabeled data with trained SVM model.
3. Evaluate unlabeled data prediction with trained SVM.
4. Minimize loss function with a pairwise label switching

and updated unlabeled data prediction.
5. Re-estimate the potential border dataset and adjust

quasi-linear kernel.
6. Using the labeled data and predicted label to train a

new SVM.
7. Redo step 3 to step 6.
Unlike traditional TSVM predefines kernel and parame-

ters, in our model, we firstly use a modified pairwise label
switching method to optimize unlabel data prediction, then
we re-estimate potential border dataset and adjust quasi-
linear kernel in each iteration optimization of TSVM.

A. Optimization of Unlabeled Data Prediction

In [15], SVMlight, a famous TSVM model, is proposed by
introducing a pairwise label switching between the unlabeled
data prediction to optimized TSVM model. The loss function
is defined by:

min
f

l∑
i=1

(1− yif(xi))+ + λ1||w||2

+λ2

n∑
i=l+1

(1− |f(xi)|)+,

s.t. 1
n−l

n∑
i=l+1

f(xi) = 1
l

l∑
i=1

yi

(14)
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And a pairwise label switching is happened if:

loss(yi = 1, f(xi)) + loss(yj = −1, f(xj)),
> loss(yi = −1, f(xi)) + loss(yj = 1, f(xj))

(15)

The label constrain is defined that the unlabeled data
prediction should follow ratio between two classes distri-
butions. It can avoid all unlabeled data prediction falls to
one class. In SVMlight the pairwise label switching can
guarantee the label constrain while in our thoughts a fixed
label ratio sometimes can give a misguidance to unlabeled
data prediction. Fig.3(a) shows a margin obtained under a
label constarin.In this dataset the given positive and negtive
label ratio is 1:1, while in the unlabeled data more points are
surround the positive labels. So using a hard label constrain,
there is a bias on the margin and the margin is straitness.
Thus,we propose a minimal set for pairwise label switching.

In this method the training set is firstly been divided
to many small subsets, we use the conception of minimal
spanning tree and each data is connected to its nearest
neighbor (like 1-NN clustering). Secondly, for some isolated
point, their connection to its nearest neighbor is cut. The
judgment of whether a point is isolated or not, is based
on whether its distance to nearest neighbor lager than 1.5
times of average distance over the remaining points in that
cluster. Then the minimal set is obtained and we defines that
all unlabeled points in same minimal set shares the same
label prediction. And the pairwise label switching is applied
between the minimal set. Fig.3(b) shows the minimal set
division of the given unlabeled dataset,and Fig.3(c) shows
the margin obtained under the label constrain on minimal
set. The ratio of the unlabeled predition on set is 2:3 while
the real prediction ratio on data is 3:7. The obtained margin
is more wide and has a better generallization abillity.

Here is some comment about introducing minimal set:
1. It follows the cluster assumption about semi-supervised

classification: a separation boundary should not through the
high density area. In high density region each point will have
same label with its nearest neighbor and in low density area,
point will likely be isolated.

2. The number of individuals in each minimal set differs.
The label constrain now works on minimal sets instead
individuals. So label switching between sets can make the
label constrain more flexible.

3. The minimal set can be seen as one individual point
in the prediction optimization. It can speed up the pairwise
label switching because the number of individuals is reduced.

B. Quasi-linear Kernel Composition in TSVM

In this part the TSVM with quasi-linear kernel is intro-
duced. As mentioned before, two steps of constructing a
quasi-linear kernel are border dataset detection and partition
the border dataset. These two steps in TSVM are little
different than SVM.

1) Border dataset detection: Considering the i-th iteration
of TSVM, all minimal sets contains support vectosr (points
located in and on the margin) of i-1-th iteration will belongs
to border dataset automatically. Then during the optimization
procedure, if the label of a minimal set has been switched,
we detected its k-nearest neighbours minimal set, the neigh-
bourhood of minimal set is detected by single linkage method
[16]. If one of its neighbour set located outside the margin
and has an opposite label (after changed), it indicates that
the neighbour set will likely contains support vectors of i-
th iteration SVM, the neighbour set will be add to border
dataset.

2) Border dataset partition: Since we introduced minimal
set based on minimal spanning tree and 1-NN before, a
minimal spanning tree(MST clustering) method is proposed
to partition the border dataset. In MST, a data space with
N samples can be considered as a connected, undirected,
weighted graph. The MST connects all these samples with N
-1 edges with the less weighted. Conventional MST cluster-
ing method use top-down strategy by by first constructing the
MST structure of data space and then disconnecting the most
weighted MST edges to create subspaces. Each subspace will
represent a cluster [17], [18]. Conventional top-down MST
clustering method always produced small partition while in
quasi-linear kernel, partitions with a mount of population is
preferred. The bottom-up MST merging is introduced based
on Kruskals algorithm [19].

In bottom-up MST merging us firstly considers population
of each partition should maintain a certain level. Then when
merge two partitions both satisfied basic population need, a
merge criterion based on the ratio of geographical distance
and real distance is applied:

According to MST algorithm we can define nearest link
point Pnear and farthest link point Pfar between two parti-
tions P1 and P2. Thus 2 distances are calculated
Dgeo = P1nearP1far + P2nearP2far + P1nearP2near

Dreal = P1farP2far
(16)

by a predifined threshold θ, if

Dgeo/Dreal ≤ θ (17)

P1 and P2 can merge to a bigger partition.
With the merge criterion we can automatically detect local

partition numbers. In our experiments we detect 3 nearest
neighbor of a partition and merge it to its neighbor with the
less available values, the available threshold is set to 2.

An algorithm of proposed TSVM with quasi-linear kernel
is given by Algorithm.1.

IV. EXPERIMENTS AND RESULTS

A. Evaluation Metrics
Three classical evaluation metrics of Precision, Recall and

F-score are used to evaluate the efficiency of the proposed
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(a) Margin with a label constrain on
instances

(b) Minimal set detection (c) Margin with label constrain on
sets

Fig. 3. The margin with label constrain comparison on instance and minimal set

Algorithm 1 TSVM with quasi-linear kernel
Input: labeled data XL;unlabeled data XU

Output: Transductive SVM classifier TS
Train a quasi-linear SVM L with XL;
Divide minimal set A = A1, A2, . . . , AN ;
let C∗ = 2−10C
repeat

Predict label of XU with L under label constrain 1
u

U∑
i=1

f(xui) = 1
l

L∑
i=1

yli;

Label switching within minimal set and let all data point shares same label prediction;
Detected border dataset S = S1, S2, . . . , SM , S ⊂ A;
for i = 1; i ≤M ; i+ + do

if loss(Yi = 1, f(Si)) + loss(Yj = −1, f(Sj)) > loss(Yi = −1, f(Si)) + loss(Yj = 1, f(Sj)) then
Switch label of Si and Sj and Detect 3-nearest neighbor Aneighbor of Si;
if Yneighbor 6= Yi and Aneighbor /∈ S then

Add Aneighbor to border dataset S.
end if

end if
end for
Bottom up merge partitions with MST method.
Use the partition information to construct a new quasi-linear kernel
Use the new kernel to train a new SVM and increasing C∗

until C∗=C
return TS;

method. Precision, Recall and F-score are defined for an im-
balanced binary classification task with positive and negative
classes. Precision is the proportion of positive predictions that
are correct, and recall is the proportion of positive samples
that are correctly predicted positive. That is:

precision =
TP

TP + FP

recall =
TP

TP + FN

F − score =
2 ? precision ? recall

precision+ recall

(18)

with TP the number of true positives (correctly predicted
positive samples), FP the number of false positives (positive
predictions that are incorrect), and FN the number of false
negatives (positive samples that are incorrectly predicted

negative).

B. Dataset Description

In this papera yeast gene data is used to evaluate proposed
TSVM with quasi-linear kernel in our experiments. The
yeast gene data classification are nonlinear problems with
characteristics of high noise and large number of input fea-
tures compared with the relatively small number of training
examples, the conventional nonlinear kernel SVM models are
severely over-fitting at times.

The yeast gene data is always a multi-label task [20], [21].
Since we want to improve the basis classifier performance
for each label (class), so we only implement per-label (binary
classification) experiments for evaluating, several label has
been selected for our experiment.
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TABLE II
COMPARISON RESULTS ON LABELED DATA

dataID SVM with density RBF kernel SVM with linear kernel the quasi-linear SVM
precision recall F-score precision recall F-score precision recall F-score

14.01 0.3592 0.0175 0.0335 0.3378 0.3229 0.3301 0.2375 0.4603 0.3133
14.04 0.6813 0.0946 0.1661 0.3781 0.3382 0.3570 0.4424 0.5226 0.4792
14.07 0.8189 0.0784 0.1431 0.6043 0.5526 0.5773 0.6317 0.7805 0.6982
14.10 0.5903 0.0872 0.1519 0.3637 0.4222 0.3907 0.3921 0.4637 0.4249
14.13 0.5048 0.0115 0.0225 0.3077 0.4122 0.3523 0.3637 0.5474 0.4370

TABLE III
COMPARISON RESULTS ON LABELED AND UNLABELED DATA 1:1

dataID SVM with density RBF kernel SVM with linear kernel the quasi-linear SVM
precision recall F-score precision recall F-score precision recall F-score

14.01 0.3193 0.0344 0.0621 0.2037 0.3426 0.2757 0.2375 0.4603 0.3133
14.04 0.5742 0.1176 0.1952 0.2974 0.3517 0.3223 0.4089 0.5317 0.4622
14.07 0.5585 0.0842 0.1463 0.5515 0.5138 0.5319 0.7019 0.7313 0.7162
14.10 0.3193 0.1321 0.1869 0.2313 0.4505 0.3057 0.4017 0.4463 0.4228
14.13 0.5215 0.0326 0.0614 0.2275 0.5474 0.3204 0.3492 0.5186 0.4173

TABLE IV
COMPARISON RESULTS ON LABELED AND UNLABELED DATA 2:5

dataID SVM with density RBF kernel SVM with linear kernel the quasi-linear SVM
precision recall F-score precision recall F-score precision recall F-score

14.01 Nan Nan Nan 0.3103 0.2594 0.2825 0.2218 0.4417 0.2951
14.04 0.5413 0.1869 0.2777 0.3177 0.3456 0.3310 0.4011 0.4893 0.4408
14.07 0.6714 0.0613 0.1123 0.5816 0.5914 0.5864 0.6835 0.7209 0.7017
14.10 Nan Nan Nan 0.2870 0.4121 0.3381 0.3719 0.4811 0.4195
14.13 0.5338 0.0257 0.0494 0.2436 0.4545 0.3171 0.3318 0.4862 0.3938

TABLE I
YEAST DATASET DISCRIPTION

dataID Data discription
14.01 Protein folding and stabilization
14.04 Protein targeting, sorting and translocation
14.07 Protein modification
14.10 Assembly for protein complexes
14.13 Protein/peptide degradation

C. Simulation Results

In our experiment, we use a libSVM toolbox for training
our SVM model. The data is split to 625 training samples
and 328 testing samples. Three experiments are made to
compare the proposed TSVM model. In first experiment we
only consider labeled data just like a conventional SVM. In
the next two experiments, both labeled and unlabeled data
are used to evaluate the performance of TSVM with different
kernels,a RBF kernel with density measures [5], linear kernel
and quaisi-linear kernel. In experiment II ratio of labeled and
unlabeled data is about 1:1 while in experiment III the ratio
is 2:5.

Table II shows classification result using SVM with 3
different kernels on all labeled dataset. It shows that the
quasi-linear kernel performs better than other two kernels
on the yeast dataset. We use this result as basis result and

compare it to TSVM classification.
In Table III the labeled and unlabeled data ratio is 1:1,

from the table we can see that the TSVM with denstity
RBF performs better than SVM training with 625 labeled
data, but it still suffers over-fitting. And the performance of
TSVM with linear kernel is reduced compared to SVM with
linear kernel. The proposed TSVM with quasi-linear kernel
gives an equivalent performance like SVM, and improves
classification results on 14.07 dataset, even with less training
samples.

When the labeled and unlabeled data ratio deduced to
2:5, Table IVthe TSVM with density RBF cannot give a
meaningful value on 14.01 and 14.10 dataset. The TSVM
with linear kernel continuously reduces while quasi-linear
kernels are still stable. TSVM with quasi-linear kernel still
has advantage than other two kernels.

These expertiments demonstrate the TSVM with quasi-
linear kernel has advantage on classification of both super-
vised and semi-supervised cases. For the classification of
dataset with characteristics of high noise and large number of
input features compared with the relatively small number of
training examples, using the quasi-linear kernel can provide
more accurate unlabeled data prediction compared to a RBF
based kernel. The adjusable characteristic of TSVM with
quasi-linear kernel can make a kernel more suitable to a
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labeled and unlabeled cases.

V. CONCLUSION

In this paper we introduced a quasi-linear SVM to a
semi-supervised classification problem. Unlike traditional
Transductive SVM using fixed kernel and parameters, we
proposed an adjustable quasi-linear kernel and optimize it
with the unlabeled data prediction information during the
TSVM optimization procedure. The adjustable quasi linear
kernel is a nonlinear kernel which realizes multi local
linear separations. It uses data distribution information as
prior knowledge and has better generalization ability than
traditional RBF kernels. In semi-supervised problem, the
kernel can be adjusted in optimization procedure and can
improve classification accuracy of TSVM. The simulation
results demonstrate that a quasi-linear kernel can outperform
than other nonlinear kernel in the semi-supervised task on
yeast gene classification.

We also introduced a minimal set to the TSVM opti-
mization procedure, the idea is based on minimal spanning
tree and 1-nn method. Introducing minimal set to a TSVM
optimization (SVMlight optimization) can speed up the opti-
mization speed and adjust the label constrain of TSVM under
a certain level, which can further improves generalization
ability of TSVM. In the future we want to further develop
our work from two aspects: enlarge the minimal set in
some high region area to improve the efficiency of our
method; considering an incremental case where the unlabeled
data adds to the training set incrementally, develop a more
efficient method than the minimal spanning tree based on
structure.
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