
 
 
 

  
Abstract—Prediction of water levels at estuaries poses a 

significant challenge for modelling of floods due to the 
influence of tidal effects. In this study, a two-stage 
forecasting system is proposed. In the first stage, the tidal 
portion of the available records is used to develop a tidal 
prediction system. The predictions of the first stage are used 
for flood modelling in the second. Experimental results 
suggest that the proposed flood modelling approach is 
advantageous for forecasting flood levels with more than 1 
hour lead times.   

I. INTRODUCTION 

An estuary is referred to as a “semi-enclosed coastal body 
of water which has a free connection with the open sea and 
within which sea water is measurably diluted with fresh water 
derived from land drainage” [1]. Estuaries are commonly 
densely populated establishing the importance delivering 
real-time flood warnings in such areas. During a flood 
emergency, authorities rely on models that forecast water 
levels for a particular lead time. These models map 
observable variables such as rainfall to upcoming flood 
levels. Due to differences between catchments, models have 
parameters that are particular to the catchment. There are 
three modelling approaches available for this purpose [2]: 

 Physically inspired models: these models are based 
on governing laws of physics. Parameters of these 
models deterministically evaluated by laboratory 
observations. 

 Conceptual models: these models are based on 
simplified physics of the problem. The parameters of 
these models are determined by fitting parameters 
based on a ‘small’ subset of observations. 

 Data-driven models:  these models are based on 
relationships between the quantity of interest and 

 
This work is supported in part by an ARC industry Linkage grant, project ID 
LP110200832, The authors of the paper would like to thank the Australian 
Research Council and the Gold Coast City Council for funding this study. 
They also would like to thank the Gold Coast City Council for the provision 
of data that have been used in this study. Seyyed Adel Alavi Fazel is with the 
school of Information and Communication Technology, Griffith University, 
Gold Coast Campus, Australia (seyyedadel.alavifazel@griffithuni.edu.au).  
Michael Blumenstein is with the school of Information and Communication 
Technology, Griffith University, Gold Coast Campus, Australia 
(m.blumenstein@griffith.edu.au). Hamid Mirfenderesk is with the Gold 
Coast City Council, Gold Coast, Australia 
(hmirfenderesk@goldcoast.qld.gov.au). Rodger Tomlinson is with the 
school of environment, Griffith University Gold Coast Campus, Australia 
(r.tomlinson@griffith.edu.au) 

available observations. Physical aspects of the 
phenomenon are used as constraints and also as the 
initial formulation of the problem. The parameters of 
these models are evaluated by calibration base on 
large number of observations. 

This research is concerned with development of 
data-driven modelling for estuarine. To the best authors’ 
knowledge, apart from study by Chang et al [3] no 
data-driven model has been suggested for flood modelling in 
estuarine and solutions developed for flood modelling are not 
readily applicable for estuarine flood modelling. 

Developing a decision support system requires several 
steps that are demonstrated in Figure 1 ([4]).   

Figure. 1.  Generic steps in the development of a data driven 
model for rainfall run-off simulation 

In flood modelling context, data-driven models exploit 
patterns in available observation to predict flood levels at a 
particular forecasting horizon. In most common data-driven 
flood modelling solutions, available dataset consists of a set 
of observation of water levels or stream flow values sampled 
in equal time differences, forming a time series problem [5]. 
In the simplest form time series modelling involves a single 
random process. In univariate time series analysis, the future 
value of the time series is treated as dependent variable and 
observations up until the prediction point as regressors, which 
are formulated as: 

),...)1(),(()( −=+ txtxfhtx   (1) 
where ‘x’ is the time series process, and ‘t’ denotes the 
observation index, ‘h’ defines the forecasting horizon and ‘f’ 
indicates the function that maps the two. According to 
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conventional time series framework (e.g. [5]) dependency of 
future values of a process to past values can be categorized 
into  short-term and long term ‘memory’. For example, 
determination of expected monthly rainfall can be performed 
by pattern analysis of most recent observed rainfall which 
incorporates current atmospheric conditions as well as 
historical records of monthly rainfall for the specific season. 
The former is example of short memory and the latter is a 
form of long-term memory. It is noteworthy that direct 
inclusion of all relevant inputs in a long memory process as 
inputs would result in over-parameterization and poor 
generalization.  

For many hydrological problems, commonly two types of 
long-term time dependencies are included in modelling 
namely seasonal and cyclic components. In seasonal time 
series (such as above-mentioned monthly rainfall example), 
data contains several seasons, each of which, exhibit distinct 
behavior. In previous research, deseasonalizatin of dataset [6] 
and development of distinct predictive models for each 
season [7] along other formulations have been suggested as 
possible solutions for seasonal time series modelling.  

Another form of long-term process is existence of cyclic 
components, where one or more periodic components affect 
all observations. Astronomical tidal effect is example of such 
datasets. Abrahart et al. [8] suggest the inclusion of a phase of 
time with respect to significant periodic events as regressors 
for such datasets as a potential solution. This approach has 
been adopted by Chang et al. [3] for estuarine flood 
modelling. To avoid over-parameterization, Chang et al. 
limited number of dominant periodic to three dominant 
frequencies as input to the forecasting model. In a separate 
study, for sole tidal prediction (no flood modelling), Lee [9] 
suggest identification of dominant frequencies using 
conventional Fourier transform and using them as only 
regressors of model allowing incorporation of more periodic 
components for modelling.  

For determination of flood levels, apart from short-term 
and long term memory of the process, researches commonly 
include the effect of rainfall (see Mins and Hall [10]). Such 
problem formulation includes more than one variable, hence 
forming a multivariate time series problem. In multivariate 
time series analysis, exogenous variables are included in time 
series formulation: 

)...)1(),(),..,1(),(()( −−=+ tytytxtxfhtx  (2) 
where ‘y’ is the exogenous variable. In flood modelling, one 
of the challenges in the development of a multivariate 
solution is the lack of existence of the exogenous variable in 
significant portions of the dataset. That is, in many flood 
modelling problems, available datasets contain proportionally 
few data points that contain flood related data. Thus 
developing a model that is trained on the entire dataset 
inevitably causes bias towards the non-flood portion 
(contrary to the purpose of flood modelling). To address this 
issue, modelers often limit calibration of parameters of model 
to training examples drawn from one or more flood events 
[11].  

Estuarine flood modelling poses a unique challenge. As 
mentioned earlier, flood modelling should be ‘event’ based 

due to the lack of influence of rainfall in most of the dataset; 
meanwhile astronomical cyclical components influence the 
entire dataset requiring training examples from entire dataset.  

The contribution of this research is exploration of two 
different aspects of flood modelling for estuarine namely 
developing exploring formulation that allow learning joint 
short-term, long term and cyclic components. Additionally,   
practical considerations in utilizing proposed modelling 
solutions are given. 

II. ESTUARINE STUDIED AREA 

The estuary dataset from Oyster’s Creek, Gold Coast, 
Australia together with rainfall from 5 gauging stations 
upstream of the catchment are considered in this study. A 
summary of the dataset utilized for this study is presented in 
Table I.  The recording intervals for each of the series are 15 
minutes. 

 
TABLE I 

DATASETS USED FOR THIS STUDY 
Station name Recording 

Quantity 
Recording Start 

Date 
Recording 
Finish Data 

Oysters Creek Water Levels 1999 Dec 01, 
06:00:00 

2013 Apr 16, 
08:30:00 

Oysters Creek Rainfall 1997 May 25, 
12:00:00 

2013 Apr 16, 
08:30:00 

Coplicks Bridge Rainfall 2005 Aug 03, 
07:00:00 

2013 Apr 16, 
08:30:00 

Tallebudgera 
Creek Rd 

Rainfall 2005 Aug 24, 
13:00:00 

2013 Apr 16, 
07:45:00 

Tallebudgera 
Creek Dam 

Rainfall 2005 Jan 13, 
07:00:00 

2013 Apr 16, 
07:30:00 

Springbrook Rainfall 1992 Jul 24, 
20:00:00 

2013 Apr 16, 
07:30:00 

III. METHODOLOGY 

A. Overview of ANNs and Back propagation 

Artificial Neural networks (ANNs) are among the most 
commonly utilized methods for function approximation in 
hydrological modelling [12]. The architecture of an ANN is 
shown in Figure 2. ANNs are layered information processing 
systems that allow identification of mapping between 
regressors and desired variables. One characteristic of ANNs 
is that they have little assumptions in regards to the structure 
of the problem and the inter-relationship between variables, 
providing a framework for both univariate and multivariate 
time series analysis. To solve a generalized problem of the 
form of equation (2) for the choice of “f”, the modeler 
identifies key inputs that describe the output variable and 
creating ‘training examples’. Each training example consists 
of a pair in the form of equation (2). The building blocks of an 
ANN are the information processing units referred to as 
neurons [13]. Each neuron receives information from inner 
network layers and performs a weighted summation over all 
information received in the inner layer. A function of this 
summation is then given to an outer layer (in a two layer 
network); this procedure continues until sensory information 
goes to the output layer. The output of neural networks is 
calculated by the following equation: 
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( )( )∑= InWWO ** 2132 φϕ   (3) 

where ϕ is an activation function in the output layer, 
32W is the weight matrix between the hidden and outer layer, 

φ is the activation function at the hidden layer, 21W is the 
weight matrix between the input and the hidden layer and 
finally In is the input sensory information. 

By giving training examples to the network, synaptic 
weights of the network are adjusted in a way to best mimic the 
relationship between the input and output.   

 

 
Figure. 2.  Architecture of an ANN 

In the back-propagation algorithm, the input and output 
variables are given to an arbitrarily initialized neuro-structure 
that maps input variables to output variables. Based on errors 
made by the model, the weights that connect input-output 
variables are adjusted in a way that penalizes a user-defined 
cost function. After reaching a user defined stopping 
criterion, the training concludes and the ANN can be 
deployed for prediction. For Development of an ANN, the 
number of layers, the transfer function between layers, the 
number of neurons in each layer, an objective function and 
the stopping criterion need to be chosen by the modeler. 
Despite extensive successful application of ANNs, no 
concrete rules for each of these steps can be found in the 
literature. Most commonly, no more than one hidden layer is 
employed in application of ANNs; one common transfer 
function used between the input and hidden layers is the 
tangent hyperbolic and between the hidden to output layer a 
linear function can be used; the objective function is the Root 
Mean Square error and the number of neurons is identified by 
trial and error. The most stable and commonly utilized 
optimization method for optimizing the weight space in 
“small” neural networks is the Levenberg-Marquardt (LM) 
method [14]. The LM method consists of the following steps: 
1) Evaluation of the Jacobean matrix, defined by the derivative of 
the objective function with respect to each of the weights of the 
network 
2) Approximation of the Hessian Matrix defined as 

)*( JJH T≅   (4) 

3) Adjustment of weights: 

[ ] JIHWW *1−++← σ   (5) 

where σ is the adaptive quantity that 
controls the speed of convergence 
4) Iterate until the stopping criterion is 
achieved 

Definition of the stopping criterion is a design decision by 
the modeler. Ideally, training should be stopped to avoid 
over-fitting and also maximizing the utility from the available 
training examples. In this work, suggested by Moradkhani et 
el. the available training examples are randomized and 
divided into 3 portions, 2 are given for training. After each 
epochs of training, the performance of the predictive model is 
evaluated on the remaining portion. Subsequent to 10 
successive failures in improvement of performance, training 
is stopped and the weights are assigned to the best identified 
iteration.  
B. Approaches for rainfall run-off modelling 

Armed with ANN for mapping random variables, the 
remaining task is identification of input random variables and 
initial formulation of the problem. As mentioned previously, 
rainfall-runoff modelling necessitates separation of flood 
event portions and non-flood portion, accordingly four 
formulations are considered: 

1)  The explicit tidal effect is ignored and it is assumed that 
the auto-regressive property of water levels as of equation (2) 
provides sufficient information about auto-regressive 
component of estuarine time series. 

2) Suggested by Chang et al. [3], time with respect to 
significant harmonics are included as exogenous variables, 
which is of form of equation (2). 

3) Assumes additive interaction between tidal levels and 
rainfall effects, the expected tidal levels are pre-subtracted 
from the water levels time series and the remaining series is 
formulated as equation (2).  

4) Expected tidal values at the prediction time are given as 
exogenous variables.  

Approaches and corresponding symbols for problem 
formulation of this study are provided in Table II. 

TABLE II 
SUMMARY OF FORMULATIONS 

Symbol Approach 
A1 Ignoring the effect of time dependent astronomical tide 
A2 Direct inclusion of time (with respect to dominant 

frequency components) as an exogenous variable 
A3 Identifying the cyclic components – pre-subtractions of 

expected tidal levels from the water level time series 
A4 Identifying the cyclic components – inclusion of 

expected tidal levels as exogenous variables 
 

C. Input Selection 

In this paper, 3 types of inputs are considered namely 
short-term auto-regressive component  (i.e. dependency of 
future values of water levels on current water levels and last 
few hours), exogenous variables (i.e. effect of incoming 
rainfall to future water levels) and long term memory (tidal 
effects). In this section, overview of each of the components 
for formulation of flood levels at estuarine is provided. 
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a) Identification of dominant frequencies 

Fourier analysis provides a practical tool for identification 
of significant harmonic components for a periodic time series 
analysis. Large magnitude points in Fourier domain are 
corresponded to dominant cyclic components of the time 
series data. The Fourier transform of a signal X(t) can be 
determined by the following equation: 
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where “f” is the index for the cyclic component, X(f) is a 
complex number referring to the strength of the component 
“f” spanning from 0 to , “N” is the number of samples and 
“j” is the unit imaginary point. The Fourier transform of the 
water levels at Oysters Creek is shown in Figure 3.  Time with 
respect to the dominant periodic (sorted by magnitude) are 
selected as input variables for approaches A2-A4. 

 
Figure. 3. Fourier transform of the water levels at Oysters 

Creek 
By a simple evaluation of mangnitue of values in Fourier 

domain, dominant frequencies were identified. The list of 20 
strongest frequencies is given at Table III. 

TABLE III 
LIST OF 20 DOMINANT FREQUENCIES IN ESTUARINE (1/HOUR) 

0.0805 0.0833 0.0790 0.0418 0.0387 

0.1667 0.1595 0.0433 0.0448 0.0777 

0.0417 0.0403 0.1610 0.2415 0.1223 

0.0818 0.0832 0.1250 0.1192 0.1638 
 

         

b) Rainfall exogenous variables 

Cross-Correlation between water level time series and 
water levels provides a simple practical tool for identification 
of the lag between rainfall and subsequent changes in water 
levels. The cross-correlation between available averaged rain 
gauge and water levels at Oysters Creek is demonstrated at 
Fig 4. 

 
Figure. 4. Cross-Correlation between spatially averaged 

rainfall over entire catchment time series and water level. 

As can be seen in Figure 4, subsequent to nearly 22 lags, 
the cross-correlation function peaks hence antecedent rainfall 
from 30 lag prior to the event are considered as inputs. 

c) Antecedent water levels 

Commonly examination of auto-correlation function 
(ACF) is used for evaluation of short term memory of a time 
series problem [15]. However ACF is meaningful for 
evaluation of stationary time series hence is not applicable to 
estuarine. Therefore, an empirical approach, by performance 
analysis of several different predictive models with different 
auto-regressive components is adopted herein. 

IV. EXPERIMENTAL SETUP 

The aim of this study is not the development of an optimal 
model or through investigation of all possible input space; 
rather it is the investigation of the difference between 
approaches. Knowing that BP is an iterative learning process 
and is sensitive to initial conditions, 20 models with different 
initial conditions are trained to reinforce that the observed 
difference between each model’s performances is not due to 
effect of initial conditions. The forecasting horizon for all of 
the experiments is fixed at two and four hours. Notably, initial 
observations suggest that the variation of water levels is 
significant in such span of time, making such predictions 
useful for emergency warning systems.  

One of the design decisions in the development of a flood 
forecasting model is the choice of the data-split for testing 
and calibration. This is particularly relevant as stakeholders 
wish to know the response of the system to a potentially 
record-breaking event. In this work, for flood forecasting 
components, the available flooding events are ranked based 
on the maximum water level reached during the event. 
Starting from the highest ranking, every third ranking event is 
preserved for testing and the remaining portion is utilized for 
calibration. Matlab 2012 and the associated neural network 
toolbox are used as a platform for designing the experiments. 

V. RESULTS 

A. Tidal Forecasting system 

Realization of the approaches A3-A4 requires a dedicated 
tidal forecasting system. Such a flood forecasting system 
receives time with respect to the dominant periods. Networks 
with different numbers of inputs and neurons were tested; the 
network with the lowest Root Mean Square Error is selected 
as the tidal forecasting model for the remaining part of this 
paper. The results of different tidal forecasting models are 
summarized in Table IV. 

TABLE IV 
QUANTITATIVE RESULTS FOR THE TIDAL PREDICTION MODEL 

Number of Frequency 
Components included as 

input variable 

Number of neurons Root Mean Square 
Error 

17 5 0.0787 
23 5 0.0784 
17 10 0.0770 
23 10 0.0717 
17 15 0.0708 
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23 15 0.0684 
To further illustrate the dynamic performance of the tidal 

prediction model, predictions of the model are demonstrated 
in Figure 5. 

 
Figure. 5. Example of forecasted tidal levels 

B. Flood forecasting model 

Upon completion of an empirical process for the 
development of a reasonable representation of the input 
space, we noticed that the inclusion of rainfall more than 6 
hours prior to the event does not enhance the results. Also, 
due to autoregressive nature of rainfall, available rainfall time 
series is averaged over different periods. It was found that 
averaging over a period of one hour does not negatively affect 
performance of predictive models. Hence, in all experiments, 
rainfall no more than 6 hours prior to the prediction point is 
included and rainfall for each gauging station is averaged 
over one hour interval. 

To visually assess the difference between different 
modelling solutions across different approaches, a boxplot of 
each experiment for two hour forecasting horizon is 
illustrated in Figure 6 and Figure 7. A boxplot uncovers the 
effect of initialization and provides a visual representation of 
the experimental outcomes according to one performance 
metric. In a boxplot, x-axis refers to the experiment index 
(A1-A4) and y-axis represents experimented Root mean 
square error of each experimental outcome.  

 
Figure. 6. Boxplot of different trials for cross-validation 

performance of different modelling approaches, two hours 
forecasting horizon 

 
Figure. 7. Boxplot of different trials for independent test set 

performance of different modelling approaches, two hours 
forecasting horizon 

As can be seem, according to both metrics, forecasts made 
by A3 and A4 approach significantly outperform A1-A2 
approaches and more surprisingly, no significant difference 
between A1 and A2 is observable. The difference between 

approaches is evident both using cross-validation and during 
independent testing.  

To reinforce these clams, statistical two tail u-test [16] of 
different experimental outcomes is performed using ranksum 
Matlab command. The results are summarized in Table V.  

TABLE V 
RESULTS OF STATISTICAL U-TEST FOR 20 OUTCOMES OF RMSE OVER CROSS 

VALIDATION IN TWO HOURS PREDICTION 
Experiment 

Index 
A1 A2 A3 A4 

A1 - 0.0071 6.7956e-08 6.7956e-08 
A2 - - 6.7956e-08 6.7956e-08 
A3 - - - 6.7956e-08 
A4 - - - - 

TABLE VI 
RESULTS OF STATISTICAL U-TEST FOR 20 OUTCOMES OF RMSE OVER 

INDEPENDENT TEST-SET IN TWO HOURS PREDICTION 
Experiment 

Index 
A1 A2 A3 A4 

A1 - 0.6949 6.7956e-08 6.7956e-08 
A2 - - 6.7956e-08 6.7956e-08 
A3 - - - 1.5757e-06 
A4 - - - - 

 
As can be seen, the null hypothesis that these experimental 

setups have come from identical distributions can be rejected 
with (p < 0.01) between performances of all predictive 
systems apart from A1 and A2, when experiment is 
conducted on independent test sets. In all other cases 
significant difference between the outcomes of experiments 
can be observed.  

Similar experiments were conducted for forecasting 4 
hours into the future and subsequent boxplots are given in 
Figures 8 and 9. 

 
Figure. 8. Boxplot of different trials for cross-validation 

performance of different modelling approaches, four hours 
forecasting horizon 

 
Figure. 9. Boxplot of different trials for cross-validation 

performance of different modelling approaches, four hours 
forecasting horizon 

The results appear similar and to ensure scalability of 
results, similar statistical tests are conducted for Four hour 
forecasting horizon. 

TABLE VII 
RESULTS OF STATISTICAL U-TEST FOR 20 OUTCOMES OF RMSE OVER CROSS 

VALIDATION IN FOUR HOURS PREDICTION 
Experiment 

Index 
A1 A2 A3 A4 

A1 - 0.6949 6.7956e-08 6.7956e-08 
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A2 - - 6.7956e-08 6.7956e-08 
A3 - - - 6.7956e-08 
A4 - - - - 

TABLE VIII 
RESULTS OF STATISTICAL U-TEST FOR 20 OUTCOMES OF RMSE OVER 

INDEPENDENT TEST-SET IN FOUR HOURS PREDICTION 
Experiment 

Index 
A1 A2 A3 A4 

A1 - 0.1404 6.7956e-08 6.7956e-08 
A2 - - 6.7956e-08 6.7956e-08 
A3 - - - 0.0031 
A4 - - - - 

 
As can be seen, the apart from difference between A1-A2, 

the remaining approaches have statistically significant 
difference with (p < 0.01). This suggests the proposed A3 and 
A4 outperform existing approaches for flood modelling in 
estuarine.  

To further investigate the application of the proposed 
models as decision support systems, forecasts of the best 
performing solution for historical peaks for two hours 
forecasting horizon is shown in Figure 10. 

 
Figure. 10. Forecasts of the A3 model at historical peak at 

Oysters Creek, two hour forecasting horizon 
It appears that the proposed modelling solution, although 

significantly outperforming other solutions investigated, still 
is not entirely satisfactory. Accordingly, further experiments 
are conducted to trace sources of error in the proposed 
solution. In this experiment, unseen rainfall from prediction 
point to forecasting horizon is assumed as a known quantity 
to arbitrary spatial and temporal resolution. In the first 
experiment, the unseen rainfall from the prediction time to the 
prediction point is given as input to the model (referred to as 
“a”); in the second one, rainfall from different gauging 
stations are given as distinct inputs (referred to as “b”). To 
simplify making conclusions, only the A3 approach for 
modelling is considered. The boxplots of the resulting 
experiments are shown in Figures 11 and 12. 

 
Figure. 11. Boxplots of experiments conducted for 

assessment of the effect of unseen rainfall on water levels. 

As can be seen, the effect of unseen rainfall is significant; 
similarly providing rainfall from different stations as separate 
inputs. For comparison, the performance of this model for 
prediction of historical peaks is demonstrated in Figure 12.  

 
Figure. 12. Forecasts of the A3b model at the historical 

peak at Oyster’s Creek, two hour forecasting horizon 
As can be seen, this model provides significantly better 

forecasts and the peak are underestimated only by 30cm and 
timing is correct. Statistical significant u-test also confirms 
that the difference between these settings is significant (p < 
0.01).   

VI. SUMMARY AND DISCUSSION 

Four strategies for estuarine rainfall-runoff flood 
modelling using ANNs were compared, abbreviated as 
A1-A4 (see Table II). A1 and A2 approaches are so far only 
approaches suggested for estuarine flood modelling. In this 
work, A3 and A4 are realized using axillary tidal prediction 
system trained on non-flood portion of dataset. Commonly 
such portion is omitted from modelling altogether.   

The results of this study suggest that proposed A3 and A4 
significantly outperform existing data-driven estuarine flood 
analysis methods. Most basic A1 and suggested A2 were 
found to be insignificant for 2 and 4 hours forecasts. The main 
shortcoming of A1 and A2 models is attributed to training set 
bring solely on flood related portion of dataset, hence, the 
model is unable to capture the relationship between time with 
respect significant harmonics and future water levels.  
Despite the substantial advantage of A3, the model produced 
significant errors when testing the observed historical peak of 
the available observation for two hour forecasts. The second 
part of the experiments attempted to trace the source of error 
in proposed A3 system; it was found that the accurate 
prediction flood level requires accurate temporal and spatially 
distributed rainfall forecasts that are not available at time that 
forecasting is performed. Potential users may decide to 
consider either attempting shorter forecasting horizons or 
attempt alternative methods for direct prediction of unseen 
rainfall.  

VII. CONCLUSION 

In this work, the issue of the existence of cyclic 
components in an estuarine dataset has been directly tackled. 
Despite apparent significant gain in the proposed modelling 
solutions, the authors note that the results should be 
approached in context. In this case study, sources of errors 
and uncertainty were partially determined so that operators 
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can fully appreciate the strength and weaknesses of the 
proposed model. It is essential for the modelers to understand 
effect of different variables and integrate them to the model 
and allocate sufficient training examples so that model learns 
the pattern. From end-users point of view, users should be 
aware of existence and the extent of the influence of hidden 
variables (in this case, unseen rainfall between prediction 
time and forecasting horizon and the spatial distribution of 
rainfall), structural limitation of the model, and the impact of 
parameter uncertainty, as well as potential errors in the 
recording of data. In this work, although not all of the 
abovementioned analysis of a decision support model was 
investigated, a method for integration of tidal effect on flood 
level was proposed as a first step towards a dedicated 
data-driven flood decision support for estuarine.  
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