
  

  

Abstract—This paper is a continuation of previous 
published work by the same authors on Personalized 
Modelling and Evolving Spiking Neural Network Reservoir 
architecture (PMeSNNr). The focus is on improvement of 
predictive modeling methods for the stroke occurrences case 
study utilizing an enhanced NeuCube architecture. The 
adaptability of the new architecture leads towards 
understanding feature correlations that affect the outcome of 
the study and extracts new knowledge from hidden patterns 
that reside within the associations.  Through this new 
method, estimation of the earliest time point for stroke 
prediction is possible. This study also highlighted the 
improvement from designing a new experimental dataset 
compared to previous experiments. Comparative 
experiments were also carried out using conventional 
machine learning algorithms such as kNN, wkNN, SVM and 
MLP to prove that our approach can result in much better 
accuracy level.  

I. INTRODUCTION 
Spatio/spectro temporal data (SSTD) is collected daily 

in many domains and is challenging to analyze because 
there are spatial and temporal connections amongst the data 
that need to be addressed accordingly. In them reside 
hidden patterns and new undiscovered knowledge that may 
solve numerous problems. In the health domain, the 
analysis of SSTD will help enhance the predictive accuracy 
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of diseases such as stroke and heart attack and aid 
prevention. Classical machine learning methods have 
limited success in analyzing complex problems with SSTD 
because their capabilities are limited. This study aims to 
improve the on currently available methods by using new 
improved personalized modelling and a spiking neural 
network (PMeSNNr) system through the predictive 
modeling approach.  

The main objectives of the research are understanding 
the effect of correlated features towards the outcome and 
obtaining new knowledge from hidden patterns that reside 
within the association between the features in SSTD. As 
well as from obtaining new knowledge, the research also 
aims to produce a model to accurately determine the 
earliest time point when an event (such as stroke, heart 
attack or earthquake) will occur in the future. 

Most SSTD contains noise that may disrupt the analysis 
process and result in low accuracy. Classical machine 
learning methods removes the noise by implementing 
filtering methods such as the Signal to Noise Ratio (SNR). 
Consequently, this paper aims to demonstrate the 
applicability of the new system for modeling general types 
of SSTD and demonstrate that analyzing all data 
collectively without filtering the noise will be more 
accurate, assuming that noisy data also carries valuable 
information in defining meaningful associations among 
SSTD. Therefore a case study on stroke occurrences that 
contains noisy data is used to assess the feasibility of the 
new method. This paper also reviews the previous 
experimental design and methods of improving it to 
achieve much better accuracy at the earliest time point.  
This is ongoing research; since the first version of the 
system called NeuCubeB [1] was developed for modeling 
brain data, new architecture called NeuCubeST has been 
developed to model other types of SSTD. Both of these 
systems follow the PMeSNNr framework [2] that will be 
explained briefly in the next section. 

II. OVERVIEW OF PMESNNR METHODOLOGY  
Global modelling applied in most conventional 

machine learning methods has proven its effectiveness in 
the past, however it has a limited capability in producing 
models that fit each person or each case in the problem 
space since global modelling takes all available data in  a 
problem space and produce a single general function [3]. 
The produced model is applied to a new individual 
regardless of their unique personal features. Common 
global modelling algorithms include Support Vector 
Machine (SVM) [4] and Multilayer Perceptron (MLP) [5]. 
Therefore, in the case of stroke or any medical condition, 
personalized modelling methods are preferred for the 
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reason that they can produce a model for each individual 
based on their personal features. However, classical 
personalized modelling methods such as k-Nearest 
Neighbor (kNN) [6] and weighted k-Nearest Neighbor 
(wkNN) [7] are only suitable when classifying vector based 
and static types of data, not SSTD. Therefore we have 
extended conventional personalized modelling methods  
based on a Spiking Neural Network (SNN), that we 
believed is capable of analysing personalized temporal data 
more successfully than classical personalized methods. 

The concept of SNN has been considered as an 
emerging computational technique for the analysis of 
spatio-temporal datasets. This is because SNN has the 
potential to represent and integrate different aspects of the 
information dimension such as time, space and has the 
ability to deal with large volumes of data using trains of 
spikes [8]. SNN models such as Spike Response Models 
(SRM) [9]; Leaky Integrate-and-Fire (LIF) Models [10]; 
Izhikevich models [11]; Evolving SNN (ESNN) [12],   
have been successfully utilized in several classification 
tasks, but they process input data streams as a sequence of 
static data vectors, ignoring the potential of SNN to 
simultaneously consider space and time dimensions in the 
input patterns. It can be viewed that SNN has more 
potential and is more suitable for SSTD pattern recognition 
utilizing emerging new methods such as reservoir 
computing [13]; Probabilistic Spiking Neuron Model [14]; 
Extended Evolving SNN [15]; Recurrent ESNN (reSNN) 
[16]; Spike Pattern Association Neuron (SPAN) [17]; 
Dynamic ESNN (deSNN) [18]. 

 
Fig. 1. Schematic diagram of PMeSNNr architecture [2] 

Fig. 1 depicts the architecture of PMeSNNr. The basic 
components in the system consist of several functional sub-
modules; a spike-time encoding module, a recurrent 3D 
SNN reservoir, an evolving SNN classifier and a parameter 
optimization module. 

The spike-time encoding module will encode a 
continuous value of data into a train of spikes using 
Address Event Representation Method (AER) [19]. The 
method is based on calculating the difference between two 
consecutive values of the same input variable over time, 
hence is suitable when the input data is a stream and only 
the changes in consecutive values are processed [1]. Other 
encoding methods that can be implemented are Population 
Rank Order Coding (POC) [20] and Bens Spike Algorithm 
[21].  

The recurrent 3D SNN reservoir will train the input 
spike based on the Liquid-State Machine concept, 
connecting leaky-integrate and fire model (LIFM) spiking 
neurons with recurrent connections. The reservoir 
comprises of a group of recurrently connected neurons. The 
connectivity is generally random, and the units are 
typically non-linear. On the whole, the activity in the 

reservoir is driven by the input, but is also influenced by 
the past. The reservoirs dynamic input-output mapping 
provides a crucial benefit over the simple time delay neural 
networks. This approach theoretically allows for real-time 
computation on continuous input streams in parallel [13].  

The learning capability of the reservoir is through the 
implementation of a learning method called Spike Time 
Dependent Plasticity (STDP), a form of Hebbian Learning 
where spike time and transmission are used in order to 
calculate the output of a neuron [22]. Connected neurons, 
trained with STDP learning rule, learn consecutive 
temporal associations from data [1]. New connections can 
be generated based on activity of consecutively spiking 
neurons. STDP learning is considered as a viable learning 
mechanism for unsupervised learning of SSTD patterns. 

The trained input patterns from the recurrent reservoir 
will then be trained again using a supervised training 
method such as an evolving SNN classifier to classify the 
class for each case. Several evolving SNN classifiers can 
be implemented such as evolving SNN (eSNN) [12], 
dynamic eSNN (deSNN) [18], Spike pattern association 
neurons (SPAN) [17] and many more. The parameter 
optimization procedure optimizes the model to find the 
optimal parameters that achieved maximum accuracy at 
earliest time of prediction.  

III.  BRIEF DESCRIPTION OF NEUCUBEB AND NEUCUBEST 
In both system architectures, the mapping of data 

features is essential to improve the learning capability of 
the network and prediction accuracy. The main difference 
between these systems is the reservoir and mapping 
concept. NeuCubeB [1] implemented a brain structure 
reservoir for brain data modeling. Using NeuCubeB, 
modeling brain data from EEG readings and fMRI is a 
straightforward process and the connection between 
neurons can be interpreted through the understanding of 
brain regions and functions. Other types of SSTD such as 
stroke occurrences data, ecological data and so on, do not 
have these brain-like spatial connections. These types of 
data have their own temporal or spatial relations that are 
not clearly defined. Therefore the mapping of input spikes 
onto these input neurons is meaningless unless we 
understand the correlations that reside within the data.  

This lead to the development of a new NeuCube 
architecture called NeuCubeST that is more adaptable to 
analyze any type of SSTD. Unlike NeucubeB, the 
NeuCubeST reservoir size is modifiable by changing the 
cube size values that create a recurrent 3D SNN cube 
reservoir consisting of LIFM neurons. Aside from a 
flexible reservoir size, the input neuron mapping is also 
flexible. The flexibility of changing the mapping of input 
neurons and reservoir size gives the user more control in 
modeling the data. Additionally, the improved functionality 
of automated input neuron mapping calculation helps 
produce the best models and saves modeling time. The 
automated mapping of input neuron is the key in 
understanding the correlations reside in the data. We 
believed the connections between neurons influence the 
learning pattern. Thus the nearer the related features are to 
each other, more connections are produced subsequently 
improved the learning process. NeuCubeST architecture 
does not limit the number of features to be analyzed 
compared to NeuCubeB which has only 14 input neurons.  
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Another crucial improvement is the way the data is 
visualized.  Visualization of the patterns and connections 
between neurons are crucial in learning the SSTD. 
NeucubeB has limited visualization functionality and 
mapping of specific features to each input neuron is not 
visualized. Without this visualization understanding the 
correlations between features is a challenging task. 
Accordingly, NeuCubeST solved this problem by labeling 
the input neurons with the mapped features. Aside from 
improved reservoir visualization and mapping functionality 
other functionality is added to aid the modeling process, 
such as more types of cross validation and additional types 
of visualization to understand the connection between 
neurons. 

As mentioned previously, the feasibility of these both 
systems were assessed using a case study on stroke 
occurrences. The output of the NeuCubeB assessment was 
published in [2].  Despite the fact the accuracy of the result 
is high, the implementation approach appears to be 
unsuitable for analyzing a small dataset and the knowledge 
gain was unclear.  The case study further explained in the 
next section, presented a complicated problem to analyze 
because of the unconventional variables used in predicting 
a stroke event. 

IV.  A CASE STUDY ON STROKE OCCURRENCES 
According to World Health Organization (WHO) 

global report, health related problems like chronic diseases 
are the major cause of death in almost all countries and it is 
projected that 41 million people will die of a chronic 
disease by 2015 [24]. Chronic diseases like stroke have 
become a leading cause of death and adult disability in the 
world [25].  Although there are numerous medical and 
genetic risk factors associated with cardiovascular disease 
and stroke among such as smoking, hypertension, alcohol 
use, high cholesterol and obesity, that other factors such as 
drastic environmental changes could trigger the cause of a 
stroke in an individual [26]-[27]. Based on expert reviews, 
the influence of climate on stroke risk is biologically 
plausible; for example, a significant change in temperature 
may lead to physiological changes that increase the risk of 
stroke [25]. 

Statistical methods have been used by many researchers 
[26]-[31] to find association with environmental variables 
and stroke incidents. These are some of the studies that 
discovered connections between environmental changes 
and stroke occurrences. Studies carried out by [26], [27] 
and [28] revealed that a decrement in temperature, 
increased stroke incidence. Another study found that there 
is an increment in stroke incidence during cold spells and 
the influence of barometric pressure on hospitalizations 
was relatively greater than the influence of geomagnetic 
activity, and that the influence of temperature was greater 
than the influence of pressure [29].  However none of these 
methods investigate the combination effect of these 
environmental variables. We believe in order to find more 
meaningful associations between stroke occurrences and 
the external environment it is necessary to analyze them 
collectively.   

A. Data Specification 
The dataset consists of 11,453 samples (all with first-

ever occurrence of stroke) from six population regions: 
Auckland (NZ), Perth and Melbourne (Australia), 

Oxfordshire (UK), Dijon (France), Norrbotten and 
Vasterbotten counties (Northern Sweden). These study 
areas are grouped into the Southern Hemisphere region 
(Auckland, Perth, and Melbourne) and Northern 
Hemisphere region (Oxfordshire, Dijon, Norrotten and 
Vasterbotten counties).  For this study only the Auckland 
region with 2805 samples was selected. Patients’ medical 
data comprise only static and categorical data that was 
recorded after they were hospitalized. There was no 
temporal recording of patient biological data until the point 
they had a stroke. Without the temporal medical data, 
predicting future stroke occurrence is difficult. Therefore, 
for other available temporal data such environmental data 
may influence stroke occurrences were utilized to construct 
this model.  

In our previously published case study on stroke 
occurrences [2], the dataset consisted of 40 samples taken 
from the Auckland in the autumn season, only including 
those aged from 60 to 69, with a history of hypertension 
and smoking at the time of the stroke. Each sample is 
described by 9 features/variables (4 static patient features 
and 5 temporal weather features). These temporal variables 
are temperature (°Celsius), humidity (%), atmospheric 
pressure (hPA), wind speed (Knots) and wind chills 
(°Celsius). The weather reading of 60 days before the 
stroke event is collected to form the experimental data. As 
mentioned in our previous paper, the absence of healthy 
subjects, leads to the application of the case-crossover 
design method. Therefore, each participant acts as both 
‘case’ and ‘control’ at different time intervals.  

Based on previous studies [26]-[30], a decrement in 
temperature or inclement weather increased the risk of 
stroke; therefore a new dataset was extracted from the 
winter season in Auckland for 2002. The age group of 
patients is between 50 to 69 years that have a history of 
hypertension and are currently smokers at the time of 
stroke. As formerly practiced, the case over design is 
applied to create normal/control group from stroke patient 
data resulting to 20 samples altogether. In addition, a new 
set of temporal data are also collected including new 
weather variables, air pollution variables and geomagnetic 
activity variables. The environmental variables were 
measured over a 60 day period preceding the day of the 
stroke (excluding the day of stroke itself). The complete 
list contains a total of eighteen (18) features which consist 
of six (6) patient static features (categorical data); age, 
gender, history of hypertension, smoking status, season, 
date of stroke; along with twelve (12) environmental 
(temporal) features (continuous daily data) including eight 
(8) daily mean weather data; wind speed (Knots), wind 
chill (Degree), temperature dry (°Celsius), temperature wet 
(°Celsius), temperature max (°Celsius), temperature min 
(°Celsius), humidity(%), atmospheric pressure in 
hectopascals (hPA);  three (3) daily mean air pollution 
data; sulfur dioxide (SO2) (µg/m3), nitrogen dioxide (NO2) 
(µg/m3), ozone (O3) (µg/m3); one (1) planetary 
geomagnetic activity, as measured by daily averaged Ap 
indices; solar radiation (Ap Index). 

In order to distinguish between normal subjects (class 
1) and stroke subjects (class 2), only temporal variables 
will be modeled and analyzed. Each class is represented by 
temporal data taken from two time windows of 30 days 
each (refer to Fig. 2). The period spanning 30 days pre-
stroke occurrence until the day before the stroke event is 
considered as the stroke group (time window 2). We 
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assume this as the critical time window potentially 
contributing to the risk of stroke. For the same subjects, the 
period spanning another 30 days from day 31-60 pre-stroke 
occurrence is taken as the normal/control group (time 
window 1), due to the assumption that weather parameters 
60 days prior have no influence on the actual stroke event. 
However this appears to be an improper approach to divide 
the classes since the environment gradually changed 
overtime. Thus the exact time point when the changes in 
environments influence the stroke event is unclear.  We 
suggest a transition period between normal and stroke 
classes, as we believe the transition period consists of 
ambiguous information that potentially contributes to 
misclassification or error. 

 
Fig. 2. Time windows to distinguish stroke and normal patients in 

previous dataset  

Consequently, a new experimental dataset is designed 
by taking out the transition period from the experimental 
data. The transition period is between the two time 
windows and was decided that the time length is the same 
for each time window. Since the temporal environmental 
data that we have collected is for a 60 day time period, we 
consider the period spanning 20 days pre-stroke  
occurrence (time window 2) as ‘stroke’ class and the last 
20 days (time window 1) as ‘normal/control’ class, 
eliminating the middle 20 days as a transition period 
between the time windows (refer to Fig. 3). 

 
Fig. 3. Time windows to discriminate between stroke and normal 

patients eliminating the transition period 

B. Brief Data Overview  
Fig. 4 depicts the four types of temperature readings for 

a male subject age 51 over the period of 60 days before the 
stroke event. The temperature readings were temperature 
max, temperature min, temperature dry and temperature 
wet. The variable pattern between time window 1 (20 days 
pre-stroke event) and time window 2 shows a significant 
difference, where in time window 2 the temperature 
readings are relatively chaotic compared to time window 1 
and within time window 2 the reading shows several 
drastic drops in temperature.  

Fig. 5 depicts the atmospheric pressure reading for 
several patients who were 60 years old. The atmospheric 
pressure clearly dropping within the period of 20 days 
(time window 2) preceding stroke compared to the earlier 
20 days (time window 1). Moreover, the readings are 
highly variable in that 20 day period before stroke with 
several drastic drops for all patients. Fig. 6 shows solar 
radiation readings for different patients which illustrated 
that the patients were exposed to high solar radiation before 
the stroke. The exposure to solar radiation overtime may 

have effects on human health. As confirmed by several 
researchers [32] [33], prolonged exposure could lead to 
skin cancer, eye disease and decrease in the efficiency of 
the immune system and may increase the risk of 
cardiovascular disease. 

 
Fig. 4. Four types of temperature reading 60 days preceding stroke 

event for male subject, age 51 

 

Fig. 5. Atmospheric pressure reading 60 days before the stroke event 
for several patients 60 years of age 

 

Fig. 6.  Solar radiation reading 60 days preceding stroke event for three 
subjects 

From the three types of air pollutant variables, SO2 is 
illustrated in Fig. 7. SO2 is one of highly reactive gasses 
known as “oxides of sulfur”. These particles penetrate 
deeply into sensitive parts of the lungs and can cause or 
worsen respiratory disease, and can aggravate existing 
heart disease, leading to increased hospital admissions and 
premature death. The graphical representation of three 
subjects shows increased exposure to SO2 in time window 
2 compared to the exposure during time window 1. This 
possibly will further clarify our assumption that SO2 in 
combination with other variables increases the risk of 
stroke. 
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Fig. 7. SO2 reading 60 days preceding stroke event for three subjects 

V. EXPERIMENTAL SETTING  
The experimental setting reported in our previous paper 

[2] was designed to assess the feasibility of the modelling 
method by generating better results compared to 
conventional machine learning methods.  A limitation of 
the previous system (NeuCubeB) is that, only a random 
sub-sampling validation technique can be applied.  Thus 
the previous dataset was randomly split into training and 
validation data. This technique is suitable if the dataset is 
large where an advantage of this approaches that the 
training/validation split is not dependent on the number of 
iterations (folds). However the disadvantage of this 
approach is that some observations may never be selected 
in the validation subsample, whereas others may be 
selected repetitively causing skewed variation of result in 
different random splits. In the case of stroke occurrences, 
the 40 samples used as training data (60%), where every 12 
random samples were selected from each class; in the 
validation data (40%), 8 random samples were selected 
from each class. This is improper practice since the dataset 
is small and is difficult to generalize the result to an 
independent dataset. However, it is sufficient to assess the 
feasibility of the NeuCubeB architecture and encouraged us 
to further enhance the method by developing NeuCubeST.   

A new experimental setting (refer to Fig.8) was 
designed to further assess the feasibility of the analysis 
tools as well as finding the earliest time point to best 
predict future stroke occurrences in an individual. These 
experiments are also compared with several standard 
machine learning algorithms such as SVM and MLP and 
classical personalized modeling algorithms (kNN and 
wkNN). The enhanced cross validation techniques in 
NeuCubeST enable us to carry out Leave-One-Out Cross 
Validation (LOOCV) for analyzing the small dataset. 
Through this technique the model is trained on all data 
except one sample and a prediction is made for that sample 
at the specified prediction date. Although the LOOCV 
technique is very expensive to compute it is a much better 
way to evaluate models, especially with a smaller dataset.  

 As depicted in Fig.8, the first experiment, takes the 
whole time period covering 20 days (prediction of only one 
day before stroke occurs). Each time period describes all 
features related to each time point. For example, for day 5 
all the features related to day 5 will be processed as one 
spike pattern for that particular time point, thus preserving 
the temporal relationship. Whereas the second experiment 
looks at 75% of the whole pattern which means the 
prediction will be 6 days ahead. Lastly, the third 
experiment will take only 50% (11 days earlier) of the 

whole pattern to predict the stroke event. The normal class 
will be referred as Class 1 and stroke class as Class 2. 

 
Fig. 8. Experimental design for NeuCubeST 

The following parameter values were selected for 
optimal classification accuracy:  

1) The size of the PMeSNNr reservoir is 6x6x6 making a 
total of 216 neurons; 

2) Threshold for the AER depends on the input data as 
the input data is not normalized to minimize error or loss 
of information; 

3) Small World Connectivity (SWC) used to initialize the 
connections in the SNN reservoir, with a radius of initial 
connections of 0.30. The initial connections are generated 
probabilistically, so that closer neurons are more likely to 
be connected; 

4) Threshold of the LIFM neurons in the SNN reservoir 
is 0.5;  

5) The leak parameter of the LIFM neurons is 0.002;  
6) STDP learning rate is 0.01; 
7) Number of training is 2 times;  
8) Mod parameter of the deSNN classifier is 0.04 and 

the drift is 0.25.  
 
Since conventional methods are limited to classifying 

static and vector-based data, the data was arranged in one 
vector for each experimental setting. The temporal 
variables for each sample were concatenated one after 
another, as shown in Fig 9. Experiment 1 will take all time 
points for 20 days resulting 240 temporal features for each 
sample. Experiment 2, takes only 75% of the time length 
(15 days) giving 180 temporal features for each sample; 
and experiment 3 takes 50% of the time length which 
yielding 120 temporal features for each sample. 

 
Fig. 9. Experimental design for conventional machine learning 

methods 

All experiments are executed using LOOCV techniques 
without feature selection applied to the dataset. The SVM 
method used a Polynomial Kernel of first degree. The MLP 
method used 20 hidden nodes and one output, with learning 
rates of 0.01 and 500 iterations while kNN and wkNN used 
a k value of 5.   

VI. RESULT 
The obtained best accuracy of the NeuCubeST 

implementation of PMeSNNr with the parameter values 
described above is 95% (100% for the TP - stroke 
prediction, class 2; 90% for the TN – no stroke – class 1) 
using Leave-One Cross Validation (LOOCV). Table I lists 
the overall accuracy from all experiments. 
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The result clearly shows the PMeSNNr method is much 
more applicable to model such complex data, because 
without filtering any noise from the data the result is 
improved over the other conventional methods.  This 
proves that noise also carries valuable information in 
defining meaningful associations among SSTD. Other 
conventional methods are susceptible to noise, resulting to 
lower accuracy if no feature selection method is applied. 
Furthermore, the conventional methods are clearly not 
suitable for analyzing complex problems that integrate 
different types of data because their capability is limited to 
learn static and vector-based data with no consideration of 
spatial or temporal relationships.  

TABLE I.  COMPARATIVE EXPERIMENTAL RESULTS FOR ALL 
MODELLING METHODS 

Methods 
Overall Accuracy (%) 

SVM MLP kNN wkNN NeuCubeST 
1 day 
earlier 
(100%) 

55 
(70,40)a 

30 
(50,10) 

40 
(50,30) 

50 
(70,30) 

95 
(90,100) 

6 days 
earlier 
(75%) 

50 
(70,30) 

25 
(20,30) 

40 
(60,20) 

40 
(60,20) 

70 
(70,70) 

11 days 
earlier 
(50%) 

50 
(50,50) 

25 
(30,20) 

45 
(60,30) 

45 
(60,30) 

70 
(70,70) 

a (class 1, class 2) accuracy for each class in percentage 

 
Analyzing the result further shows that 

misclassification for class 1 (stroke) is very high for 
conventional machine learning methods. Among the 
conventional methods SVM performed better than the rest 
because of a higher correct classification for the normal 
class. SVM has a reputation for performing better than 
other global modeling methods. As for MLP, the 
performance is as expected since MLP is rather slow and 
needs many iterations for training. kNN and wkNN also 
did not perform well and is limited by the value of k.  

NeuCubeST that follows the PMeSNNr architecture 
offers a much accurate prediction than other conventional 
methods. NeuCubeST with less input data still produced 
better and stable results. Unfortunately with less 
information the prediction accuracy drops. When 
employing the 100% time length dataset, NeuCubeST 
misclassified just one sample that belonged to the normal 
class. If we look back at the original dataset this is 
plausible because the original dataset consists only of 
stroke patients. The logical explanation here is that some 
of the environmental parameters somehow contain 
ambiguous readings at a certain time point that lead to 
misclassification for that particular sample. Nevertheless, 
prediction for stroke class is 100%, which proves our 
assumption about harsh environmental condition within 20 
days before the stroke occurrence increases the risk of 
stroke. As well as our assumption that analyzing the 
variables collectively produces much better prediction 
accuracy. For the 75% and 50% time length datasets, the 
result is stable where both of the classes have equal 
classification and accuracy. This means that only using 
half of the input data (10 days), the system predicts that in 
the period of 11 days before the day of a stroke, the risk of 
having a stroke for an individual is 70%. Based on this 
prediction, individual may takes steps to reduce the risk of 
stroke such as protecting themselves from hazardous 
environmental conditions. This stroke prediction tool has 

the potential to enhance the capacity of existing stroke 
prediction by allowing more individualized risk prediction 
and for earlier time points than currently possible.  

This study not only aimed to improve prediction 
accuracy, but also aimed to aid the discovery of new 
knowledge. Most conventional machine learning 
algorithms are black box methods where the learning 
within is not visualized. This system visualizes the learning 
process and through these visualization functions, 
relationships that reside within SSTD can be 
comprehended. Fig. 10 depicts the best input neuron 
similarity graph generated to approximately match input 
feature similarity graph. The spike density of the signals is 
calculated to produce the input feature similarity graph. 
Then the input neuron similarity graph is produced to show 
where input neurons are mapped inside the recurrent 3D 
reservoir.  

 
Fig. 10. Best input neuron similarity graph. 

Analyzing this input feature similarity graph further, 
the correlations between temperature variables are very 
strong. So mapping these temperature variables to input 
neurons in close proximity is vital for better learning of the 
SSTD patterns. This mapping produced the highest 
prediction accuracy (95%), suggesting that temperature 
variables may have a strong influence in predicting stroke 
occurrences. This data was taken in winter season where 
temperature readings are quite low on several days, 
supporting most research done in the past [26]-[30] on low 
temperature as a trigger of stroke occurrence. In the input 
neuron similarity graph, we can recognize that there is a 
strong correlation between two air pollutant variables, SO2 
and NO2; and a connection between NO2 and solar 
radiation. One study [34] has uncovered that NO2 gas plays 
an important role is solar radiation absorption under 
polluted conditions. 

Analyzing the current problem in a smaller size 
reservoir produces better and stable results. The total 
number of neurons used to model this problem is only 216 
which mean the closer the input neurons are to each other 
the better the learning process and the input neurons also 
mapped to all faces of the cube. As illustrated in Fig.11, all 
weather variables are mapped close to each other. Air 
pollution variables were mapped closely to each other with 
the exception of O3 which had a stronger association with 
wind chill and temperature min readings. 
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Fig. 11. Best input neuron mappings.  

VII. CONCLUSION AND FUTURE DIRECTION 
The outcome of this study through the novel application 

of Personalized Modeling together with Spiking Neural 
Network validates its feasibility in analyzing complex 
problems. The evolving nature of this application and its 
ability to learn from new patterns or relations in SSTD 
enhanced the knowledge discovery process. Furthermore it 
can be implemented for other problems that involve SSTD 
such as, earthquake, volcanic eruptions and other 
environmental event prediction, ecological problems, 
contagious disease spread, cardiovascular occurrence 
prediction along with many other possibilities. The only 
drawback of this system is the expensive computation time 
where as it requires multiple runs to find optimal model 
and parameter setting. In the next stage of improvement 
this architecture requires a procedure to optimize the model 
faster. Apart from improvement to the architecture, further 
investigation needs to be done to understand the 
association revealed between variables by the modelling 
process. Interpreting knowledge is a very challenging task 
and needs to be undertaken cautiously.   

As future direction, we are aiming to apply data from 
China using NeuCubeST for future analysis. Currently the 
data is being collected and will be available later this year. 
Using this framework on stroke case studies from other 
regions that have different environmental conditions such 
as USA and European countries to further verify its 
feasibility is subject to data availability.  
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