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Abstract—Motion planning is a key technology of the 
navigation and control for mobile robots. However, when 
considering the complexity of exterior environment and mobile 
robot’s kinematics and dynamics, the motion planning results 
obtained by some traditional methods are often hard to optimize. 
In this paper, we propose two self-learning PD algorithms to 
solve motion planning for mobile robots. We firstly utilize a 
virtual Proportional Derivative (PD) control strategy to 
transform the motion planning problem into an optimization 
problem of the virtual control policy. Afterwards, two 
approximate dynamic programming algorithms, which are the 
Least Squares Policy Iteration (LSPI) algorithm and the Dual 
Heuristic Programming (DHP) algorithm, are incorporated into 
the virtual control strategy to tune the PD parameters 
automatically, namely the LSPI-PD algorithm and the DHP-PD 
algorithm. Simulations have been performed to validate the 
effectiveness of the two algorithms, where the LSPI-PD 
algorithm is suitable for solving problems with discrete action 
spaces while the DHP-PD algorithm has an advantage in solving 
problems with continuous action spaces. 

Keywords—approximate dynamic programming; mobile robot; 
motion planning 

I. INTRODUCTION 

The problem of motion planning and control for 
autonomous mobile robots is to find a control law which can 
traverse the robot from the initial state to the destination while 
avoiding obstacles and obeying the system dynamics [5]-[6]. 
Considering the complexity of exterior environments and the 
uncertainty of the robot’s kinematics and dynamics, motion 
planning problems are often separated into two submissions, 
involving a high-level geometric path planning and low-level 
control laws generated considering the robot’s dynamics. The 
high-level path planning concentrates on the geometric solution 
to the shortest distance problem. Plenty of approaches have 
been proposed to deal with this problem, like A* algorithm and 
Randomized Path Planner (RPP), etc. The path it obtained is 
always hard to implement on the unmanned mobile robots’ 
path tracking problem, and increases the difficulties and 
expenses on the low-level control. Therefore, motion planning 
becomes necessary in the navigation of mobile robots. The 
executable actions like accelerator-pedal position and steering 
angle are always served as outputs of motion planning. 
Because of accounting for the robots’ kinematics and dynamics, 

the motion planning outcomes are often cost-effective and 
practically significant.  

Traditional methods for mobile robots’ motion planning 
refer to model-based approaches [7]-[9]. However these kind 
of model-based methods often fail in the real-world mobile 
robots’ navigation problems, due to the fact that the accurate 
models of the environment and the mobile robots’ dynamics 
are difficult to obtain. Although there are some new methods 
proposed, like parametric trajectory methods referring to [28]-
[29], all these approaches use kinematic models in generating 
trajectories. As a consequence, the motion planning results also 
depend heavily on the accuracy of the robots’ model. Sensor-
based approaches are proposed to deal with the unknown 
environment by reacting to obstacles detected by sensors in 
real time [10]. But the lack of sensor information and the 
limitation of sensor ability may lead the robots to get lost even 
if a path to the goal exists. In [11], Van presented a new 
approach to deal with the sensing uncertainty by using the 
Partially Observable Markov Decision Process (POMDP). 
However, POMDP planning faces two major computational 
challenges: the “curse of dimensionality” and the “curse of 
history” [12]-[13]. In recent years, the intelligent computation 
methods play an important role in the motion planning field. 
Fuzzy-logic based algorithms, Artificial Neural Network (ANN) 
based methods, Genetic algorithm and some hybrid algorithms 
have been proposed referring to [14]-[19]. Reinforcement 
Learning (RL) is also an important intelligent computation 
method which provides an efficient framework to solve 
learning control problems which are difficult or even 
impossible for supervised learning methods, for it releases the 
requirement of the prior knowledge and the teaching instances 
[25]. The application of RL in the motion planning area is also 
drawing more and more attention by researchers. 

Approximate Dynamic Programming (ADP) can be seen as 
an interdiscipline of RL and Dynamic Programming (DP) ideas 
to solve sequential decision problems which can be modeled as 
Markov Decision Processes (MDPs) [1]. In the past decade, the 
researches on RL with function approximation have been 
brought together with the ADP community, for they share a 
common object to solve MDPs with large or continuous state 
and action spaces [26]-[27]. Werbos [2] categorized ADP 
algorithm into the following major groups: heuristic dynamic 
programming (HDP), dual heuristic programming (DHP), 
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globalized dual heuristic programming (GDHP), and their 
action dependent (AD) versions [3]. DHP is the most popular 
one among them and has been proven to be more efficient than 
HDP method [4]. The Least Squares Policy Iteration (LSPI) 
algorithm was firstly proposed by Michail G. Lagoudakis and 
Ronald Parr in [23], which integrates the value function 
approximation with linear structure with the approximate 
policy iteration. It is a sample-based method which can learn 
the policy from samples to realize the optimal control. 
Generally speaking, The LSPI algorithm can also be regarded 
as an ADP algorithm to solve sequential decision problems. 
ADP algorithm also contributes to the parameter adjustment 
problems, due to its abilities to optimize the parameters 
automatically and improve their performances on line. In [20], 
an adaptive PID controller based on RL was designed to solve 
the mobile robots path tracking control problem. M. J. Er [21] 
combined the fuzzy control with actor neural network (actor 
NN) to realize the path planning, where RL was utilized to 
adjust the parameters in actor NN and fuzzy logic. Moreover, 
the ADP algorithm has a great value in the application of the 
motion planning field and a better performance can be 
expected owning to the learning feature of ADP by interacting 
with the outer environment and its independence on the 
accurate system model. 

The motivation of this paper is that although ADP 
algorithm has been widely used in optimal control problems, 
the applications in the motion planning field is not that 
common. Therefore we design two self-learning PD algorithms 
to implement the optimization of the virtual control policy in 
motion planning, namely the LSPI-PD method and the DHP-
PD method, respectively. On account of the characteristics of 
the LSPI and DHP algorithms, the LSPI-PD algorithm is 
particularly suitable for dealing with motion planning problems 
with discrete action spaces, while the DHP-PD algorithm can 
deal with problems with continuous action spaces. 

The main contribution of the paper stems from the fact that 
we firstly design a virtual PD control strategy to transform the 
motion planning problem into an optimization problem. Then 
by formulating the motion planning problem as a Markov 
decision process, we can incorporate the LSPI and DHP 
algorithms into the virtual PD control strategy to realize the 
adjustment of PD parameters automatically and optimally. 
Taking advantage of the characteristics that ADP method can 
improve the optimization ability by interacting with the 
environment, the usage of the LSPI-PD algorithm and the 
DHP-PD algorithm possess motion planning for mobile robots 
of the self-learning and self-adaptive ability. The advantages of 
the proposed algorithms over those methods we mentioned 
above lie in the fact that they don’t need the accurate model or 
the prior knowledge, and by constantly interacting with the 
unknown environment, they can improve the performance 
when considering the uncertainties in the real word. 

The rest of this paper will be organized as follows: in 
section II, we formulate the kinematics model of the mobile 
robot and build up the virtual PD control strategy in motion 
planning. In section III, by introducing the LSPI and DHP 
algorithms into the virtual PD control strategy, we propose the 
LSPI-PD and DHP-PD algorithms to solve motion planning. 
Simulation results are given in section IV, as well as the 

performance comparison between the proposed algorithms and 
the PD control strategy with fixed parameters. Section V 
comes to the conclusions. 

II. PROBLEM FORMULATION 

Considering the nonlinear kinematics model of the mobile 
robot discussed in [22]: 
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where θ is the direction angle of the robot. L is the length of 
the robot’s body. δ is the average steering angle of the front 
wheels. δc is the steering command. The steering rate can be 
computed by the time constant Td. Gss is the influence of the 
side slipping and is ignored in this paper, as Gss =1. 

The goal region of motion planning is assumed as given by 
a high-level geometric path planning result. Then a low-level 
controller generates the robot’s control laws while considering 
the robot’s dynamics. The target of motion planning is based 
on these control inputs, the mobile robot can realized the 
maneuvering tracking of the reference path with less tracking 
error. 

The motion planning flowchart based on the virtual PD 
control strategy is as Fig.1 shows, where the reference r is a 2D 
path which is the outputs of the high-level path planning, u(t) is 
the motion planning results and x(t+1) stands for the future 
state of the mobile robot at the next time step. In order to 
utilize the ADP algorithm to realize motion planning, a virtual 
PD controller is introduced after the high-level geometric path 
planning. It can transform the motion planning problem into an 
optimal control problem and output a sequence of actions for 
the mobile robot. That is to say the sequence of expected path 
points is transferred into a sequence of executable actions.  

The virtual PD controller runs motion planning over 
closed-loop dynamics as the second block shows in Fig.1. This  

 

 

Fig. 1. The flowchart of motion planning based on the virtual PD control 
strategy. 
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closed-loop approach takes not only the environment, but also 
the robot’s dynamics into consideration. The virtual control 
law is defined as u(t)=kp×xe(1)+kd×xe(2), where xe(1) is the 
error term and xe(2) is the derivation term of the virtual control 
strategy. A more detail illustration is demonstrated in Fig.2. 

We only consider the situation where the robot keeps a 
constant speed. dpath is the vertical distance from the center of 
the robot to the reference path. δc(t) is the expected steering 
angle of front wheel at time-step t. vvert(t) is the velocity 
component in vertical direction. Then we have: 

(1) ,      (2) ,     ( ) ( )e path e vert cx d x v u t t      

( ) ( ) ( )c p path d vertt k d t k v t            

According to the kinematics function in (1), we have: 

1
( ) ( ( ) ( 1))c

d

t t t
T

                           

( ) ( 1) ( )c t t ds t                            

where Td is the time constant and ds is the simulation step size. 

( )t is the output as the motion planning result. 

III. SELF-LEARNING PD ALGORITHMS BASED ON ADP FOR 

MOTION PLANNING 

A. The MDP model of self-learning PD algorithms based on 
ADP for motion planning 

MDP is denoted as a 4-tuple {S A, R, P}, where S is the 
state space, A is the action space, P is the state transition 
probability and R is the reward function. The policy of the 
MDP is defined as a function : XPr(A), where Pr(A) is a 
probability distribution in action spaces. The LSPI and DHP 
algorithms are to estimate the optimal policy π*(a|x), which 
satisfies the following equation: 

 

 

Fig. 2. The illustration of the error term and the derivation term in the virtual 
PD control strategy. 
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where  is the discount factor, rt is the reward at time-step t 
and Eπ[] stands for the expected total reward. 

In order to use the LSPI and DHP algorithms to adjust the 
PD parameters in motion planning, we firstly have to formulate 
the optimal control problem as a MDP model.  

The MDP model of self-learning PD algorithms for motion 
planning based on ADP is formulated in TABLE I, where dpath 
is the vertical distance from the center of the robot to the 
reference path, vvert is the velocity component in the vertical 
direction, vpara is the velocity component in horizontal 
direction and θpath is the orientation error between the direction 
of the robot and the reference path. These four components 
compose the state space S. The action space of LSPI-PD is 
three sets of PD parameters selected as a rule of thumb in 
advance, while the action space of DHP-PD is the entire 
continuous ℝ2 space.  

By using a virtual PD control strategy, the motion planning 
problem can be transformed into an optimal control problem of 
PD parameters. The negative of the cumulative tracking error 
is defined as the value function. By using ADP methods to 
maximize the value function, which means to minimize the 
cumulative tracking error, we can obtain the optimal control 
policies, namely the optimal PD parameters. Then the outputs 
of the virtual PD control strategy can be served as the motion 
planning results. 

B. The self-learning PD algorithm based on LSPI for motion 
planning 

The target of LSPI is to use a set of linear basis functions to 
approximate the expected total reward Q(s, a) under optimal 
policy. The LSPI method is a sample-based algorithm. Before 
using LSPI to tune the PD parameters, we have to collect 
samples to train the weights in the approximate state-action 
value function: 

1
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where ϕi(s,  a) is the linear basis function, wi is the weight to 
be estimated. The sample policy can be arbitrary, either by 
using a conventional controller or just by observing the MDP 

TABLE I.  THE MDP MODEL OF SELF-LEARNING PD ALGORITHMS 

BASED ON ADP FOR MOTION PLANNING 

State Space [dpath, vvert, vpara, θpath] 

Action Space: 
PD Parameters 

[kp, kd] 

LSPI-PD DHP-PD 

action 1:  
a1=[0.03, 0.0008] 

action 2:  
a2=[0.03, 0.004] 

action 3:  
a3=[0.05, 0.0018] 

Generate  
kp and kd 

continuously 

Reward r = -dpath 
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running with a random action policy. The sample process is 
shown in TABLE II, where the PDModel refers to the mobile 
robot’s kinematics model adopted by the virtual PD control 
strategy. Then the state transition process can be presented as 
s(t+1)=PDModel(s(t),a(t)). 

After sampling, we have to firstly train the state-action 
value function before solving motion planning. Referring to 
[23], the state-action value function Q(s, a) is the fixpoint of 
Bellman operator Tπ, where 
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      (9) 

we can compute the weights in the approximate state-action 

value function  ˆ , ,Q s a w . The more detail computing 

process is listed in TABLE III. Then for every current state of 
the robot, by using a greedy policy, we can select an action, 
namely a set of PD parameters in the predefine action sets, to 
maximize the approximate state-action value function 
ˆ ( , , )Q s a w . The motion planning results are the outputs of the 

virtual PD control strategy. The proposed LSPI-PD algorithm 
for motion planning is shown in TABLE III. 

C. The self-learning PD algorithm based on DHP for motion 
planning 

In DHP structure, there is a critic and an actor where the 
actor estimates the optimal control policy and the critic 
estimates the derivatives of the value function with respect to 
states. Neural networks (NNs) can be used as approximation 
structure for the critic and the actor, which are CNN and actor 
NN, separately: 

 

TABLE II.  THE SAMPLING PROCESS FOR THE LSPI-PD ALGORITHM 

1: input: reference path, robot’s initial position. 
2: for each sample sequence i, do 
3:     for each sample in the sequence i at time t, do 
4:    Choose an action randomly in the predefined action set, 

action∈{a1, a2, a3}. 
5:          Then we have kp(t)=action(1); kd(t)=action(2). 
6:          Calculate the state transition:  

s(t+1)=PDModel (s(t), ([kp(t), kd(t)])) 
7:          Get the reward at time t:   r(t)= -dpath(t) 
8:          Sample(i, t)=[s(t), ([kp(t), kd(t)]), r(t)]. 
9:     end for 

10:     add Sample(i) into the sample set:  Samples=[Samples Sample(i)]. 
11: end for 
12: output: Samples 
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where wi and θj are the weight vectors, xt is the input state, and 
ϕ(xt)=[ϕ1(xt), … ,ϕl(xt)]

T and �(xt)=[�1(xt), … ,�M(xt)]
T are 

vectors of basis functions. TABLE IV shows the proposed 
DHP-PD algorithm for motion planning.  

DHP utilize the samples of trajectory gathered from the 
motion planning simulation of the mobile robot to train the 
critic network and actor network. The learning algorithm in the 
critic of DHP is based on the Bellman recursion of value 
function’s derivatives: 

TABLE III.  THE LSPI-PD ALGORITHM FOR MOTION PLANNING 

1: input: A0, b0, sample sequence, reference path and the robot’s initial 
state. 

2: for each sample sequence i, do 
3:      do each sample in the sequence i at time t:  
4:           Update At, bt by using: 

1
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5:           Compute wt+1 by using: 1
1 1 1t t tw A b

    

6:      until 1t tw w     . 

7: end for 
8: Output the approximate state-action value function: 
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9: for every current state in the time order, do 
10:       Compute the state-action value function ˆ ( , , )Q s a w . 
11:       Select an action by using greedy policy: 

                ˆ[ , ] arg max ( , , )p d
a A

a k t k t Q s a w


   

12:       Compute the state transition: 
                 s(t+1)=PDModel (s(t), ([kp(t), kd(t)])) 
13: end for 
14: output: the policy: Policy(a, ˆ ( , , )Q s a w ), where the 

action a=[kp(t), kd(t)]. 
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TABLE IV.  THE DHP-PD ALGORITHM FOR MOTION PLANNING 

1: input: reference path and robot’s initial state. 
2: Create actor network and critic network. 
3: for each sample sequence i, do 
4:      Initialize the robot’s state; 
5:      for each sample in the sequence i at time t, do 
6:            Compute kp and kd by using actor NN: 

       
1

[ ,  ]
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t p d j t j
j

a x k t k t x 
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7:            Compute the state transition: 
                           s(t+1)=PDModel (s(t), ([kp(t), kd(t)])) 
8:            Compute CNN by (10). 
9:            Update CNN: 
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11:            if 
1t tw w     then  

12:                 seccessful_flag=1, break. 
13:            else if time t exceeds the limitation then break. 
14:            end if 
15:            if the training episode i exceed the limitation then 
16:                 The training fails, return to step 1. 
17:            else if seccessful_flag=1 then break. 
18:            end if 
19:        end for 
20: end for 
21: output: actor NN. 
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where E[⋅] is with respect to a stationary state transition 
probability and R(xt,at) is the expected single-step reward. 
When the weight vector of CNN converges, policy gradient 
learning is performed based on the outputs of the critic to train 
the actor NN. Then the trained actor NN can be used to realize 
the optimization of PD parameters in the motion planning 
problem. 

IV. SIMULATION RESULTS AND COMPARATIVE DISCUSSION 

In this section, we present the simulation results of the 
proposed self-learning PD algorithms for motion planning. We 
firstly test the validity of the algorithms with a simple straight 
line as the pre-planned path, and then come to some more 
complicated situations. In the simulations, the mobile robot can 
realize the maneuvering tracking of the pre-planned path based 
on the motion planning results with less tracking error. 

A. Motion planning by using LSPI-PD algorithm 

The simulation is implemented on a map with 40m×40m 
size. The kinematics model of the mobile robot is as (1) shows. 
The initial angle of the robot is 0.785rad and the velocity is set 
to v=10m/s constantly. Based on the manual adjustment 
experiment, three sets of PD parameters can be selected as 
candidates, which are shown in TABLE I. We collected 10 
sample sequences. Every sequence contained 1000 samples 
and every 5 samples adopt an action randomly. We firstly use 
these sample sequences to train the weights in the approximate 

state-action value function. Then the trained virtual PD control 
strategy based on LSPI can be used to realize motion planning. 
The simulation result is shown in Fig.3. The process of the PD 
parameters adjustment is shown in Fig.4. It illustrates that the 
LSPI-PD algorithm can tune the PD parameters by switching 
automatically in the pre-defined discrete action spaces.  

According to the feature of the LSPI algorithm, LSPI-PD 
adjusts the PD parameters discretely by choosing between 
some preselected PD parameter sets, which also have to be 
determined through the prior knowledge and experience in 
advance. Therefore, the performance of the LSPI-PD algorithm 
is somehow determined by the quality of the chosen PD 
parameter sets. In order to eliminate the human labors and 
extend the application of self-learning PD algorithm to the 
problems with continuous action spaces, the DHP-PD 
algorithm is tested below. 

 

Fig. 3. The maneuvering trajectory by using the LSPI-PD method. 

 

 

Fig. 4. The process of PD parameters adjustment by using LSPI-PD. 
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B. Motion planning by using DHP-PD algorithm 

When the pre-planned path is a straight line, we assume the 
simulation settings in this part are the same as the simulations 
of the LSPI-PD algorithm. Only the initial angle of the mobile 
robot is increased to 1rad. In order to highlight the advantages 
of the DHP-PD algorithm, we select two sets of fixed PD 
parameters by experiences, which are PD1: [kp(t), kd(t)] = [0.1, 
-0.8] and PD2: [kp(t), kd(t)] = [0.2, -0.5], and compare their 
performances with the DHP-PD method. We plot the 
simulation results together in Fig.5. From the figure we can see 
apparently that the motion planning results by using the DHP-
PD method can drive the robot to track the reference path 
quicker and with less tracking error than the PD control 
strategy with fixed parameters. 

In order to test the validity of the algorithm in more 
complicated situations, like the pre-planned path is no longer a 
straight line, or there are obstacles in the map. We firstly 
modified the robot’s dynamic model and adopt the incremental 
PID algorithm as the virtual control strategy. 

Firstly we calculate the tracking error as the inputs for the 
virtual control strategy. Referring to [30], the tracking error 
model of the robot can be formulated as: 
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And we rewrite (13) in the discrete-time form as: 

 

 

Fig. 5. The comparison of maneuvering trajectories between using the DHP-
PD method and the PD method when the initial angle is 1rad. 
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where Ts is the simulation step size, e = (ex, ey, eθ)
T is the 

tracking error state, (xr, yr, θr)
T is the reference path. The state 

vector s = (x, y, θ)T stands for the position of the mobile robot,  
and the control input u = (v, ω)T consists of the velocity v and 
angle speed ω. 

Then the incremental PID algorithm can be written as: 
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where [k1, k2, k3, k4, k5, k6, k7, k8, k9] are the parameters to be 
optimized. To simplify the optimization process, we assume 
the parameters k3, k5, k6, k8 and k9 are all zeros. We only 
optimize k1, k2, k4, and k7 by using the DHP-PD algorithm 
showing in TABLE IV. 

The first reference path is a circle which is defined as 
follows: 
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The initial position of the robot is [10.5, 0, pi/4], and the initial 
tracking error is [-0.25, 0.46, 0.8]. The simulation results are 
shown in Fig.6.  

When there are obstacles, we firstly adopt a high-level path 
planning method to get a feasible path in advance and then use 
the DHP-PD method to solve motion planning. The simulation 
results are shown in Fig.7, where the rectangles on the left and 
right sides of the picture stand for the obstacles. The initial 
position of the robot is [-0.5, -0.5, -pi/4], and the initial 
tracking error is [0.21, 0.92, 0.8]. 

The main difference between the two self-learning PD 
algorithms lies in the fact that the DHP-PD method inherits the 
characteristics from the DHP algorithm and thereby is more 
suitable for dealing with problems with continuous action 
spaces. Given the fact that motion planning for mobile robots is 
a problem with continuous action spaces, the DHP-PD method 
can generate the PD parameters smoothly which, comparing to 
the LSPI-PD algorithm in a discrete way, consequently more 
suitable for solving motion planning for mobile robots. 
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     (a) The trajectories                                                      (b) The adjustment of parameters 

Fig. 6. The maneuvering tracking of circle path by using the DHP-PD method. 

 

 

         (a) The trajectories                                                     (b) The adjustment of parameters 

Fig. 7. The maneuvering tracking of pre-planned path when avoiding obstacles by using the DHP-PD method. 

 

V. CONCLUSION 

In this paper, we have proposed two self-learning PD 
algorithms to solve the motion planning problem, namely the 
LSPI-PD algorithm and the DHP-PD algorithm. Firstly, by 
utilizing a virtual PD control strategy, we transform the motion 
planning problem into an optimization problem of the virtual 
control policy. Then the LSPI and DHP algorithms are 
incorporated into the virtual PD control strategy respectively to 
realize the adjustment of the PD parameters automatically. The 
LSPI-PD algorithm improves the performance by optimally 
switching among some predefined parameter sets, which is a 
kind of RL method with discrete action spaces. The DHP-PD 
algorithm generates the PD parameters continuously, which is 
more suitable for solving problems with continuous action 
spaces. Simulations have been done and the results 

demonstrate the effectiveness of both the proposed self-
learning PD algorithms for motion planning of mobile robots. 
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