
Self-learning PD Algorithms Based on Approximate
Dynamic Programming for Robot Motion Planning

Huiyuan Yang, Qi Guo, Xin Xu, Chuanqiang Lian
Institute of Unmanned Systems, College of Mechatronics and Automation

National University of Defense Technology
Changsha, China

yanghuiyuan1105@163.com; guoqics@gmail.com; xuxin_mail@263.net; wzdslcq@163.com

Abstract—Motion planning is a key technology of the
navigation and control for mobile robots. However, when
considering the complexity of exterior environment and mobile
robot’s kinematics and dynamics, the motion planning results
obtained by some traditional methods are often hard to optimize.
In this paper, we propose two self-learning PD algorithms to
solve motion planning for mobile robots. We firstly utilize a
virtual Proportional Derivative (PD) control strategy to
transform the motion planning problem into an optimization
problem of the virtual control policy. Afterwards, two
approximate dynamic programming algorithms, which are the
Least Squares Policy Iteration (LSPI) algorithm and the Dual
Heuristic Programming (DHP) algorithm, are incorporated into
the virtual control strategy to tune the PD parameters
automatically, namely the LSPI-PD algorithm and the DHP-PD
algorithm. Simulations have been performed to validate the
effectiveness of the two algorithms, where the LSPI-PD
algorithm is suitable for solving problems with discrete action
spaces while the DHP-PD algorithm has an advantage in solving
problems with continuous action spaces.

Keywords—approximate dynamic programming; mobile robot;
motion planning

I. INTRODUCTION

The problem of motion planning and control for
autonomous mobile robots is to find a control law which can
traverse the robot from the initial state to the destination while
avoiding obstacles and obeying the system dynamics [5]-[6].
Considering the complexity of exterior environments and the
uncertainty of the robot’s kinematics and dynamics, motion
planning problems are often separated into two submissions,
involving a high-level geometric path planning and low-level
control laws generated considering the robot’s dynamics. The
high-level path planning concentrates on the geometric solution
to the shortest distance problem. Plenty of approaches have
been proposed to deal with this problem, like A* algorithm and
Randomized Path Planner (RPP), etc. The path it obtained is
always hard to implement on the unmanned mobile robots’
path tracking problem, and increases the difficulties and
expenses on the low-level control. Therefore, motion planning
becomes necessary in the navigation of mobile robots. The
executable actions like accelerator-pedal position and steering
angle are always served as outputs of motion planning.
Because of accounting for the robots’ kinematics and dynamics,

the motion planning outcomes are often cost-effective and
practically significant.

Traditional methods for mobile robots’ motion planning
refer to model-based approaches [7]-[9]. However these kind
of model-based methods often fail in the real-world mobile
robots’ navigation problems, due to the fact that the accurate
models of the environment and the mobile robots’ dynamics
are difficult to obtain. Although there are some new methods
proposed, like parametric trajectory methods referring to [28]-
[29], all these approaches use kinematic models in generating
trajectories. As a consequence, the motion planning results also
depend heavily on the accuracy of the robots’ model. Sensor-
based approaches are proposed to deal with the unknown
environment by reacting to obstacles detected by sensors in
real time [10]. But the lack of sensor information and the
limitation of sensor ability may lead the robots to get lost even
if a path to the goal exists. In [11], Van presented a new
approach to deal with the sensing uncertainty by using the
Partially Observable Markov Decision Process (POMDP).
However, POMDP planning faces two major computational
challenges: the “curse of dimensionality” and the “curse of
history” [12]-[13]. In recent years, the intelligent computation
methods play an important role in the motion planning field.
Fuzzy-logic based algorithms, Artificial Neural Network (ANN)
based methods, Genetic algorithm and some hybrid algorithms
have been proposed referring to [14]-[19]. Reinforcement
Learning (RL) is also an important intelligent computation
method which provides an efficient framework to solve
learning control problems which are difficult or even
impossible for supervised learning methods, for it releases the
requirement of the prior knowledge and the teaching instances
[25]. The application of RL in the motion planning area is also
drawing more and more attention by researchers.

Approximate Dynamic Programming (ADP) can be seen as
an interdiscipline of RL and Dynamic Programming (DP) ideas
to solve sequential decision problems which can be modeled as
Markov Decision Processes (MDPs) [1]. In the past decade, the
researches on RL with function approximation have been
brought together with the ADP community, for they share a
common object to solve MDPs with large or continuous state
and action spaces [26]-[27]. Werbos [2] categorized ADP
algorithm into the following major groups: heuristic dynamic
programming (HDP), dual heuristic programming (DHP),

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 3663

globalized dual heuristic programming (GDHP), and their
action dependent (AD) versions [3]. DHP is the most popular
one among them and has been proven to be more efficient than
HDP method [4]. The Least Squares Policy Iteration (LSPI)
algorithm was firstly proposed by Michail G. Lagoudakis and
Ronald Parr in [23], which integrates the value function
approximation with linear structure with the approximate
policy iteration. It is a sample-based method which can learn
the policy from samples to realize the optimal control.
Generally speaking, The LSPI algorithm can also be regarded
as an ADP algorithm to solve sequential decision problems.
ADP algorithm also contributes to the parameter adjustment
problems, due to its abilities to optimize the parameters
automatically and improve their performances on line. In [20],
an adaptive PID controller based on RL was designed to solve
the mobile robots path tracking control problem. M. J. Er [21]
combined the fuzzy control with actor neural network (actor
NN) to realize the path planning, where RL was utilized to
adjust the parameters in actor NN and fuzzy logic. Moreover,
the ADP algorithm has a great value in the application of the
motion planning field and a better performance can be
expected owning to the learning feature of ADP by interacting
with the outer environment and its independence on the
accurate system model.

The motivation of this paper is that although ADP
algorithm has been widely used in optimal control problems,
the applications in the motion planning field is not that
common. Therefore we design two self-learning PD algorithms
to implement the optimization of the virtual control policy in
motion planning, namely the LSPI-PD method and the DHP-
PD method, respectively. On account of the characteristics of
the LSPI and DHP algorithms, the LSPI-PD algorithm is
particularly suitable for dealing with motion planning problems
with discrete action spaces, while the DHP-PD algorithm can
deal with problems with continuous action spaces.

The main contribution of the paper stems from the fact that
we firstly design a virtual PD control strategy to transform the
motion planning problem into an optimization problem. Then
by formulating the motion planning problem as a Markov
decision process, we can incorporate the LSPI and DHP
algorithms into the virtual PD control strategy to realize the
adjustment of PD parameters automatically and optimally.
Taking advantage of the characteristics that ADP method can
improve the optimization ability by interacting with the
environment, the usage of the LSPI-PD algorithm and the
DHP-PD algorithm possess motion planning for mobile robots
of the self-learning and self-adaptive ability. The advantages of
the proposed algorithms over those methods we mentioned
above lie in the fact that they don’t need the accurate model or
the prior knowledge, and by constantly interacting with the
unknown environment, they can improve the performance
when considering the uncertainties in the real word.

The rest of this paper will be organized as follows: in
section II, we formulate the kinematics model of the mobile
robot and build up the virtual PD control strategy in motion
planning. In section III, by introducing the LSPI and DHP
algorithms into the virtual PD control strategy, we propose the
LSPI-PD and DHP-PD algorithms to solve motion planning.
Simulation results are given in section IV, as well as the

performance comparison between the proposed algorithms and
the PD control strategy with fixed parameters. Section V
comes to the conclusions.

II. PROBLEM FORMULATION

Considering the nonlinear kinematics model of the mobile
robot discussed in [22]:

cos
sin

tan

1
()

ss

c
d

x v
y v

v
G

L

T

where θ is the direction angle of the robot. L is the length of
the robot’s body. δ is the average steering angle of the front
wheels. δc is the steering command. The steering rate can be
computed by the time constant Td. Gss is the influence of the
side slipping and is ignored in this paper, as Gss =1.

The goal region of motion planning is assumed as given by
a high-level geometric path planning result. Then a low-level
controller generates the robot’s control laws while considering
the robot’s dynamics. The target of motion planning is based
on these control inputs, the mobile robot can realized the
maneuvering tracking of the reference path with less tracking
error.

The motion planning flowchart based on the virtual PD
control strategy is as Fig.1 shows, where the reference r is a 2D
path which is the outputs of the high-level path planning, u(t) is
the motion planning results and x(t+1) stands for the future
state of the mobile robot at the next time step. In order to
utilize the ADP algorithm to realize motion planning, a virtual
PD controller is introduced after the high-level geometric path
planning. It can transform the motion planning problem into an
optimal control problem and output a sequence of actions for
the mobile robot. That is to say the sequence of expected path
points is transferred into a sequence of executable actions.

The virtual PD controller runs motion planning over
closed-loop dynamics as the second block shows in Fig.1. This

Fig. 1. The flowchart of motion planning based on the virtual PD control
strategy.

3664

closed-loop approach takes not only the environment, but also
the robot’s dynamics into consideration. The virtual control
law is defined as u(t)=kp×xe(1)+kd×xe(2), where xe(1) is the
error term and xe(2) is the derivation term of the virtual control
strategy. A more detail illustration is demonstrated in Fig.2.

We only consider the situation where the robot keeps a
constant speed. dpath is the vertical distance from the center of
the robot to the reference path. δc(t) is the expected steering
angle of front wheel at time-step t. vvert(t) is the velocity
component in vertical direction. Then we have:

(1) , (2) , () ()e path e vert cx d x v u t t

() () ()c p path d vertt k d t k v t

According to the kinematics function in (1), we have:

1
() (() (1))c

d

t t t
T

() (1) ()c t t ds t

where Td is the time constant and ds is the simulation step size.

()t is the output as the motion planning result.

III. SELF-LEARNING PD ALGORITHMS BASED ON ADP FOR

MOTION PLANNING

A. The MDP model of self-learning PD algorithms based on
ADP for motion planning

MDP is denoted as a 4-tuple {S A, R, P}, where S is the
state space, A is the action space, P is the state transition
probability and R is the reward function. The policy of the
MDP is defined as a function : XPr(A), where Pr(A) is a
probability distribution in action spaces. The LSPI and DHP
algorithms are to estimate the optimal policy π*(a|x), which
satisfies the following equation:

Fig. 2. The illustration of the error term and the derivation term in the virtual
PD control strategy.

t
* t

t 0

max max []J J E r

where is the discount factor, rt is the reward at time-step t
and Eπ[] stands for the expected total reward.

In order to use the LSPI and DHP algorithms to adjust the
PD parameters in motion planning, we firstly have to formulate
the optimal control problem as a MDP model.

The MDP model of self-learning PD algorithms for motion
planning based on ADP is formulated in TABLE I, where dpath
is the vertical distance from the center of the robot to the
reference path, vvert is the velocity component in the vertical
direction, vpara is the velocity component in horizontal
direction and θpath is the orientation error between the direction
of the robot and the reference path. These four components
compose the state space S. The action space of LSPI-PD is
three sets of PD parameters selected as a rule of thumb in
advance, while the action space of DHP-PD is the entire
continuous ℝ2 space.

By using a virtual PD control strategy, the motion planning
problem can be transformed into an optimal control problem of
PD parameters. The negative of the cumulative tracking error
is defined as the value function. By using ADP methods to
maximize the value function, which means to minimize the
cumulative tracking error, we can obtain the optimal control
policies, namely the optimal PD parameters. Then the outputs
of the virtual PD control strategy can be served as the motion
planning results.

B. The self-learning PD algorithm based on LSPI for motion
planning

The target of LSPI is to use a set of linear basis functions to
approximate the expected total reward Q(s, a) under optimal
policy. The LSPI method is a sample-based algorithm. Before
using LSPI to tune the PD parameters, we have to collect
samples to train the weights in the approximate state-action
value function:

1

ˆ (, ,) (,)
L

i i
i

Q s a w s a w

where ϕi(s, a) is the linear basis function, wi is the weight to
be estimated. The sample policy can be arbitrary, either by
using a conventional controller or just by observing the MDP

TABLE I. THE MDP MODEL OF SELF-LEARNING PD ALGORITHMS

BASED ON ADP FOR MOTION PLANNING

State Space [dpath, vvert, vpara, θpath]

Action Space:
PD Parameters

[kp, kd]

LSPI-PD DHP-PD

action 1:
a1=[0.03, 0.0008]

action 2:
a2=[0.03, 0.004]

action 3:
a3=[0.05, 0.0018]

Generate
kp and kd

continuously

Reward r = -dpath

3665

running with a random action policy. The sample process is
shown in TABLE II, where the PDModel refers to the mobile
robot’s kinematics model adopted by the virtual PD control
strategy. Then the state transition process can be presented as
s(t+1)=PDModel(s(t),a(t)).

After sampling, we have to firstly train the state-action
value function before solving motion planning. Referring to
[23], the state-action value function Q(s, a) is the fixpoint of
Bellman operator Tπ, where

' '

()(,)

(,) (, , ') ('; ') (', ')
s S a A

T Q s a

R s a P s a s a s Q s a

The estimation ˆ , ,Q s a w , which approaches Q(s, a) with

high precision, also can meet the fixpoint condition of Bellman

operator, which meansT Q Q

. By letting

1 11

2

1 1

(,)(,)

(,)

(,)(,) =

(,)(,)

ˆ (, ,)

ˆˆ (, ,)()

ˆ (, ,)

T

T

T

S AL

T

T

T

S A

s as a

s a

s as a Ф

s as a

Q s a w

Q s a wQ w

Q s a w

 (9)

we can compute the weights in the approximate state-action

value function ˆ , ,Q s a w . The more detail computing

process is listed in TABLE III. Then for every current state of
the robot, by using a greedy policy, we can select an action,
namely a set of PD parameters in the predefine action sets, to
maximize the approximate state-action value function
ˆ (, ,)Q s a w . The motion planning results are the outputs of the

virtual PD control strategy. The proposed LSPI-PD algorithm
for motion planning is shown in TABLE III.

C. The self-learning PD algorithm based on DHP for motion
planning

In DHP structure, there is a critic and an actor where the
actor estimates the optimal control policy and the critic
estimates the derivatives of the value function with respect to
states. Neural networks (NNs) can be used as approximation
structure for the critic and the actor, which are CNN and actor
NN, separately:

TABLE II. THE SAMPLING PROCESS FOR THE LSPI-PD ALGORITHM

1: input: reference path, robot’s initial position.
2: for each sample sequence i, do
3: for each sample in the sequence i at time t, do
4: Choose an action randomly in the predefined action set,

action∈{a1, a2, a3}.
5: Then we have kp(t)=action(1); kd(t)=action(2).
6: Calculate the state transition:

s(t+1)=PDModel (s(t), ([kp(t), kd(t)]))
7: Get the reward at time t: r(t)= -dpath(t)
8: Sample(i, t)=[s(t), ([kp(t), kd(t)]), r(t)].
9: end for

10: add Sample(i) into the sample set: Samples=[Samples Sample(i)].
11: end for
12: output: Samples

1

l
t

t i t i
it

V x
x x w

x

1

M

t j t j
j

a x x

where wi and θj are the weight vectors, xt is the input state, and
ϕ(xt)=[ϕ1(xt), … ,ϕl(xt)]

T and �(xt)=[�1(xt), … ,�M(xt)]
T are

vectors of basis functions. TABLE IV shows the proposed
DHP-PD algorithm for motion planning.

DHP utilize the samples of trajectory gathered from the
motion planning simulation of the mobile robot to train the
critic network and actor network. The learning algorithm in the
critic of DHP is based on the Bellman recursion of value
function’s derivatives:

TABLE III. THE LSPI-PD ALGORITHM FOR MOTION PLANNING

1: input: A0, b0, sample sequence, reference path and the robot’s initial
state.

2: for each sample sequence i, do
3: do each sample in the sequence i at time t:
4: Update At, bt by using:

1

1

(,)((,) (,))

 (,)

T
t t t t t t t t

t t t t t

A A x a x a x a

b b x a r

5: Compute wt+1 by using: 1
1 1 1t t tw A b

6: until 1t tw w .

7: end for
8: Output the approximate state-action value function:

1

ˆ (, ,) (,)
L

i i
i

Q s a w s a w

9: for every current state in the time order, do
10: Compute the state-action value function ˆ (, ,)Q s a w .
11: Select an action by using greedy policy:

 ˆ[,] arg max (, ,)p d
a A

a k t k t Q s a w

12: Compute the state transition:
 s(t+1)=PDModel (s(t), ([kp(t), kd(t)]))
13: end for
14: output: the policy: Policy(a, ˆ (, ,)Q s a w), where the

action a=[kp(t), kd(t)].

3666

TABLE IV. THE DHP-PD ALGORITHM FOR MOTION PLANNING

1: input: reference path and robot’s initial state.
2: Create actor network and critic network.
3: for each sample sequence i, do
4: Initialize the robot’s state;
5: for each sample in the sequence i at time t, do
6: Compute kp and kd by using actor NN:

1

[,]
M

t p d j t j
j

a x k t k t x

7: Compute the state transition:
 s(t+1)=PDModel (s(t), ([kp(t), kd(t)]))
8: Compute CNN by (10).
9: Update CNN:

 1

1 1
tt t

k k t t

t t

xR x
w w x x

x x w

10: Update actor NN:

 1
1

t t
t t t t

t t

V x a x

a x

11: if
1t tw w then

12: seccessful_flag=1, break.
13: else if time t exceeds the limitation then break.
14: end if
15: if the training episode i exceed the limitation then
16: The training fails, return to step 1.
17: else if seccessful_flag=1 then break.
18: end if
19: end for
20: end for
21: output: actor NN.

 1,t t t t

t t t

J x R x a J x
t E

x x x

where E[⋅] is with respect to a stationary state transition
probability and R(xt,at) is the expected single-step reward.
When the weight vector of CNN converges, policy gradient
learning is performed based on the outputs of the critic to train
the actor NN. Then the trained actor NN can be used to realize
the optimization of PD parameters in the motion planning
problem.

IV. SIMULATION RESULTS AND COMPARATIVE DISCUSSION

In this section, we present the simulation results of the
proposed self-learning PD algorithms for motion planning. We
firstly test the validity of the algorithms with a simple straight
line as the pre-planned path, and then come to some more
complicated situations. In the simulations, the mobile robot can
realize the maneuvering tracking of the pre-planned path based
on the motion planning results with less tracking error.

A. Motion planning by using LSPI-PD algorithm

The simulation is implemented on a map with 40m×40m
size. The kinematics model of the mobile robot is as (1) shows.
The initial angle of the robot is 0.785rad and the velocity is set
to v=10m/s constantly. Based on the manual adjustment
experiment, three sets of PD parameters can be selected as
candidates, which are shown in TABLE I. We collected 10
sample sequences. Every sequence contained 1000 samples
and every 5 samples adopt an action randomly. We firstly use
these sample sequences to train the weights in the approximate

state-action value function. Then the trained virtual PD control
strategy based on LSPI can be used to realize motion planning.
The simulation result is shown in Fig.3. The process of the PD
parameters adjustment is shown in Fig.4. It illustrates that the
LSPI-PD algorithm can tune the PD parameters by switching
automatically in the pre-defined discrete action spaces.

According to the feature of the LSPI algorithm, LSPI-PD
adjusts the PD parameters discretely by choosing between
some preselected PD parameter sets, which also have to be
determined through the prior knowledge and experience in
advance. Therefore, the performance of the LSPI-PD algorithm
is somehow determined by the quality of the chosen PD
parameter sets. In order to eliminate the human labors and
extend the application of self-learning PD algorithm to the
problems with continuous action spaces, the DHP-PD
algorithm is tested below.

Fig. 3. The maneuvering trajectory by using the LSPI-PD method.

Fig. 4. The process of PD parameters adjustment by using LSPI-PD.

3667

B. Motion planning by using DHP-PD algorithm

When the pre-planned path is a straight line, we assume the
simulation settings in this part are the same as the simulations
of the LSPI-PD algorithm. Only the initial angle of the mobile
robot is increased to 1rad. In order to highlight the advantages
of the DHP-PD algorithm, we select two sets of fixed PD
parameters by experiences, which are PD1: [kp(t), kd(t)] = [0.1,
-0.8] and PD2: [kp(t), kd(t)] = [0.2, -0.5], and compare their
performances with the DHP-PD method. We plot the
simulation results together in Fig.5. From the figure we can see
apparently that the motion planning results by using the DHP-
PD method can drive the robot to track the reference path
quicker and with less tracking error than the PD control
strategy with fixed parameters.

In order to test the validity of the algorithm in more
complicated situations, like the pre-planned path is no longer a
straight line, or there are obstacles in the map. We firstly
modified the robot’s dynamic model and adopt the incremental
PID algorithm as the virtual control strategy.

Firstly we calculate the tracking error as the inputs for the
virtual control strategy. Referring to [30], the tracking error
model of the robot can be formulated as:

cos

sin
x y r

y x r

r

e e v v e

e e v e

e

And we rewrite (13) in the discrete-time form as:

Fig. 5. The comparison of maneuvering trajectories between using the DHP-
PD method and the PD method when the initial angle is 1rad.

 1

cos ()

* sin
y r

k k x r

r

e k v v e k

e e Ts e k v e k

where Ts is the simulation step size, e = (ex, ey, eθ)
T is the

tracking error state, (xr, yr, θr)
T is the reference path. The state

vector s = (x, y, θ)T stands for the position of the mobile robot,
and the control input u = (v, ω)T consists of the velocity v and
angle speed ω.

Then the incremental PID algorithm can be written as:

1 2

3

4 5

6

7 8

9

1 1

 2 1 2

1 1

 2 1 2

 + 1

 2 1 2

x x x

x x x

y y y

y y y

v k v k k e k e k k e k

k e k e k e k

k k k e k e k k e k

k e k e k e k

k e k e k k e k

k e k e k e k

where [k1, k2, k3, k4, k5, k6, k7, k8, k9] are the parameters to be
optimized. To simplify the optimization process, we assume
the parameters k3, k5, k6, k8 and k9 are all zeros. We only
optimize k1, k2, k4, and k7 by using the DHP-PD algorithm
showing in TABLE IV.

The first reference path is a circle which is defined as
follows:

10cos 0.5

10sin 0.5
r

r

x t

y t

The initial position of the robot is [10.5, 0, pi/4], and the initial
tracking error is [-0.25, 0.46, 0.8]. The simulation results are
shown in Fig.6.

When there are obstacles, we firstly adopt a high-level path
planning method to get a feasible path in advance and then use
the DHP-PD method to solve motion planning. The simulation
results are shown in Fig.7, where the rectangles on the left and
right sides of the picture stand for the obstacles. The initial
position of the robot is [-0.5, -0.5, -pi/4], and the initial
tracking error is [0.21, 0.92, 0.8].

The main difference between the two self-learning PD
algorithms lies in the fact that the DHP-PD method inherits the
characteristics from the DHP algorithm and thereby is more
suitable for dealing with problems with continuous action
spaces. Given the fact that motion planning for mobile robots is
a problem with continuous action spaces, the DHP-PD method
can generate the PD parameters smoothly which, comparing to
the LSPI-PD algorithm in a discrete way, consequently more
suitable for solving motion planning for mobile robots.

3668

 (a) The trajectories (b) The adjustment of parameters

Fig. 6. The maneuvering tracking of circle path by using the DHP-PD method.

 (a) The trajectories (b) The adjustment of parameters

Fig. 7. The maneuvering tracking of pre-planned path when avoiding obstacles by using the DHP-PD method.

V. CONCLUSION

In this paper, we have proposed two self-learning PD
algorithms to solve the motion planning problem, namely the
LSPI-PD algorithm and the DHP-PD algorithm. Firstly, by
utilizing a virtual PD control strategy, we transform the motion
planning problem into an optimization problem of the virtual
control policy. Then the LSPI and DHP algorithms are
incorporated into the virtual PD control strategy respectively to
realize the adjustment of the PD parameters automatically. The
LSPI-PD algorithm improves the performance by optimally
switching among some predefined parameter sets, which is a
kind of RL method with discrete action spaces. The DHP-PD
algorithm generates the PD parameters continuously, which is
more suitable for solving problems with continuous action
spaces. Simulations have been done and the results

demonstrate the effectiveness of both the proposed self-
learning PD algorithms for motion planning of mobile robots.

REFERENCES

[1] Barto, A. G., Powell, W. B., & Wunsch, D. C. (Eds.). (2004). Handbook

of learning and approximate dynamic programming (pp. 125-151). Los
Alamitos: IEEE Press.

[2] Werbos, P. (1992). Approximate dynamic programming for real-time
control and neural modeling. In White & Sofge (Eds.), Handbook of
intelligent control (pp. 493–525). New York, USA: V.N. Reinhold.

[3] D.V. Prokhorov, D.C. Wunsch, Adaptive critic designs, IEEE
Transactions Neural Networks 8 (5) (1997) 997–1007.

[4] G.K. Venayagamoorthy, R.G. Harley, D.C. Wunsch, Comparison of
heuristic dynamic programming and dual heuristic programming
adaptive critics for 1399 neurocontrol of a turbogenerator, IEEE
Transactions on Neural Networks 13 (3) (2002) 764–773.

3669

[5] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki,
and S. Thrun,Principles of Robot Motion: Theory, Algorithms, and
Implementations. Cambridge, MA: MIT Press, 2005.

[6] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2006.

[7] J. Latombe, Robot Motion Planning. Norwell, MA: Kluwer, 1991.

[8] N. Nilsson, “A mobile automation: An application of artificial
intelligence techniques,” in Proc. 1st Int. Joint Conf. Artificial
Intelligence, Washington, DC, 1969, pp. 509–520.

[9] J. Mitchell, “Planning Shortest Paths,” Ph.D. dissertation, Stanford
Univ., Stanford, CA, 1986.

[10] X. Yang, R. V. Patel, and M. Moallem, “A fuzzy-Braitenberg navigation
strategy for differential drive mobile robots,” in Proc. 3rd IFAC Symp.
Mechatronic Systems, Sydney, Australia, Sep. 2004.

[11] Van Den Berg J, Pail S, Alterovitz R. Motion planning under
uncertainty using iterative local optimization in belief space[J] The
International Journal of Robotics Research, 2012, 31(11): 1263-1278.

[12] Kurniawati H, Hsu D and Lee WS (2008) SARSOP: Efficient point-
based POMDP planning by approximating optimally reachable belief
spaces. Proceedings of the Robotics: Science and Systems.

[13] Kurniawati H, Du Y, Hsu D, et al. Motion planning under uncertainty
for robotic tasks with long time horizons[J]. The International Journal of
Robotics Research, 2011,30(3):308-323.

[14] C. Juang, Y. Chang. Evolutionary-Group-Based Particle-Swarm-
Optimized Fuzzy Controller With Application to Mobile-Robot
Navigation in Unknown Environments [J]. IEEE Transactions on Fuzzy
Systems, 2011, 9(2): 379~392.

[15] M. Garcia, O. Montiel, O. Castillo, et al. Path planning for autonomous
mobile robot navigation with ant colony optimization and fuzzy cost
function evaluation[J]. Applied Soft Computing, 2009, 9: 1102~1110.

[16] Mahmoud Tarokh. Hybrid intelligent path planning for articulated
rovers in rough terrain[J]. Fuzzy Sets and Systems, 2008, 159:
2927~2937.

[17] A. Nazemi, F. Omidi. An efficient dynamic model for solving the
shortest path problem[J]. Transportation Research Part C, 2013, 26:
1~19.

[18] J. Ni， S. X. Yang. Bioinspired Neural Network for Real-Time
Cooperative Hunting by Multirobots in Unknown Environments[J].
IEEE Transactions On Neural Networks, 2011, 22(2): 2062~2077.

[19] V. Roberge, M. Tarbouchi, and G. Labonté. Comparison of Parallel
Genetic Algorithm and Particle Swarm Optimization for Real-Time
UAV Path Planning[J]. IEEE Transactions On Industrial Informatics,
2013, 9(1): 132~141.

[20] Peng J. and R.J.Williams. Incremental multi-step Q-learning[J].
Machine Learning, 1996, 11: 283-290.

[21] M J Er, Chang Deng. Obstacle Avoidance of a Mobile Robot Using
Hybrid Learning Approach [J]. IEEE Transactions On Industrial
Electronics, 2005, 52(3): 898-905.

[22] Y. Kuwata, J. Teo and G. Fiore. Real-time Motion Planning with
Applications to Autonomous Urban Driving[J]. IEEE Transactions On
Control Systems Technology, 2009, 17: 1105-1118.

[23] M. G. Lagoudakis, R. Parr. Least-Squares Policy Iteration[J]. Journal of
Machine Learning Research, 2003, 4: 1107-1149.

[24] K. Hornik, M. Stinchcombe, and H. White, “Universal approximation of
an unknown mapping and its derivatives using multilayer feedforward
networks,”Neural Netw., vol. 3, no. 5, pp. 551–560, 1990.

[25] Xin Xu, Zhenhua Huang, Lei Zuo. “Reinforcement learning algorithms
with function approximation: Recent advances and applications”.
Information Science, 2013, in press.

[26] W.B. Powell, Approximate Dynamic Programming: Solving the Curses
of Dimensionality, Wiley, NY, 2007.

[27] F.Y. Wang, H. Zhang, D. Liu, Adaptive dynamic programming: an
introduction, IEEE Computational Intelligence Magazine (2009) 39–47.

[28] Yuan, H. and Qu, Z., “Optimal Real-time Collision-Free Motion
Planning for AUVs in a 3D Underwater Space,” IET Control Theory
and Applications, Vol. 3, No. 6, pp. 712-721, 2009.

[29] Yuan H, Shim T. Model Based Real-Time Collision-Free Motion
Planning for Nonholonomic Mobile Robots in Unknown Dynamic
Environments[J]. International Journal of Precision Engineering and
Manufacturing, 2013, 14(3): 359-365.

[30] Gu D, Hu H. Receding Horizon Tracking Control of Wheeled Mobile
Robots[J]. Control Systems Technology, IEEE Transactions on, 2006,
14(4): 743-749.

3670

