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Abstract—Cross-lingual textual entailment is a relatively new
problem that detects the entailment relationship between two text
fragments written in different languages. Previous work adopted
machine learning algorithms and similarity measures as features
to address this task. In order to overcome the high cost of human
annotation and further improve the recognition performance, we
present a novel co-training approach to solve this problem. We
first use an off-the-shelf machine translation tool to eliminate
the language gap between two texts. Then we measure the
similarities and differences between two texts and regard them as
sufficient and redundant views. We use those two views to conduct
the co-training procedure to perform classification. Besides, a
new effective Kullback-Leibler (KL) based criterion is proposed
to select the results from all possible iterations. Experiments
on cross-lingual datasets provided by SemEval 2013 show that
our method significantly outperforms the baseline systems and
previous work.

I. INTRODUCTION

Traditional textual entailment (TE) [1] aims to detect the
semantic entailment relationship (e.g., forward, backward)
between two topic-related text fragments (termed Text (T) and
Hypothesis (H) respectively). We specify that T entails H if
the opinion or the statement of H holds in every circumstance
in which T is true and thus the entailment relationship between
T and H is forward, that is T→ H. Here is an example from
the monolingual TE corpus [2], where T entails H because

Example 1
T: The earliest known Egyptian mummy, nicknamed “Ginger”

for its hair colour, dates back to approximately 3300 BC.
H: The oldest known Egyptian mummy dates back to roughly 3300 BC and

is nicknamed “Ginger”.
(id=130, entailment=forward)

the statement of H can be inferred from the meaning of T.
However, in Example 1, H cannot entail T because H does
not explain the reason for the nickname. In this case, the pairs
of sentences in TE are described in the same language while
cross-lingual textual entailment (CLTE) [3] extends this task by
involving cross-linguality where T and H are written in differ-
ent languages. Targeting to recognize the semantic equivalence
and difference between two text fragments written in different
languages, CLTE can be integrated into a number of cross-
lingual natural language processing (NLP) applications, for
example, plagiarism detection [4] and information retrieval [5],
where semantic inference across languages is needed. Besides,
automatical content synchronization for the documents in
different language versions to enrich each other is the ideal

scenario for the exploitation of CLTE components [3], which
will be of great benefit to manage textual information in
multilingual settings, such as Wikipedia.

As a relatively new task, CLTE attracts many researchers’
attention since Mehdad et al [3] proposed this task in 2010. A
great deal of approaches have been proposed to solve the CLTE
problem and most of these methods involve two steps: first they
used the machine translators to convert the sentences into same
language and then extracted a variety of discriminating features
to feed to classifiers built with labeled training data (e.g., SVM
[6], decision tree [7]) to make prediction. It is noteworthy
that given the translated or cross-lingual sentence pairs, most
discriminating features used in previous work only includes the
similarity scores of the two sentence strings, such as WordNet-
based similarities used in [8], cosine similarity, Dice coefficient
and other nine similarity measures used in [9], which are
calculated with the help of external lexical resources (e.g.,
WordNet [10], VerbOcean [11]). These similarity measures re-
cently are successfully applied in CLTE task and the evaluation
of semantic textual similarity in the *SEM 2013 Shared Task
[12]. Meanwhile, in our preliminary work, we observed that
many entailment relationships between two sentences can be
determined by only tiny parts of the sentences. In Example
1, we can see that T and H share the same meaning words
except the underlined terms in T, which suggests T entails H
and H cannot entail T. In another example, i.e., Example 2
(for ease of exposition, we select the monolingual TE pair as
our example, however this phenomenon is also often present
in cross-lingual setting), we can see that, each sentence has a

Example 2
T: A study conducted by Harvard University researchers has concluded that

children who attend an Independence Day celebration are more likely to
become Republicans as adults.

H: Children who attend an Independence Day celebration
(specifically celebrations without rain) are more likely to become
Republicans when adults, according to a study carried out by a group of
researchers.

(id=5, entailment=no entailment)

small part different from the other, which indicates that there is
no entailment relationship between them, i.e., no entailment.
Based on this observation, a novel sentence difference feature
type was proposed to characterize this phenomenon in our
previous work [6] and achieved the best result in this task.
The similarity and difference measurements can be regarded
as two sufficient and redundant views of data.

Additionally, like many NLP applications, the labeled data
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for CLTE is fairly expensive to obtain because it costs a lot
of human effort. Therefore, up to now the CLTE corpus is
quite scarce and the amount of labeled instances is still small.
The systems trained on insufficient data always lead to poor
performance, for example, the best results reported in SemEval
2013 [2] in terms of accuracy are only 43.4%-45.8% on four
language pairs.

In order to address the above problems, in this paper
we propose a novel co-training method to improve the per-
formance of cross-lingual textual entailment recognition. The
strategy of co-training is to use two views of data to train two
classifiers and add the predicted instances by one classifier to
expand the training set of another classifier and then re-train
the two classifiers on the expanded training sets. Specifically,
we first use a state-of-the-art machine translator (MT) to solve
the cross-linguality problem. Then, we extract two types of
features, i.e., similarity features and difference features, from
each sentence pair and these two feature types serve as two
sufficient and redundant views for the subsequent co-training
algorithm. After that, the co-training algorithm iteratively
trains two classifiers on two views of data and outputs the
results after a certain iteration. Instead of picking out the
results after a fixed number of iteration, we come up with
a new criterion based on the distribution agreement between
the training and test data to select the results from all possible
iterations.

The specific contributions of this paper are the following.

• Different from previous work which solely relies on
similarity features to conduct supervised classification
process, we apply co-training algorithm to CLTE
using two different types of feature (i.e., similarity
and difference) to overcome the shortage of labeled
data. Experiments on benchmark corpus show that our
approach significantly outperforms the baseline and
previous work.

• We propose a new KL-based criterion to select the
results from all possible iterations in co-training and
it is more effective than traditional stop criterions
according to the empirical results.

The rest of this paper is organized as follows. Section 2 re-
views related work on cross-lingual textual entailment and co-
training algorithm. Section 3 presents our proposed approach
for recognizing cross-lingual textual entailment. Section 4
reports the details about experiments and results. Section 5
discusses the results and the influences of parameters. Finally,
we conclude this paper in Section 6 along with future work.

II. RELATED WORK

A. Cross-lingual Textual Entailment

This task faces two main challenges. The first is the
cross-linguality that two sentences in a pair are written in
different languages. The strategies in monolingual TE cannot
be directly used and different languages have different lingustic
properties (such as, phonological, morphological, etc.) and
structures [10]. The second is the language ambiguity which
is an inherent and pervasive phenomenon existing in natural
language, that is, the same meaning can be conveyed by a
plenty of different texts and a certain span of texts can express

different meanings in different contexts as well. Therefore,
it causes a many-to-many mapping relationship between lan-
guage expressions and meanings [13]. CLTE has to deal with
the ambiguities in each of the two different languages and the
ambiguities resulting from cross-lingual situation as well.

To address the above cross-linguality challenge, two dif-
ferent solutions have been proposed since Mehdad et al [3]
first presented this task. The first method is to fully translate
sentences in one language into another language using off-
the-shelf MTs [6], [7], [14] and [15]. This translation solution
brings this problem back to monolingual TE and thus they
can directly adopt a lot of existing resources and algorithms
proposed in the TE task. For instance, [15] exploited the
EDITS tool developed for TE to solve CLTE after translation
procedure. The second method directly adopts cross-lingual
strategies by aligning the unit (e.g., a word or a phrase) of
sentences in one language with sentences in another language
with the aid of external resources. For example, [16] and
[17] exploited the IBM alignment models trained using cor-
responding parallel data to establish mappings between words
in two languages and extracted the features from the aligned
sentences, such as the numbers of aligned words. In this work,
we used the first strategy because that translation approaches
can achieve quite good results proved in [3] and the second
strategy needs extra large parallel corpora which are hard to
obtain in some languages.

Traditional TE approaches can be roughly divided into
two groups: logic inference based methods ([18], [19]) and
machine learning based methods ([2], [9] and [20]). The
logic inference based approach is to map the natural language
expressions to the first-order logical meaning representations
and then use an automated reasoning tool like Vampire or
a theorem prover to check whether there is an entailment
relationship or not along two directions. The machine learning
based approaches usually extract different features including:
various similarity measures at different levels such as, the
word co-occurence similarity [10] at the surface text level, the
cardinality of strings [14] or combinations of several string
similarity measures [9] at the shallow sematic level, the de-
pendency grammar tree similarity [20] at the syntax level and
more complex similarity measures [8] at deep sematic level;
the measures originating from machine translation evaluation
(e.g., BLEU) [14], [21] where one sentence is treated as the
translation of the other and other aspect features [22].

Besides, in order to tackle the challenge of language ambi-
guity, many lexical/semantic resources (e.g., WordNet, VerbO-
cean, Wikipedia) were used during the recognition procedure
[11], [8]. Specifically, when estimating the similarities of two
sentences, we can utilize WordNet to obtain the semantic
information including i) semantic equivalence between two
terms (i.e., synonymy relations), ii) lexical relations preserving
entailment between words (i.e., hyponymy relations) and iii)
similarity scores between words (e.g., Lin similarity). Apart
from building mapping relationships between words using
parallel corpora as mentioned above, [11] performed Latent
Semantic Analysis (LSA) over Wikipedia to measure the
relatedness between two words in the dataset.

In addition to the similarity features used in previous work,
we also propose difference features based on our preliminary
work [6] and feed this two views of features (i.e., similarity
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and difference features) to the co-training algorithm to address
CLTE. Under the framework of co-training, two views of
features can be exploited more effectively and make less
generalization errors on the unlabeled data rather than just
simply mixing the two features together.

B. Semi-supervised Learning and Co-training

Semi-supervised learning is a class of machine learning
methods, which makes use of large amount of unlabeled
data in the classifier training process. Many semi-supervised
learning methods have been proposed including: EM with
generative mixture models [23], self-training [24], co-training
[25], transductive support vector machines [26]. Among them,
co-training [25] serves as a prominent achievement in this area
and exploits two subparts of features to build two classifiers
separately. Then these two classifiers can teach each other in
the subsequent training procedure by iteratively adding the
predicted unlabeled examples by one classifier to the training
set of another classifier. As a result, the two subparts of
features (i.e., two views) must satisfy two requirements: (1)
sufficiency (in a certain degree we can trust the labels predicted
by the two classifiers), and (2) conditionally independence
given the class (so that the most confident predictions from one
classifier are independently and identically distributed with the
samples from another classifier). Although the requirements
of sufficient and redundant views may not always be met
in most real-world cases, the co-training paradigm has been
successfully applied in many applications such as cross-lingual
sentiment classification [27] and domain adaption [28].

III. CO-TRAINING FOR CROSS-LINGUAL TEXTUAL
ENTAILMENT

A. Motivation

The idea of using co-training algorithm for CLTE is
motivated by the following considerations. First, co-training
as a semi-supervised learning method can effectively exploit
a large number of unlabeled data. To date, the best known
performance of CLTE is low (i.e., 43.4%-45.8% in accuracy
on different language datasets in SemEval 2013 [2]) due to
the insufficiency of labeled data, while co-training can make
full use of unlabeled data. Second, on one hand, as shown in
Section 1, almost all previous work used similarity features
which have been proved to be useful to address CLTE. On the
other hand, in one of our preliminary work [6] we proposed
novel difference features, which are found to be effective for
CLTE as well. The similarity and difference features can be
intuitively regarded as two views of data and thus can be easily
integrated with the co-training algorithm in nature.

Generally, the co-training algorithm exploits the diversity
between two classifiers to obtain useful information from
newly-labeled data to teach each other in the training process.
This diversity can be achieved by i) applying the same learning
algorithm on two sufficient and redundant views; ii) using
different learning algorithms on a single view (i.e., the whole
feature set); iii) employing the same learning algorithm but
different parameters on the same feature set. In this paper, we
use the same learning algorithm (i.e. SVM) with two different
views, i.e. similarity and difference, to perform the co-training
procedure.

B. The Proposed Co-training Framework

Let L = {(xs1, xd1, y1), ..., (xs|L|, x
d
|L|, y|L|)} denote

the labeled example set, where xsi , x
d
i are the feature

representations of the i-th instance based on similari-
ty and difference measures, yi is the label of the i-
th instance (i.e., the entailment relationship) and |L| is
the number of labeled instances. Similarly, let U =
{(xs|L|+1, x

d
|L|+1, ỹ|L|+1), ..., (x

s
|L|+|U|, x

d
|L|+|U|, ỹ|L|+|U|)} denote

the unlabeled example set, where the instances are also rep-
resented in two views, ỹ means the predicted label and |U | is
the number of unlabeled examples. The detailed description of
the proposed co-training algorithm for CLTE is illustrated in
Algorithm 1.

Algorithm 1 The Co-training algorithm for CLTE
Given:

- labeled example set L, unlabeled example set U
- the number of iteration T
- the number of most confident predicted examples k
- a classification algorithm C and its parameters p

PROCESS:
1: L1 ← (xsi , yi) ∈ L, L2 ← (xdi , yi) ∈ L
2: h1 ← C(L1, p), h2 ← C(L2, p)
3: repeat
4: ỹk ← sign(h1(x

s
k)), where xsk ∈ U

5: π1 ← {(xdj , ỹj)| j is the index of k most confident
predictions by h1}

6: L2 ← L2 ∪ π1; U ← U ⊖ π1
7: ỹk ← sign(h2(x

d
k)), where xdk ∈ U

8: π2 ← {(xsj , ỹj)| j is the index of k most confident
predictions by h2}

9: L1 ← L1 ∪ π2; U ← U ⊖ π2
10: h1 ← C(L1, p), h2 ← C(L2, p)
11: if U is empty then exit
12: until T iterations
OUTPUT:
13: for each xu ∈ U do
14: ỹu ← sign(h1(x

s
u) + h2(x

d
u))

15: end for

Initially, line 1-2 build two classifiers separately on sim-
ilarity and difference view using the same learning method.
Then in each iteration illustrated in line 3-12, each classifier
performs the prediction on the current unlabeled example set
U and after that the top k examples with highest confidence
predicted from one classifier are selected and added to the
training set of another and consequently these added exam-
ples are removed from U (corresponding to line 4-6 and 7-
9). In line 10, the two classifiers are re-trained using their
expanded training sets. After T iterations, the final predictions
are performed by selecting the class labels with the highest
confidence which consist of the outputs of the two classifiers.
In the following subsection, we propose a novel KL-based
criterion to select the final results from all possible iterations
rather than choose the results after a fixed iteration number T .

C. A Novel Proposed KL-based Criterion

The co-training algorithm iteratively trains two classifiers
and outputs the results after a certain number of iteration.
Thus, there is a question about how to set an appropriate
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iteration number T or a stop criterion that can achieve optimum
performance. On one hand, if T is too small, then it almost
degenerates to supervised learning setting and the benefit of
unlabeled data cannot be fully exploited. On the other hand,
if T is too big, the classification mistake made in previous
iteration may be reinforced in the following iteration, and thus
it leads to worse performance. Previous work ([25], [27] and
[28]) set the number of iteration by hand or set a confident
threshold and then stopped the iteration when there is no
confident prediction any more. Instead of picking out the
results after a manually fixed iteration, in this work we propose
a novel criterion to automatically pick out the results from
the possible iterations. Our assumption is that the training and
test instances are randomly drawn from the same distribution.
So the distribution estimated from training instances should
agree with that from test samples with respect to the predicted
labels. Therefore, we propose to use Kullback-Leibler (KL)
divergence [29] to measure the degree of agreement between
training and test data. KL divergence is a commonly used
measure to assess the difference between two probability
distributions P and Q, which is defined to be

DKL(P ||Q) =

∫ +∞

−∞
ln(

p(x)

q(x)
)p(x)dx (1)

We use the predicted labels to calculate the KL divergence
between training and test data as follows: suppose we have m
classes to predict indexed by l ∈ {1, ..,m}, let X l

trn denote the
training instances with label l, X l

tst denote the test instances
with the predicted label l and P (X) denote the distribution of
data X , then the KL divergence of training and test data is
calculated as

KL(trn, tst) =
1

m

∑
l

DKL(P (X
l
trn)||P (X l

tst)) (2)

We assume that the data follows Gaussian distribution in the
experiments. We then have two KL divergences for the two
classifiers in each iteration and use the averaged value as the
KL score for each iteration. Finally, we select the results with
the smallest KL divergence as the final results of co-training.

D. Feature Representation

We used the following six types of features in our experi-
ments, which is based on our previous work [6].

Basic feature (BC): This feature consists of length mea-
sures on different sets including |A|, |B|, |A − B|, |B −
A|, |A

∪
B|, |A

∩
B|, |A|/|B|, |B|/|A|, where A and B stand

for two translated texts and the length of a set is defined as
the number of non-repeated elements in this set.

Surface Text Similarity features (STS): Nine measurement
functions are applied to a pair of texts including: Jaccard coef-
ficient, Dice coefficient, overlap coefficient, weighted overlap
coefficient, cosine similarity, Manhattan distance, Euclidean
distance, edit distance, Jaro-Winker distance. The vector rep-
resentations of texts use a TFIDF-based weighting scheme and
the edit and Jaro-Winker distance operate at the word level.

Sematic Similarity features (SS): This feature is to model
the semantic representations of sentence pairs. First the se-
mantic representations of these sentences are constructed by
weighted textual matrix factorization (WTMF) [30] and then

they are used to calculate the following seven similarity mea-
sures: word-to-word based similarity, word-to-sentence based
similarity, sentence-to-sentence based similarity, cosine simi-
larity, weighted overlap coefficient, Manhattan and Euclidean
distance.

Sentence Difference features (SD): This feature records the
number of unmatched words in each sentence. Besides, we also
count the number of unmatched words in each sentence that
belongs to a small set of POS tags (i.e., NN, JJ, RB, VB and
CD tags).

Grammatical Relationship features (GR): Every sentence
is POS tagged and dependency parsed and then we apply the
STS measures to the newly generated sentence consisting of
only POS tags. Similarly, we also apply the BC measures to
the sentence consisting of only grammatical relations.

Bias features(BS): This feature examines the differences
between two sentences in some special aspects, i.e., polarity
(affirmative or negative statement of a sentence) and named
entities. If the polarities of two sentences are the same, we set
the feature to 1, otherwise -1. Similarly, if all named entities
in one sentence are found in the other sentence, the feature is
set to 1, otherwise -1.

E. Two Views of Features

As stated above, the co-training algorithm trains two mod-
els on two different views and in this paper we state that
sentence similarity and difference features are two different
views of a pair of sentence. So for each type of feature we
split the above features into similarity and difference view as
shown in Table I. Here “the rest” in similarity view column
means the features in the corresponding feature type minus
the features belong to difference view. We exploit this two
views to perform the co-training algorithm in the following
experiments. In order to make a reasonable comparison, we
also perform the classification by simply mixing them together.

TABLE I. THE PARTITION OF FEATURES IN EACH FEATURE TYPE.

Feature Type Similarity View Difference View
BC the rest |A− B|, |B − A|
STS weighted overlap, Jaccard,

Dice, Overlap, cosine simi-
larity

Manhattan, Euclidean, Edit,
Jar-Winker distance

SS the rest Manhattan, Euclidean
SD - all
GR the rest the combination of differ-

ence features of BC and
STS

BS - all

IV. EXPERIMENTS AND RESULTS

A. Datasets

To evaluate our proposed co-training approach, we use
the data set provided by SemEval 2013 [2] task 8 since
to the best of our knowledge it is the biggest corpus for
CLTE task so far. It consists of a collection of 1500 sentence
pairs (1000 for training and 500 for test) in each language
pair with four entailment relationships: forward, backward,
bidirectional, non-entailment and each entailment relationship
has equal number of examples. Four different language pairs
are provided: German-English (DEU-ENG), French-English
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(FRA-ENG), Italian-English (ITA-ENG) and Spanish-English
(SPA-ENG).

B. Preprocess

We performed the following text preprocessing. First, we
employed the Google Translation service to translate the
sentences in German, French, Italian and Spanish into English,
thus two sentences in a pair were in the same language. After
that, all sentences were tokenized and lemmatized and all
stop words were removed followed by equivalent replacement
procedure. The equivalent replacement procedure consists of
three kinds of replacements as follows:

Abbreviative replacement. For each word whose length is
2 or 3, we examined if it is an acronym of some expressions in
the other sentence. This is because many phrases or organiza-
tions in one sentence can be abbreviated to a set of capitalized
letters in another sentence, e.g. “New Jersey” is usually wrote
as “NJ” for short.

Semantic replacement. In this step, we replaced a lemma in
one sentence with another lemma in the other sentence if they
are i) in the same synonymy set; or ii) gloss-related, which
means a lemma appears in the gloss of the other. WordNet
2.11 was used for looking up the synonymy and gloss of a
lemma. No word sense disambiguation was performed and all
synsets for a particular lemma were considered.

Context replacement. Two lemmas are considered to be
replaceable if they are in the same context. The context of
a lemma is defined as the non-stopword lemmas surround it.
In the experiments, we set the number of surrounding non-
stopword lemmas as 3.

C. Performance Evaluation and Learning Method

To make the experimental results comparable and rea-
sonable, we used the official metric to evaluate the system
performance, i.e., accuracy. The learning method in co-training
was SVM Multiclass2 with linear kernel and the trade-off
parameter C=1000. The parameters in WTMF were: the di-
mension of sematic space was 100, the weight of missing
words was 100 and the regularization factor was 0.01. In fact,
the 1000 training examples consists of two parts: 500 training
examples and 500 test examples in SemEval 2012. So we used
the 500 test examples in SemEval 2012 as development set to
tune all the parameters.

D. Baseline and Our Systems

In the experiments, we designed eight systems listed in
Table II. The first five supervised learning systems with
different feature sets act as the baseline systems and last three
systems are to examine the performance of different configu-
rations of the proposed co-training algorithm. We applied our
proposed co-training based approach to conduct CLTE using
all features and the best feature subset as shown in System
all-fea+co-training and sub-fea+co-training respectively. As
a comparison, System all-fea and sub-fea directly exploited
SVM Multiclass to perform CLTE. To verify the sufficiency

1http://wordnet.princeton.edu/
2http://www.cs.cornell.edu/people/tj/svm light/svm multiclass.html

and redundance of the two constructed views, we only used
the similarity and difference features with SVM Multiclass
in System simView and diffView respectively. In addition, to
explore the influence of the number of training examples,
System sub-fea* and sub-fea*+co-training only used the 500
training examples of SemEval 2012 as the training set instead
of using 1000 examples (500 training + 500 test in SemEval
2012). In our preliminary experiments, the best feature subset
for SPA-ENG, ITA-ENG, FRA-ENG and DEU-ENG are ALL-
BS, ALL-STS, SD+BC+STS and ALL-GR, respectively.

TABLE II. THE CONFIGURATION OF EIGHT SYSTEMS IN OUR
EXPERIMENTS, WHERE THE FIRST FIVE SYSTEMS ARE IN SUPERVISED
LEARNING SETTING WITH DIFFERENT FEATURE SETS AND THE LAST

THREE SYSTEMS ARE IN CO-TRAINING SETTING WITH DIFFERENT
FEATURE SETS. SYSTEMS WITH ASTERISK ONLY USE 500 TRAINING

EXAMPLES IN SEMEVAL 2012 AT FIRST.

System Brief description
simView similarity features and SVM Multiclass
diffView difference features and SVM Multiclass
all-fea all feature sets and SVM Multiclass
sub-fea best feature sets and SVM Multiclass
sub-fea* best feature sets and SVM Multiclass

all-fea+co-training co-training with all feature sets
sub-fea+co-training co-training with best feature sets
sub-fea*+co-training co-training with best feature sets

E. Results

Table III summarizes the experimental results with respect
to accuracy of five baseline systems described in Table II on
four language pairs and the best results of CLTE officially
published by SemEval 2013, where the best performance of
baseline systems on each language pair is shown in bold font.
From the table, we can find that the results of our baseline
systems are comparable with those of SemEval 2013 (i.e.,
on DEU-ENG and FRA-ENG, our baseline systems achieve
the same performance as the best known results but a little
bit worse on the other two datasets). This indicates that our
constructed baseline systems are reasonable and reliable.

TABLE III. THE PERFORMANCE (IN ACCURACY) OF 5 BASELINE
SYSTEMS AND THE BEST RESULTS OFFICIALLY REPORTED BY SEMEVAL

2013 ON FOUR LANGUAGE PAIRS.

System SPA-ENG ITA-ENG FRA-ENG DEU-ENG

simView 0.398 0.402 0.436 0.438
diffView 0.414 0.412 0.458 0.416

all-fea 0.428 0.426 0.438 0.422
sub-fea 0.404 0.420 0.450 0.436
sub-fea* 0.422 0.416 0.436 0.452
Best results in
SemEval 2013 0.434 0.454 0.458 0.452

Table IV summarizes the experimental results of our pro-
posed co-training based systems described in Table II on
four language pairs. In the co-training setting, we set the
growth size (i.e., k most confident predicted examples) at each
iteration for FRA-ENG, DEU-ENG, ITA-ENG as 10 and 5 for
SPA-ENG. From this table, we can find that on four language
pairs, our co-training method obtains better performance than
the best results reported in SemEval 2013.

To examine the impact of the difference in data on the
performance variation, we employed the paired t-test to ver-
ify whether there is significant difference between different
systems. Table V summarizes the paired-sample t-test results
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TABLE IV. THE PERFORMANCE (IN ACCURACY) OF OUR PROPOSED
CO-TRAINING SYSTEMS AND THE BEST RESULTS OFFICIALLY REPORTED

BY SEMEVAL 2013 ON FOUR LANGUAGE PAIRS.

System SPA-ENG ITA-ENG FRA-ENG DEU-ENG

all-fea+co-training 0.433 0.437 0.479 0.477
sub-fea+co-training 0.443 0.433 0.491 0.467
sub-fea*+co-training 0.439 0.477 0.481 0.455

Best results in
SemEval 2013 0.434 0.454 0.458 0.452

on four language pairs between the best baseline systems (i.e.,
all-fea, all-fea, diffView and sub-fea* on SPA-ENG, ITA-ENG,
FRA-ENG and DEU-ENG respectively) and three co-training
systems (i.e., all-fea/sub-fea/sub-fea*+co-training). The sys-
tems with insignificant performance differences are grouped
into one set and “ > ” and “ >> ” denote better than at
significance level 0.05 and 0.005 respectively.

V. DISCUSSION AND ANALYSIS

A. Discussion

From Table III and Table V, we have several findings as
follows.

Firstly, the performance of two views, i.e., difference and
similarity features, are comparable to each other. Moreover,
they are also comparable to the other three supervised base-
line systems. This indicates that the proposed two views are
sufficient and redundant and thus they are suitable for the
co-training algorithm. Specifically, on FRA-ENG, the system
using only difference features achieves the best results among
the other four systems with all or similarity features which
indicates that the difference features are quite effective in
themselves.

Secondly, our proposed co-training approach outperforms
all corresponding supervised learning baseline systems over
all language pairs with respect to different feature sets and
different training instances. Specifically, on SPA-ENG, ITA-
ENG, FRA-ENG and DEU-ENG, our best co-training systems
achieve 1.5%, 5.1%, 4.1%, 2.5% accuracy improvements over
the best baseline systems. To explore the possible reason
why co-training performs better than supervised learning, we
calculated the KL divergences between the training and test
data on four language pairs and the KL divergences for
FRA-ENG, DEU-ENG, ITA-ENG and SPA-ENG are 58.16,
63.03, 73.60 and 58.34, respectively. It is clear that the KL
divergences between training and test data are quite big and
thus the models learned on training data only may not perform
good on test samples. However, our co-training method can
make use of the test data in the training phase to overcome this
difference between data. This may explain that our proposed
co-training with two sufficient and redundant views and test
data significantly improves the performance of CLTE, which
is also confirmed by the following paired-sample t-tests listed
in Table V.

Thirdly, our proposed co-training method outperforms the
best results reported in SemEval 2013 over all language pairs.
Specifically, our method obtains an improvement of 0.9%,
2.3%, 3.3%, 2.5% in terms of accuracy on SPA-ENG, ITA-
ENG, FRA-ENG and DEU-ENG respectively. Notice that the
results of our method reported in Table IV may be not the best

results it can achieve since our result selection criterion based
on KL-divergence in co-training does not always pick out the
best results from all possible iterations.

Lastly, under the co-training framework, the systems with
1000 initial training instances achieve the best results on
three language datasets except ITA-ENG and surprisingly the
system sub-fea*+co-training with only 500 initial training
instances achieves the best results on ITA-ENG dataset. This
may be due to the big difference between 500 test samples of
SemEval 2012 and 500 test samples of SemEval 2013 on ITA-
ENG dataset (the KL divergences for FRA-ENG, DEU-ENG,
ITA-ENG and SPA-ENG are 15.17, 40.35, 69.27 and 60.27,
respectively).

In a nutshell, our proposed co-training method with two
views is efficient and promising.

B. Influences of Parameters

In this subsection, we discuss the influences of two critical
parameters in the co-training algorithm on CLTE, i.e., the
growth size k and iteration number T .
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Fig. 1. The accuracy curves over different iteration number T s. The green
circles stand for the best results among all possible iterations and the red
crosses represent the results selected by our KL-based criterion.

1) Growth Size k: To explore the influence of growth size
k in co-training, we conducted a series of experiments on
different k values (e.g., 5, 10, ... , 50) over four language
pairs using all features. We achieved the best results when
k=5 on SPA-ENG dataset and k=10 on DEU-ENG, FRA-
ENG and ITA-ENG datasets. The accuracy curves over k
on different language pairs have many local maxima instead
of a global maximum, because the iteration numbers of the
results selected by our criterion on different language pairs
are different. Besides, for the purpose of balance, we also
added equal number of most confident predictions for each
class to the training set in each iteration. However, it performs
worse than that of just adding the k most confident predictions
regardless of classes. To further explore the reason for this, we
observe and find that the classifiers are prone to misclassify
examples with forward, backward and bidirectional labels
and consequently in the next iteration, the classifiers will
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TABLE V. STATISTICAL SIGNIFICANCE TESTS RESULTS.

Language pair Paired-sample t-test results
SPA-ENG (sub-fea+co-training, sub-fea*+co-training) > all-fea+co-training > all-fea
ITA-ENG sub-fea*+co-training >> all-fea+co-training >> (sub-fea+co-training, all-fea)
FRA-ENG sub-fea+co-training >> (sub-fea*+co-training, all-fea+co-training, diffView)
DEU-ENG (all-fea+co-training, sub-fea+co-training, sub-fea*+co-training) >> sub-fea*

input more misclassified training examples and lead to worse
performance using this strategy. Therefore, in this work, we
set k=5 for SPA-ENG and k=10 for the other three languages
regardless of classes.

2) Iteration Number T : We conducted experiments to
examine the influence of iteration number T using all features.
Figure 1 shows the accuracy curves over different iteration
numbers on different language pairs. The green circles in the
figure stand for the best results among all possible iterations
and the red crosses represent the final results selected by our
KL-based criterion. As discussed above, we fixed the growth
size k = 10 on DEU-ENG, FRA-ENG, ITA-ENG datasets and
k = 5 on SPA-ENG and thus the maximum iteration number
for DEU-ENG, FRA-ENG, ITA-ENG is 50 and 100 for SPA-
ENG (since there are 500 test samples in total on each language
pair). We plotted the four curves in a single figure and used the
upper x-axis for SPA-ENG for aesthetic. Generally, we find:

• the performance of four curves increases as the itera-
tion number increases and achieved a global optimum
performance at a certain iteration number. And then
the performance decreases as the iteration number
increases. This is because that more noisy examples
are selected as the iteration number increases and
added into the next iteration;

• our proposed KL-based criterion is able to dynamical-
ly choose the optimum number of iteration for differ-
ent datasets and it achieves a better performance than
using a fixed number of iteration (i.e., the traditional
criterion). Specifically, on DEU-ENG dataset our KL-
based criterion achieves the best result and approxi-
mately approaches the best result on the other three
datasets. This indicates that our proposed KL-based
stop criterion is effective for co-training algorithm.

VI. CONCLUSIONS

In this paper, we propose two views (i.e., similarity and
difference) of features for CLTE task and based on these two
views we propose a co-training framework to improve the
performance of CLTE. Besides, a new KL-based criterion is
also proposed to select the final results based on the agreement
between the distributions of training and test data. Results
on the datasets provided by SemEval 2013 show that our
method significantly outperforms all previous best systems.
Specifically, for SPA-ENG, ITA-ENG, FRA-ENG, DEU-ENG,
our best results achieve 1.5%, 5.1%, 3.3%, 2.5%, accuracy
improvements over the best baseline systems and 0.9%, 2.3%,
3.3%, 2.5% improvements over the best results published in
SemEval 2013 competition. This indicates that our method
is feasible and promising. However, although co-training can
improve the performance, the overall performance is still
quite low (an average accuracy of 47.2%), so our future

work includes: discover more discriminating features to better
characterize the ambiguity and variety of language and exploit
other learning strategies.
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