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Abstract— In this paper, an event-based near optimal control 
of uncertain nonlinear discrete time systems is presented by 
using input-output data and approximate dynamic programming 
(ADP).  The nonlinear system dynamics in affine form are 
transformed into an input-output form. Then, three neural 
networks (NN) with event sampled input-output vector are used, 
namely, the identifier NN to relax the knowledge of the system 
dynamics, a critic NN to approximate the value function which is 
the solution to the Hamilton-Jacobi Bellman (HJB) equation, and 
an actor NN to approximate the optimal control policy, in an 
online manner without utilizing value or policy iterations.  In 
addition, the NN weights of all the three NNs are tuned only at 
event-triggered instants leading to a novel non-periodic update 
rule to reduce computation when compared to traditional NN 
based scheme.  Further, an event-trigger condition to decide the 
trigger instants is derived. Finally, the Lyapunov technique is 
used in conjunction with the event-trigger condition to guarantee 
the uniform ultimate boundedness (UUB) of the closed-loop 
system. The analytical design is substantiated with numerical 
results via simulation. 

Keywords— Approximate dynamic programming; event-
triggered control; Hamilton-Jacobi-Bellman equation; neural 
networks; Optimal control 

I. INTRODUCTION 
Event-based sampling [2]-[5] of state or output vector for 

controller execution is gaining popularity among control 
researchers in the recent time since this control scheme 
referred to as event-triggered control can save computation. 
Further, this alternate control paradigm can also save network 
resources in terms of bandwidth of the communication 
network in case of the networked control systems (NCS). The 
sampling or the transmission instants, referred to as event-
trigger instants, are decided by a state or output dependent 
criteria referred to as event-trigger condition. 

Recently, various event-triggered control (ETC) schemes 
[2]-[5] have been introduced in the literature with complete or 
partial knowledge of the  system dynamics using both state 
feedback [2], [4]-[5] and output feedback [3].   Further, the 
traditional optimal control design [7] approach is extended to 
event-triggered control [4] of linear systems by using 
backward-in-time solution of the Riccati equation (RE) with 
completely known system dynamics. In contrast, various 
online approaches using approximate dynamic programming 

(ADP) [8] are available to solve the optimal control in a 
forward-in-time manner provided a significant number of 
iterations within a sampling interval can be utilized which is a 
major bottleneck [9]. On the other hand, developing an event-
triggered optimal controller computed forward in time and 
online manner without iterations is still an open problem. 

Motivated by the above fact, in this paper, we propose for 
the first time a novel technique to solve the infinite horizon 
optimal control of nonlinear discrete-time system in an event-
triggered paradigm by using measured input-output data and 
approximate dynamic programming (ADP) approach. The 
value function and the optimal control input are approximated 
by using neural networks (NN) referred as actor-critic NNs. 
Further, to relax the system dynamics, a NN based identifier is 
used in conjunction with the actor-critic NNs. A novel event-
trigger condition is developed which not only reduces the 
number of controller updates but initiates sufficient number of 
events during the initial learning phase for NN approximation. 
Further, to reduce computation when compared to a traditional 
NN based scheme [6], novel aperiodic update laws are 
developed which tunes the identifier, actor and critic NN 
weights once every triggered instant.   

The main contributions of this paper include the design of 
an optimal event-triggered control scheme for an uncertain 
nonlinear discrete time system in affine form by using input-
output event sampled data with a novel event-trigger condition 
and aperiodic update laws to save computation. Finally, 
Lyapunov direct method is used to prove the uniform ultimate 
boundedness (UUB) of the closed-loop event-triggered system. 
Next, after a brief background the problem for the optimal 
control design is formulated. 

II. BACKGROUND 
In this section, the system dynamics in input-output form is 

derived. A brief background on the ETC is also included. 
 Consider the controllable and observable uncertain 

nonlinear discrete time system represented as 
1 ( ) ( )k k k kx f x g x u+ = + ,            (1) 

k ky Cx= ,         (2)                   

where n
kx ∈ℜ , m

ku ∈ ℜ  and n
ky ∈ℜ  represent the system 

state, control input and output vectors respectively while the 
smooth nonlinear functions ( ) : ,n n

kf x ℜ → ℜ  with ( )0 0f = , 
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( ) : n n m
kg x ×ℜ → ℜ and matrix n nC ×∈ ℜ denote the system 

dynamics and the output coefficient matrix respectively. The 
output coefficient matrix considered to be known and 
invertible. Here, 0x =  being a unique equilibrium point in a 
compact set  n⊂ ℜD  while the system dynamics ( )kf x  and 

( )kg x  are considered unknown with the following standard 
assumption. 

Assumption 1: The unknown nonlinear function ( )g i is 
uniformly bounded above in a compact set n⊂ ℜD  such that 

( )0 Mg g< ≤i  with 0Mg >  is a positive known constant.   
The system (1) and (2) can be transformed using the 

measured input/output data and represented as 
( ) ( )1k k k ky F y G y u+ = + , (3) 

where ( ) ( )1 n
k kF y Cf C y−= ∈ℜ and ( ) ( )1 n m

k kG y Cg C y− ×= ∈ℜ are 
the transformed system dynamics. From Assumption 1, it is 
routine check that ( )0 k MG y G< ≤  with 0MG >  is a known 
positive constant. Next the background on ETC is discussed 

A. Background on ETC 
In a traditional output feedback based ETC frame work, 

the feedback information for updating the control are 
intermittently available based on the event-trigger condition in 
contrast to a traditional discrete-time frame work. Hence, the 
control input for an ETC system is given by  

( )
( )

, Event is triggered,  ,

, Event is not triggered, ,
k i

k
k i i+1

y k = k
u

y k k < k

υ
υ
⎧⎪= ⎨

≤⎪⎩
�  (4) 

where ( )iυ  is the control input with ky  is the system output 
at time instant k ∈` and ky�  is the last sampled system output 
held by the zero-order-hold (ZOH) at the controller for 

i i+1k k < k≤  with { } 1i ik ∞

=
 is a monotonically increasing 

subsequence of time instants for k ∈`  at which the events 
are triggered. It is clear from (4) that k ky y=�  for ik k= , i.e., 
the last sampled and held system output is updated at every 
trigger instant with the current sampled one. 

These event-trigger instants, ik  for 1, 2,3,i = " are decided  
by the violation of the event-trigger condition, 

( ),ET k ET ke yσ≤ where ,ET ke is the event-trigger error and 
represented by 

,ET k k ke y y= − � , (5) 
and ( )ET kyσ is an output dependent threshold. The event-
based controller (4) in the existing literature is designed 
without any performance criterion.  Therefore, the event-based 
optimal control is formulated next. 

B. Problem Fromulation 
 Consider the uncertain nonlinear discrete-time system (3). 
Our objective is to minimize the infinite horizon cost function,  

( ) ( , )k j j
j k

V y r y u
∞

=

=∑ , (6) 

by designing an optimal feedback control policy in an event-
triggered control framework, where ( , )k kr y u  is the cost-to-go 
function at each time k and defined as ( , ) ( ) T

k k k k kr y u Q y u Ru= +  
with ( )kQ y ∈ ℜ  is a positive definite function to penalize the 
system output, ky , and R  is a positive definite matrix to 
penalize the control input, ku .  An initial admissible control 
input is needed to keep the cost function finite.  

The cost function (6) can be written as 

1
1

( ) ( , ) ( , ) ( ) ( ),T
k k k j j k k k k

j k

V y r y u r y u Q y u Ru V y
∞

+
= +

= + = + +∑  (7) 

with 1( )kV y + is the value function from time instant 
1k + onwards. According to Bellman’s principle of optimality 

[8], the optimal cost, ( )kV y∗ , satisfies the discrete-time 
Hamilton Jacobi Bellman (HJB) equation 

{ }1( ) min ( ) ( )
k

T
k k k k ku

V y Q y u Ru V y∗ ∗
+= + + , (8) 

where ( )kV y∗ is the optimal cost at time instant, k , and 

1( )kV y∗
+  is the optimal cost for 1k + onwards. The optimal 

control policy *
ku  is derived from the stationarity condition 

[7], ( )* 0k kV y u∂ ∂ = , and it is found to be 

( ) ( ) ( )* 1 *
1 11 2 T

k k k ku R G y V y y−
+ += − ∂ ∂ . (9) 

Substituting (9) in (8), the discrete-time HJB equation is 
obtained.  

In general, an exact analytical solution to the HJB equation 
(8) is not possible. Further, it is evident from (9) that the 
optimal control input requires control coefficient function 

( )kG y and the system output 1ky +  at the time instant, k . This 
precludes the computation of the control input (9) at the 
current time instant, k , in a forward-in-time manner. Further, 
in the event-based optimal control, the output vector is sent 
intermittently to the controller at event-triggered instants thus 
complicating the approximation process. Next, the function 
approximation by NN in the context of event-based sampling 
is revisited. 

C. NN Approximation with Event-based Sampling 
The following theorem extends the approximation property 

of NNs for event-based sampling. 

Theorem 1: Let ( ) : n n
kh y ℜ → ℜ , be smooth and 

continuous function in a compact set n⊂ ℜD . Then, there 
exists a NN with a sufficient number of neurons such that the 
function ( )kh y can be approximated with constant weights and 
event-based activation function defined as 
 ( ) ( ) ( )T

k k e kh y W y y= +� �σ ε ,  (10) 
where l nW ×∈ ℜ  is the target NN weight matrix with l  being 
the number of hidden-layer neurons, ( ) l

ky ∈ ℜ�σ is bounded 

event-based activation function, and ( ) n
e ky ∈ℜ�ε  being the 

event-driven NN reconstruction error with n
ky ∈ ℜ�  is the 

latest available event-sampled variable at the time instant, ik .  
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Remark 1: From Theorem 1, a small reconstruction error 
( )e ky�ε can be achieved by increasing the frequency of 

triggered events.  Hence, a compromise has to be reached 
between NN reconstruction error and computation in an event-
triggered control scheme. 

III. EVENT-BASED OPTIMAL CONTROL DESIGN 
In this section, we propose the near optimal controller design 
in the event-triggered framework. 

A. Proposed Solution 
The optimal event-triggered control system is shown in the 

Figure 1. An actor-critic framework is proposed in the event-
triggered control paradigm. The value function which is the 
solution of the HJB equation is approximated by the critic NN 
and the control input by the actor NN which minimizes the 
HJB equation. Further, the control coefficient function 

( )kG y in (9) is relaxed by using a NN based identifier. 

ky

iky

ky�

iky
ky�

ky

ku

iku

 
Fig. 1. Block diagram of an event-triggered near optimal control system. 

All the three NNs use event-sampled states as inputs and 
the sampling instants are decided by the trigger mechanism. 
The event-trigger mechanism consists of a mirror image of the 
actor-critic NN, which operates in synchronism with the 
controller NNs, to evaluate the event-trigger condition at 
every sampling instant. The system output is transmitted at the 
violation of the event-trigger condition defined later. Further, 
the NN identifier, the last held output at the ZOH, the control 
input and NN weights are updated at every trigger instant for 

ik k= . Similar to the case of a traditional ETC the event-
trigger error is reset to zero, i.e., 

, 0ET ke =  for ik k= , (11) 
for the next iteration. In the next subsections, the identifier and 
controller designs are presented.  

B. Identifier Design 
By using the approximation property of the dynamic feed 

forward NN [6], the nonlinear system in (3) can be 
represented as 

1 ,( ) ( ) ( ) ,T T T
k F F k G G k k F G k I I k k I ky W y W y u u W y uσ σ ε ε σ ε+ = + + + = + (12) 

where ( )1 I
T m l nT T

I F GW W W + ×⎡ ⎤= ∈ℜ⎣ ⎦ denotes the target NN weights 

of system identifier, { } ( ) ( )1 1( ) ( ), ( ) Im l m
I k F k G ky diag y yσ σ σ + × += ∈ℜ   

represents the NN activation function with Il  is the number of 
neurons, I F G kuε ε ε= + is the reconstruction error and  

11
TT m

k ku u +⎡ ⎤= ∈ ℜ⎣ ⎦  is the augmented control input. Then, 
the following standard assumption for the NN holds. 

Assumption 2[6]:  The target weight vector, IW , the 
activation function, ( )I kyσ , and the reconstruction error, Iε , 

of the NN are bounded in a compact set n⊂ ℜD  such 
that ,I I MW W≤ , ( ) ,I k I Myσ σ≤  and I M≤ε ε with MW , Mσ  
and Mε are positive constants . 
 Next, defining the NN identifier dynamics as 

1 ,
ˆˆ ˆˆ ( ) ( ) ( )T

k k k k I k I k ky F y G y u W y uσ+ = + =� � � , (13) 

where ˆ n
ky ∈ ℜ   is the identifier state vector , ˆ ( ) n

kF y ∈ℜ�  and 
ˆ ( ) n m

kG y ×∈ ℜ�  are the identifier dynamics at the time instant 
k  and a function of last held system output , y� . Further, 

( )1
, , ,

ˆ ˆ ˆ I
T m l nT T

I k F k G kW W W + ×⎡ ⎤= ℜ⎣ ⎦ denotes the estimated weights 

of identifier, { }( ) ( ), ( )I k F k G ky diag y yσ σ σ=� � �  ( ) ( )1 1Im l m+ × +∈ ℜ is 
the event-based activation function. As per the proposed 
scheme ˆk ky y=  and k ky y=�  for ik k= , and, hence, the 
dynamics (13) are represented by  

,
1

, 1

ˆ ( ) , event is triggered,  ,
ˆ

ˆ ( ) ,event isnot triggered,  < .

T
I k I k k i

k T
I k I k k i i

W y u k = k
y

W y u k k k

σ

σ
+

+

⎧⎪= ⎨
≤⎪⎩

�  (14) 

Defining the identification error as , ˆI k k ke y y= − , the 
identification error dynamics become 

( ), 1 , , ,
ˆ( ) ( ) ( ) ,T T

I k I k I k k I k I k I k k I ke W y u W y y uσ σ σ ε+ = + − +��  (15) 

with . ,
ˆ

I k I I kW W W= −� is the identifier NN weight estimation 
error.  Further, the dynamics of  ,I ke  for ik = k  from (15) 
become 

, 1 1 1 , ,ˆ ( ) ,T
I k k k I k I k k I ke y y W y uσ ε+ + += − = +�  for ik k= . (16) 

Next, the aperiodic update law is selected in the context of 
event-based sampling to save computational load as 

[ ] [ ]
, 1

,

, 1

, 1

( )ˆ ,for ,
ˆ ( ) ( ) 1

ˆ ,  for < ,

T
I k k I k

I k I iT
I k k I k kI k

I k i i

y u e
W k = k

y u y uW

W k k k

σ
α

σ σ
+

+

+

⎧
+⎪⎪ += ⎨

⎪ ≤⎪⎩

   (17) 

with Iα  is the learning gain and , 1I ke +  is defined as in (16). 

C. Controller Design 
In this section, the near optimal controller design in the 

context of event-based sampling is given via actor-critic 
framework.  First, the critic NN design is presented. 

1) Critic Design 
In this subsection, we learn the solution of the HJB 

equation function by using the critic NN.  Consider the ideal 
HJB equation  (8) rewritten as  
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* * *
10 ( ) ( ) ( ) ( )k k k kV y Q y R u V y+= + + − .          (18) 

By using the dynamic feed forward NN [6], the optimal value 
function can be written as         

*
,( ) ( ) ,T

k V k V kV y W yϕ ε= +                 (19)  

where Vl
VW ∈ ℜ  is the unknown constant target critic NN 

weights, ( ) Vl
kyϕ ∈ ℜ  is the activation functions, ,V k ∈ ℜε is 

the NN reconstruction errors with  Vl  is the number of neurons 
in the network. Similar to Assumption 2 the target NN weights, 
activation functions and the reconstruction errors of the critic 
NN are assumed to be upper bounded by ,MV VW W≤ , 

M( )kyϕ ϕ≤ , and , ,MV k Vε ε≤  with ,MVW , Mϕ  and  ,MVε  are 
positive constants. In addition, in this work, the gradient of the 
reconstruction error is also considered to be bounded above by 

'
, 1 ,MV k k Vy +∂ ∂ ≤ε ε , with '

,MVε  a positive constant [9]. Then, 
substituting  (19) into (18), (18) can be represented as 

* *
,0 ( ) ( ) ,T T

V k k k k V kW y Q y u Ruϕ ε= Δ + + + Δ   (20)    

where , , 1 ,V k V k V kε ε ε+Δ = −  and 1( ) ( ) ( )k k ky y yϕ ϕ ϕ+Δ = − . 
Now, the estimated value function by the critic NN with 

the event-based availability of the system output can be 
represented as 

( ) ,
ˆ ˆ ( )T

k V k kV y W yϕ= � , (21) 

where ,
ˆ VlT
V kW ∈ℜ  is the estimate of the target NN weight of 

the value function, ( ) Vl
ky ∈ ℜ�ϕ  is the event-based activation 

function. The event-based activation function is selected such 
that ( )0 0σ =  for 0ky =  to ensure ( )ˆ 0 0V = .  

Because of the NN approximation (21) and the event-based 
availability of the system state, ky�  for 1i ik k k +≤ < , the ideal 
HJB equation (20) does not hold. Therefore the temporal 
difference (TD) error associated with the estimated HJB 
equation can be written as 

, ,
ˆ ( ) ( )T T

TD k V k k k k ke W y Q y u Ruϕ= Δ + +� � .        (22) 
At the trigger instant, ik k= , the temporal difference (TD) 
error can be written as 

, ,
ˆ ( ) ( ) ,T T

TD k V k k k k ke W y Q y u Ru= Δ + +ϕ    for ik k= ,      (23)  
where 1( ) ( ) ( )k k ky y yϕ ϕ ϕ+Δ = −� � � .  

Now, selecting the aperiodic update law of critic NN as 
,

,
, 1

, 1

( )ˆ , for = ,ˆ ( ) ( ) 1
ˆ , for < ,

k TD k
V k V iT

k kV k

V k i i

y e
W k k

y yW

W k k k

ϕ
α

ϕ ϕ+

+

⎧ Δ
−⎪⎪ Δ Δ += ⎨

⎪ ≤⎪⎩

      (24) 

with 0Vα > is the learning gain . 

Remark 2: The update law (24) , especially the TD error, 
,TD ke  , uses 1ky +  to  update the weight at 1k + .  Hence, the 

system output 1ky +  is also sent to the controller at 1k +  once 
an event is trigged at the time instant k . After receiving the 
output at 1k + , the critic NN weight for 1k +  is updated. 
Next, the design of the actor NN is presented . 

B. Actor NN Design 
In this subsection, we approximate the optimal control 

policy through the actor NN.  
Consider the optimal control input (9). By using the 

dynamic the feed forward NN [6] (9) can be written as 
*

,( )T
k u u k u ku W yσ ε= +  ,                                                        (25) 

where ul m
uW ×∈ℜ is the target action NN weights, ( ) ul

u kyσ ∈ℜ  

denotes the activation function of the action NN and ,
m

u kε ∈ℜ  
is the reconstruction error with  ul  is the number of neurons in 
the network. As per Assumption 2 the target action NN 
weights, activation function, reconstruction error 
satisfies ,u u MW W≤ , ,( )u k u Myσ σ≤ and , ,u k u Mε ε≤  
respectively. 

Assumption 3: The NN activation function is Lipschitz 
continuous in a compact set n⊂ ℜD . This means for every 
D there exists a Lipschitz constant 

u
Cσ such that 

( ) ( )ˆ ˆ
uu k u k k ky y C y yσσ σ− ≤ − . 

Moreover, the ideal optimal control input (9) by using (19), 
by forwarding one step,  becomes 

( ) ( )* 1 1
1 , 11 2 ( ) ( ) 1 2 ( )T T T

k k k V k V ku R G y y W R G yϕ ε− −
+ += − ∇ − ∇ .  (26) 

It is clear that both the optimal control inputs  (25) and (26) 
should be equal.  

Next, the estimated optimal control input in the event-
trigger context can be represented by using the actor NN 
weights as 

,
ˆ ( )T

k u k u ku W yσ= � , for all k ∈` ,           (27)                  

where ,
ˆ ul m

u kW ×∈ ℜ  is the estimated actor NN weights and 
( )u kyσ � is the event-based activation function. Alternatively, 

using the gradient of the estimated value function (21), the 
estimated control input, ,V ku , can also be written as 

( ) 1
, 1 ,

ˆ ˆ1 2 ( ) ( )T T
v k k k V ku R G y y Wϕ−

+= − ∇� � , for all k ∈` , (28) 

where ∇ denotes the gradient, ( )ˆ ˆG y is the estimated control 
coefficient matrix from the NN-based identifier.  

It is clear that the  control policy, ku , (27) and the control 
policy, ,v ku , (28) are not equal and, hence, the control input 
estimation error ,u ke  , which is the difference between (27) 
and (28), is represented as 

( ) 1
, , 1 ,

ˆˆ ˆ( ) 1 2 ( ) ( )T T T
u k u k u k k k V ke W y R G y y Wσ ϕ−

+= + ∇� � � .    (29) 
Then from (29), ,u ke  for ik k= can be written as  

( ) 1
, , 1 ,

ˆˆ ˆ( ) 1 2 ( ) ( )T T T
u k u k u k k k V ke W y R G y y Wσ ϕ−

+= + ∇ . (30) 
Similar to (24), the update law of action NN is selected as 

  

,
,

, 1

, 1

( )ˆ , forˆ ( ) ( ) 1
ˆ , for

T
u k u k

u k u iT
u k u ku k

u k i i

y e
W k = k

y yW

W k k k

σ
α

σ σ+

+

⎧
−⎪⎪ += ⎨

⎪ ≤ <⎪⎩

,  (31) 

with uα  is the learning gain and ,u ke  is as defined in (30). 
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Next, the flowchart given in Fig. 2 explains the 
implementation of the near optimal event-triggered control 
design presented earlier. 

( ), ,ET k ET k kD e yσ≤

0 0 0 ,0 ,0 ,0
ˆ ˆ ˆˆ, , , , ,I V ux y u W W W

σ
α

σ σ

T
u k u k

u k u k u T
u k u k

y e
W W

y y
,

, 1 ,

( )ˆ ˆ ,
( ) ( ) 1+ = −

+

ϕ
α

ϕ ϕ

T
k HJB k

V k V k V T
k k

y e
W W

y y
,

, 1 ,

( )ˆ ˆ ,
( ) ( ) 1+

Δ
= −

Δ Δ +
σ

α
σ σ

T
I k k I k

I k I k I T
I k k I k k

y u e
W W

y u y u
, 1

, 1 ,

( )ˆ ˆ ,
( ) ( ) 1

+
+ = +

+⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

k k k ky y y yˆand= =�

,k ky y=� �
, 1 ,

ˆ ˆ ,I k I kW W+ =

, 1 ,
ˆ ˆ

u k u kW W+ =, 1 ,
ˆ ˆ ,V k V kW W+ =

, 0ET ke =

,
ˆ ( )T

k u k u ku W yσ= � ,
ˆ ( )T

k u k u ku W yσ=

 
Fig.  2. Flowchart for the proposed event-triggered system 

To start with, the system states, identifier states and the NN 
weights are initialized. Now, in the second step, the event-
trigger condition is evaluated using the following condition 

( ), ,ET k ET k kD e yσ≤ , (32) 

where 
22 2 2

, ,
ˆ(1 2 ) 4

uET k ET M u kK G C Wσσ = − Γ , (33) 

with 0 1ET< Γ < , MG is the upper bound for the control 
coefficient matrix function ( )kG y , 

u
Cσ is the Lipschitz 

constant for the actor NN activation function and 
0 1 2K< < is a constant satisfies the inequality 

2 2( ) ( )k k k kF y G y u K y∗+ ≤ . The dead-zone operator ( )D i  is 
defined as 

( ) ,
,

, ,

0, otherwise,

y
ET k k M

ET k

e y B
D e

⎧ >⎪= ⎨
⎪⎩

 (34) 

where y
MB  is the ultimate bound for the system output. If the 

condition is satisfied there will be no update of the control 
input and the NN weights. The system runs with the previously 
held updated control input.  
 On the other hand, once the event-trigger condition is 
violated, the last held system outputs and the control inputs are 
updated and fed back to the system. To update the NN weights 

in the next step both at the controller and trigger mechanism, 
the system output 1ky + is made available at the controller. 
Finally, the event-trigger error is reset to zero and time is 
incremented. Next the main result is presented. 

Theorem 2: Consider the nonlinear discrete-time system 
(3), the NN identifier (14), critic NN (21) and  actor NN (27).  
Let 0u be an initial stabilizing control policy for (3) and let the 
Assumptions 1 through 3 hold and the identifier, critic and 
actor NN weights, ,0

ˆ
IW , ,0

ˆ
VW  and ,0

ˆ
uW be initialized 

in n⊂ ℜD . Then, there exist positive constants Iα , Vα  and 

uα  such that the closed-loop event-triggered system output 
vector, ky , for any initial condition in the compact 
set n⊂ ℜD , the identifier, critic and actor NN weight 
estimation errors respectively, ,I kW� , ,V kW�  and ,u kW� , are 
uniformly ultimate bounded (UUB) provided the system 
outputs are sent to the controller and all the NN weights are 
updated using (17), (24) and (31) respectively through the 
violation of the event-trigger condition (32). Further, 

* ˆ
VV V b− ≤ and actual control input is bounded close to 

optimal control input such that *
uu u b− ≤  with 

, ,2
VV M V M M v MWb b W= + +� ϕ ϕ ε and , , , ,3 2

uu u M u M u M u MWb b Wσ σ ε= + +�  

are small positive constants with  
VWb �  and 

uWb � respectively are 

the ultimate bounds for ,V kW� and ,u kW�  when the design 
parameters are selected as  

2 2 2
,m , m

2 2 2 2 2 1 2
, , , max

( 1)
0 1

8(2 1) ( )( 1)
V u u M V

u
I M u M M I M MW R

α σ σ ϕ
α

σ ϕ σ λ ϕ−

+ Δ Γ
< ≤ <

+ ∇ Δ +
,

10
2Iα< < , and ( )2 20 3 1 2V m mα ϕ ϕ< < Δ + Δ . 

Remark 3: The event-trigger condition (32) is designed 
using the Lyapunov direct method such that all the closed-
loop system parameters are UUB which is stated in the 
Theorem 2. Further, the dead zone operator (34) used with the 
event-trigger condition stops the unnecessary triggering once 
the system output is in the ultimate bound y

MB .  
Remark 4: It is important to notice from (2) that the system 

output is a constant multiplier of the system state.  Hence, the 
system state also remains UUB by Theorem 2. 

IV. SIMULATION RESULTS 
In this section, a practical two-link robot has been considered 
for simulation. The dynamics of the two-link robot is given 
as 1 ( ) ( )k k k kx f x g x u+ = + , k ky Cx=  with internal 
dynamics ( )kf x and control coefficient matrix ( )kg x are given 
as in [11]. The output coefficient matrix is selected 
as [ ]0 1 0 0.2; 1 0 0 0.2; 0 1 0.1 0; 0 0 1 0.1C = . The value 
function is selected in quadratic form as ( ) T

k k y kQ y y Q y=  with 

4 40.001*yQ I ×=  and 2 20.001*R I ×=  with I  is the identity 
matrix.  Three dynamic feed-forward NNs are used with 
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online learning and no offline training is required. The 
activation function for identifier and the actor NN are chosen 
as ( )tanh i and for the critic network ( ) 2 2

1, 2,[ ;k ky y yϕ =  
4 4 3 2
1, 2, 1, 2, 1, 2, 3

2 2
3, 4, , 1, ,1 2, ; ; ;; ; ; ; ; ;k k k k k kk k k k kk y y y y y y yy y y yy "" " "

2, 3, 4, ]k k ky y y . The number of neurons for the identifier is 79, 
and for critic and actor NN are 39 each. The learning rates for 
the NN tuning are selected as 0.095Iα = , 0.05Vα = , 0.005uα =  
and 0.99ETΓ = . The ultimate bound selected for the system 
output is 0.001.  

The performances of the event-triggered optimal control 
are shown in Fig. 3 to Fig. 5.  Convergence of the system state 
and control input are shown in Fig. 3 (a) and (b) respectively. 
The cumulative number of triggered events for a simulation 
interval of 30 sec with a sampling of 0.001 sec is shown in 
Fig. 3(c). From the plot, the number of events with the 
proposed scheme is around 3501 (out of 30000 sampling 
instants). The total number of additions/subtractions and 
multiplications for the traditional discrete-time is 930,000 
whereas for the proposed scheme is 252,072. This implies a 
reduction in computational load of the event-triggered system 
of 73% when compared to a traditional discrete time system. 
The plot in Fig. 3 (d) show inter- event time. 
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Fig. 3. Convergence of (a) system states, and (b) optimal control input. (c) 
cumulative number of triggered events, and (d) inter-event time. 
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Fig. 4. (a) Triggering threshold with event-trigger error; (b) Temporal 
difference error. 

Fig. 4 (a) shows the evolution of the event threshold (red) 
over time along with the event-trigger error (blue). From Fig. 
4 (a) it is evident that once the event-trigger error reaches the 
threshold an event is triggered and the error reset to zero. This 

ensures the stability of the closed-loop system. Further, the 
convergence of the TD error is plotted in Figure 4(b) 
confirming the optimality is achieved. The boundedness of 
actual NN weights is shown in Fig.  5. 
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Fig. 5.  Convergence of NN weights. 

V. CONCLUSION 
In this paper, a near optimal event-triggered control of an 

uncertain nonlinear discrete-time system in affine form is 
introduced. An actor-critic frame work is presented to solve the 
optimal control problem with event-based availability of the 
system output at the controller. The novel event-trigger 
condition generated required number of events at the initial 
learning phase to achieve a small error in approximation and 
subsequently saved the computation by fewer updates in the 
control law.  The near optimality is achieved with complete 
unknown system dynamics. The effectiveness of the controller 
is validated by using simulation studies. 
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