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Abstract—Analysis of electroencephalography (EEG) energy
is a useful technique in the brain signal processing. In this
paper, we present a novel data analysis method based on
a dynamic multivariate empirical mode decomposition (D-
MEMD) algorithm to analyze EEG energy of three different
conscious states such as normal awake, comatose and brain
death. By using D-MEMD, we can not only denoise the original
EEG data but also calculate the EEG energy of subjects in a
dynamic time series. Moreover, from the result, we distinguish
three consciousness levels. The results of healthy subject in
normal awake, comatose patient and brain death will be
shown. The analyzed results illustrate the effectiveness and
performance of the proposed method in calculation of EEG
energy for evaluating consciousness level.

I. INTRODUCTION

Electroencephalography (EEG) is a recording of voltage

fluctuations resulting from ionic current flows within the

neurons of the brain and refers to the recording of the brain’s

spontaneous electrical activity over a short period of time.

The healthy subject in normal awake has high brain activity.

The patient in brain death state has no normal brain cells, so

that their brain activity is extremely low. There are two types

of patients in comatose patients, brain damage patients and

no-brain-damage patients. Brain damage patients’ brain cells

have been destructed and their brain activity is low. However,

no-brain-damage patients’ brain cells are not destructed that

their brain activity is as active as healthy subject [1].

For evaluating consciousness level, EEG energy analysis is

used to calculate the brain activity [1]. The EEG energy anal-

ysis is important and useful in the brain signal processing. In

the previous work[2], we have defined the EEG energy using

the power spectrum within the frequency band multiplied

by recorded EEG time. Several data-driven signal processing

methods such as empirical mode decomposition (EMD) [3]

and multivariate empirical mode decomposition (MEMD) [4]

have been used for EEG to evaluate the brain activity [2]. In

the previous study, we have proposed MEMD to calculate the

energy of EEG of randomly chosen interval of one second.

[1]. However, by using MEMD, it is difficult to observe EEG

energy variation of subjects.

In this paper, we propose an adaptive algorithm for MEMD

called dynamic MEMD (D-MEMD) to calculate and evaluate

the energy of EEG recorded from the healthy subjects,

comatose patients and brain deaths and observe the state

changes of patients’ consciousness. By using D-MEMD,

we can not only denoise the original EEG data but also

calculate the EEG energy of subjects with the time series.

In addition to this, we observe EEG energy variation of

subjects to increase the reliability and show three examples

of healthy subject in normal awake, comatose patient and

brain death. The analyzed results illustrate the effectiveness

and performance of the proposed method in calculation of

EEG energy for evaluating consciousness level.

II. METHODS OF DATA ANALYSIS

A. EMD and MEMD Algorithms

EMD decomposes the original signal into a finite set of

amplitude- and/or frequency-modulated components, termed

intrinsic mode functions (IMFs), which represent its inherent

oscillatory modes [3]. More specifically, for a real-valued

signal x(t), the standard EMD finds a set of K IMFs

{ck(t)}
K
k=1

, and a monotonic residue signal r(t), so that

x(t) =

K
∑

k=1

ck(t) + r(t). (1)

IMFs ck(t) are defined so as to have symmetric upper and
lower envelopes, with the number of zero crossings and the

number of extrema differing at most by one. The process to

obtain the IMFs is called sifting algorithm. Moreover, the

first complex extension of EMD was proposed in [5]. An

extension of EMD to analyze complex/bivariate data which

operates fully in the complex domain was first proposed in

[6], termed rotation-invariant EMD (RI-EMD).

For multivariate signals, the local maxima and minima

may not be defined directly because the fields of complex

numbers and quaternions are not ordered [7]. Moreover,

the notion of ‘oscillatory modes’ defining an IMF is rather

confusing for multivariate signals. To deal with these prob-

lems, the multiple real-valued projections of the signal was

proposed in [4]. The extrema of such projected signals

are then interpolated componentwise to yield the desired

multidimensional envelopes of the signal. In MEMD, we

choose a suitable set of direction vectors in n-dimensional
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spaces by using: (i) uniform angular coordinates and (ii) low-

discrepancy pointsets. The multivariate extension of EMD

suitable for operating on general nonlinear and non-stationary

n-variate time series is summarized in the following.

1) Choose a suitable pointset for sampling on an (n− 1)
sphere.

2) Calculate a projection, denoted by {pθk(t)}Tt=1
, of the

input signal {v(t)}Tt=1
along the direction vector xθk ,

for all k (the whole set of direction vectors), giving

{pθk(t)}Kk=1
as the set of projections.

3) Find the time instants {tθki } corresponding to the

maxima of the set of projected signals {pθk(t)}Kk=1
.

4) Interpolate [tθki ,v(tθki )] to obtain multivariate envelope
curves {eθk(t)}Kk=1

.

5) For a set of K direction vectors, the mean m(t) of the
envelope curves is calculated as

m(t) =
1

K

K
∑

k=1

e
θk(t). (2)

6) Extract the ‘detail’ d(t) using d(t) = x(t) − m(t).
If the ‘detail’ d(t) fulfills the stoppage criterion for a

multivariate IMF, apply the above procedure to x(t)−
d(t), otherwise apply it to d(t).

The stoppage criterion for multivariate IMFs is similar

to the standard one in EMD, which requires IMFs to be

designed in such a way that the number of extrema and

the zero crossings differ at most by one for S consecutive

iterations of the sifting algorithm. The optimal empirical

value of S has been observed to be in the range of 2–3

[8].

B. D-MEMD Algorithm

The D-MEMD is an adaptive algorithm of the MEMD.

We have defined the EEG energy using the power spectrum

within the frequency band multiplied by recorded EEG time

[2]. To observe EEG energy variation of subjects, we extend

MEMD in the temporal domain along time-coordinate of

EEG signal. Supposing a multivariate EEG data series v(t)
consisting of N segments (epochs) {vn(t)}

N
n=1

, the MEMD

can be carried out through each segment.

The Dynamic MEMD is defined as the MEMD applied to

all segments such that

v(t) = [v1(t), . . . ,vN (t)]

=

[

K1
∑

k=1

ck,1(t) + r1(t), . . . ,

KN
∑

k=1

ck,n(t) + rN (t)

]

(3)

where rN (t) are residue signals and {ck,n(t)}
Kn

k=1
are IMF

components with Kn (n = 1, . . . , N ) being the number of

IMFs for the segmented nth signal vn(t).
Consequently, in our experiment, we remove the residue

signal rN (t) and Q IMFs from {ck,n(t)}
Kn

k=1
which is not

expected, and combine the (N−Q) IMFs to be the denoised

signal. We have defined the EEG energy using the power

spectrum within the frequency band multiplied by recorded

EEG time. Thus we change the denoised signal from time
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Fig. 1. Results for a static EEG energy analysis using MEMD.

domain to frequency domain by Fast Fourier Transformation

and integrate it to compute the EEG energy.

III. EXPERIMENTS AND RESULTS

A. EEG Experiment

A portable EEG system (NEUROSCAN ESI) was used to

record the healthy subject’s brain activity in normal awake. In

the EEG recording, only nine electrodes are chosen to apply

to subject. Among these electrodes, six exploring electrodes

(Fp1, Fp2, F3, F4, F7 and F8) as well as GND were placed

on the forehead, and two electrodes (A1, A2) as the reference

were placed on the earlobes based on the standardized 10-

20 system. The sampling rate of EEG was 1000 Hz and the

resistances of the electrodes were set to less than 10 kΩ.
The comatose patients and brain deaths’ EEG preliminary

examination was carried out in a hospital in Shanghai.

With the permission of the patients’ families, a total of 35

comatose and quasi brain death patients with the age ranging

from 18 to 85 years had been examined by using EEG from

June 2004 to March 2006. In this paper, we present the

experimental results for 21 comatose patients, 15 quasi brain

deaths and 8 healthy subjects in normal awake.

We have defined the EEG energy using the power spectrum

within the frequency band multiplied by recorded EEG time.

This definition can be also used to calculate the other signals

energy generated by artificial data. Using the formula of

energy, we can calculate and evaluate the energy of healthy

subjects, comatose patients and brain deaths.

B. Result for a Subject Using MEMD

In the previous study, we have defined the EEG energy

using the power spectrum within the frequency band multi-

plied by recorded EEG time. Here we give an example of a
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(a) EEG energy variation of a healthy subject.
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(b) EEG energy variation of a comatose patient.
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(c) EEG energy variation of a brain death.

Fig. 2. Results for a dynamic EEG energy analysis using D-MEMD.

subject using MEMD to calculate a static EEG energy. This

subject’s EEG recording last over 500 seconds.

As shown in Fig. 1, the decomposing condition of channel

Fp1, Fp2, F3, F4, F7 and F8 expressed as X1, X2, X3,

X4, X5 and X6 in the time range one second is selected

randomly. By applying the MEMD method described in

Section II-A, we obtain 7 IMF components (C1 to C7)

within different frequency from high to low. Since the IMF

components C1 to C2 that with high frequency scales refer

to electrical interference or other noise from environment

that contains in the recorded EEG. The residual component

r is not the typical useful components considered, either.

The desired components from C3 to C7 are combined to

form the denoised EEG signal, and changed into frequency
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Fig. 3. Comparison of dynamic EEG energy for a healthy subject, comatose
patient and brain death.

domain by fast Fourier transform (FFT) (Fig. 1). And then

we integrate the denoised signal and calculate the energy

of EEG data. The average energy of every channels of this

second is 6.05×104.

C. Result for Healthy Subject, Comatose Patient and Brain

Death Using D-MEMD

Furthermore, let us show dynamic EEG energy of healthy

subject, comatose patient and brain death by using D-

MEMD. By applying the D-MEMD method described in

the Section II-B, with the change of time, the number of

IMF components will change in theory. In our experiments,

5 lower frequency IMF components are combined to form

the denoised EEG signal. Therefore, the number of IMF

components change will not affect the result of experiments.

The example for healthy subject’s EEG examination was

performed in August 2013. The EEG recording last over

500 seconds. By applying D-MEMD algorithms described

in Section II-B, we obtain EEG energy variation of healthy

subject (Fig. 2-a) in 60 seconds. EEG energy of each channel

are between 1.43×104 and 8.65×104.
The comatose case is concerned with a male patient. The

EEG recording lasted 380 seconds. By the same way of

healthy subject to analysis the EEG data of this patient by

D-MEMD, we obtain the EEG energy variation of comatose

patient in 60 seconds (Fig. 2-b). This patient’s EEG energy

of each channel is between 1.05×104 to 4.2×104 (Fig. 2-b)

that reflects a high intensity of brain activity.

With the same analysis for brain death, we still analyzed

60 seconds EEG data by using D-MEMD as an example. Fig.

2-c shows each channel’s EEG energy. This patient’s max-

imum value of 6 channels’ EEG energy is only 7.03×103,
the value is extremely low. The analysis result indicate that

this patient’ physiological brain activity is extremely low.

D. Comparison of EEG Energy for Healthy Subject, Co-

matose Patient and Brain death

Fig. 5 shows the Comparison of total EEG energy for

healthy subject, comatose and brain death by simple moving

average for 3 seconds. First, we averaged each channel’s

EEG energy of these 3 subjects. Moreover, by using simple

moving average, we averaged 3 seconds’ EEG energy of each

3249



!

!"#

$

$"#

%

%"#

&

&"#

'

'"#

#
()$!

'

)

)

*+,-./0)/12,3

452,.56+

78,93):+,./

!"##!$##!%#!&#!'#!(##!)##!*#+"#+$#+%##+&##+'#+(###+)#+*#+,#+"-+""+"$+"%+"&+"'+"(+")+"*+",+$-+$"."#.$##.%##.&##.'#.(#.)##.*#.,."-.""."$."%."&."'

patient

Brain deaths

Healthy subjects

Comatose patients

Fig. 4. The EEG energy of 8 healthy subject, 21 comatose patients and 15 brain deaths.

kind of subject to compare the value of EEG energy. Com-

paring the value of them, we obtain that healthy subject’s

maximum EEG energy is 4.35×104, and the minimum is

2.3×104. Contrary to healthy subject’s EEG energy, brain

deaths reflected no EEG energy over 4.1×103. Comatose
patient’s EEG energy is between 1.71×104 and 2.3×105. In
brief, EEG energy of healthy subject is almost higher than

comatose patient, and EEG energy of comatose patient is

higher than brain death. The results illustrated the effective-

ness and performance of D-MEMD in calculation of EEG

energy for evaluating consciousness level.

Furthermore, we analyze 8 healthy subjects, 21 comatose

patients and 15 brain deaths’ EEG data with 5 seconds by

using D-MEMD and obtain the average value of 5 seconds’

EEG energy. The EEG energy of all subjects is shown in Fig.

6. The EEG energy of healthy subject is between 2.51×104

and 4.78×105, the EEG energy of comatose is between

1.20×104 and 4.81×105, the EEG energy of brain death is

under 1.00×104. From the result, the EEG energy of healthy

subject and comatose patients is higher than brain death.

However we find the brain activity of comatose patients

whose EEG energy is close to the brain deaths’ are not high.

We speculate that they are brain damage. However another

part of comatose patients’ EEG energy is close to, even more

than the healthy subject’s. These patients still have high brain

activity.

IV. CONCLUSIONS

In this paper, we focus on a novel data analysis method

based on D-MEMD to calculate and evaluate the energy

of EEG recorded from the healthy subjects, comatose pa-

tients and brain deaths and observe the state changes of

patients’ consciousness. By using D-MEMD, we can not

only denoised the original EEG data but also calculate the

EEG energy of subjects with the time series. In addition

to this, we recorded EEG energy variation of subjects and

compared them. The result is that EEG energy of healthy

subjects is extremely high and show a high brain activity.

EEG energy of brain death is extremely low and demonstrate

that brain death has no brain activity. In comatose patients,

a part of patients’ EEG energy is close to the brain deaths’.

We speculate that they are brain damage. another part of

comatose patients’ EEG energy is close to, even more than

the healthy subjects’. They are no-brain-damage and still

have high brain activity. The analyzed results illustrate the

effectiveness and performance of the proposed method in

calculation of EEG energy for evaluating consciousness level

and increase the reliability.
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