
NeuCube(ST) for Spatio-Temporal Data Predictive 
Modelling with a Case Study on Ecological Data 

 
Enmei Tu, Nikola Kasabov, Muhaini Othman, Yuxiao Li, Susan Worner, Jie Yang and Zhenghong Jia 

 
 

Abstract— Early event prediction challenges most of 
existing modeling methods especially when dealing with 
complex spatio-temporal data. In this paper we propose a 
new method for predictive data modelling based on a new 
development of the recently proposed NeuCube spiking 
neural network architecture, called here NeuCube(ST). The 
NeuCube uses a Spiking Neural Network reservoir (SNNr) 
and dynamic evolving Spiking Neuron Network (deSNN) 
classifier. NeuCube(ST) is an integrated environment 
including data conversion into spike trains, input variable 
mapping, unsupervised learning in the SNNr, supervised 
classification learning, activity visualization and network 
structure analysis. A case study on a real world ecological 
data set is presented to demonstrate the validity of the 
proposed method. 

Keywords—NeuCube architecture; early event prediction; 
spatio-temporal data; Ecological data processing 

I.  INTRODUCTION 
Early event prediction is very crucial when solving 

important ecological and social tasks described by 
temporal- or/and spatio-temporal data, such as pest 
population outbreak prevention, natural disaster warning 
and financial crisis prediction. The generic task is to 
predict early and accurately whether an event will occur in 
a future time based on already observed spatio-temporal 
data.  The time length of the training data (samples, 
collected in the past) and the test data (samples used for 
prediction) can be different as illustrated in Fig. 1. 

Predictive modeling of spatio-temporal data (SSD) is a 
challenging task because it is difficult to model both time 
and space components of the data because of their close 
interaction and interrelationship. Traditional machine 

 

  

 

 
 
 

     
 
learning methods, such as support vector machine (SVM) 
and multi-layer perceptron (MLP), have limited success 
modeling such data. Firstly, traditional machine learning 
methods are suitable for classifying vector based and 
static types of data but not spatio-temporal data [1]. 
Secondly, most of them use global modeling techniques 
where a model is derived from all available data that 
covers the whole problem space and is represented as a 
single function. This function is then applied to new 
samples anytime and anywhere regardless of possible 
contradictory personalized features, thus causing 
inaccurate decisions. Even though personalized modeling 
techniques such as k nearest neighbors (kNN), weighted k 
nearest neighbors (wkNN) [2] and weighted distance, 
weighted variables  k nearest neighbors  (wwkNN) [3] 
could overcome the drawbacks of global modeling, they 
are still only suitable for vector based classification and 
static types of data. Thirdly, traditional methods demand 
the training samples and testing samples to have same 
length of input features. For early event prediction, a pre-
processing technique has to be applied in order to keep all 
features the same length, but this pre-processing will 
either cause information loss (by cutting longer features to 
be short) or introduce residual false information (by 
padding shorter features to be long). 

In this paper we introduce a new method for predictive 
modeling based on spatio-temporal data using spiking 
neural networks. Our method can work on both even-
feature-length data sets and uneven-feature-length data 
sets. The proposed method first maps the input features 
onto the neuron firing state space and the firing state 
vectors of each sample are fed to a spike neuron network 
classifier. The potential benefits of the proposed modeling 
method are: (1) in the proposed modeling method, the 
feature length (no the sample number) of training samples 
can be different from that of testing samples. This is rather 
common in applications of early event prediction, because 
training samples are usually collected in the past, and thus 
they have been fully observed; but predicting samples are 
only partially observed and the feature length increases 
along with time. This enables our modeling method to 
make earlier prediction, not having to wait for the whole 
predicting sample to be observed; (2) by introducing a 
general mapping strategy which maps the similar features 
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Fig. 1. A spatio-temporal data model used for early event prediction
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onto nearby neurons, the modeling method can work on 
any spatio-temporal data. Meanwhile, by doing so, the 
model not only can capture the signal changes with time, 
but also can take the correlations (hence the potential 
interactions) between features into consideration; (3) the 
modeling method provides an intuitive way to visualize 
the inside activities of model during training and 
predicting stages. This facilitates user to have a better 
understanding of the model and the data being processed. 
A case study on a real world ecological data set is 
presented to demonstrate the validity of the proposed 
method. 

II. NEUCUBE(ST)  FOR SPATIO-TEMPORAL DATA 
PREDICTIVE MODELING  

To capture the time and space characteristics of  
spatio-temporal brain data in a spiking neural network  
(SNN) architecture, NeuCube was proposed and 
experimented in [1, 4]. The main parts of NeuCube are a 
three-dimension spiking neural network reservoir (SNNr) 
and an evolving SNN classifier. In this paper we extend 
the NeuCube architecture with some new features that 
make it usable not only for brain data, but for any spatio-
temporal data of any type. A block diagram of the 
architecture is shown in Fig. 2. It contains three parts: an 
input encoding module, a three-dimension SNNr and an 
output dynamic evolving spike neural network (deSNN) 
classifier [4]. The size of the SNNr is controlled by three 
parameters: ,x yn n and zn , representing the neuron 
numbers along x, y and z direction. And the total neuron 
number in the reservoir is x y zN n n n= × × . We call our 
computing model NeuCube(ST), where ST stands for 
Spatio-Temporal. 

 
 
 
 
 
 
 
 
 
 
 

A SNNr of 1000 (10 x 10 x 10) neurons is shown in 
Fig. 3. The size of the SNNr can vary depending on the 
prediction task and the data.  

 
 

Fig. 3. A spiking neural network reservoir (SNNr) of 1000 neurons  
 

The NeuCube(ST) is trained in a two-stage learning 
process. The first stage is unsupervised learning that 
makes the SNNr learn spatio-temporal relations from the 
input data by adjusting the connection weights in SNNr. 
The second stage is supervised learning that aims at 
learning the class information associated with each 
training spatio-temporal sample. The modeling process 
contains five components: data encoding, reservoir 
initialization, unsupervised training of the reservoir, 
supervised training of the classifier and new sample 
testing.  

A.  Data Encoding 
In real world applications, spatio-temporal data are 

often collected in the form of real value sequences. Such 
sequences cannot be readily used by spiking neural 
networks. So first of all, we need to convert the 
continuous signal into discrete spike trains. We use the 
Address Event Representation (AER) encoding method to 
discretize the continuous signal. This encoding method 
was applied successfully for the artificial retina sensor [5]. 

Specifically, we perform a bi-direction thresholding to 
the signal gradient with respect to time, d/dt. The 
threshold is self-adaptive and is determined in the 
following way: for a signal f(t), we calculate the mean m 
and standard deviation s of the gradient d/dt, then the 
threshold is set to m sα+ , where α is a parameter 
controlling the spiking rate after encoding. 

After this, we obtain a positive spike train which 
encodes the places of the increasing signal and a negative 
spike train which encodes the places of the decreasing 
signal.  

B. NeuCube(ST) Initialization 
We initialize the SNNr following the small world 

connection rule where: each neuron in the reservoir is 
connected to its nearby neurons which are within a 
distance d, where d is equal to the longest distance 
between any pair of neurons in the reservoir multiplied by 
a parameter r. The initial weights of the connections are 
set to the product of a random number within [-1, 1] and 
the inverse of the distance between them. We randomly 
select 80% of the connection weights to be positive and 
20% to be negative. 

 The connection weights between the input neurons 
and other neurons are doubled in order to emphasize these 
neurons’ significance in the reservoir.  

C. Training Stage I: Unsupervised Reservoir Training 
The unsupervised learning stage is intended to encode 

‘hidden’ spatio-temporal relationships from the input data 
into neuronal connection weights. According to Hebbian 
learning rule, if the interaction between two neurons is 
persistent, then the connection between them will be 
strengthened. Specifically, we train the reservoir using 
spike-timing dependent synaptic plasticity (STDP) 
learning rule [6]: if neuron j fires before neuron i, then the 
connection weight from neuron j to neuron i will increase 
and, on the other hand, the connection from neuron i to 
neuron j will decrease (Fig. 4). This ensures that the time 
difference in the input spiking trains, which encode the 
temporal patterns in the original input signals, will be 
captured by the neuron firing state and the unsymmetrical 
connection weights in the reservoir.  

A 
B 
C 
#   

Fig. 2. The architecture of NeuCube(ST). Spike trains (left) are fed to 
the SNNr and the neuron firing states vectors of this reservoir are 
used to train a deSNN classifier.  
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In the SNNr, when a neuron fires, it emits a spike and 
then its potential is reset to 0. Each neuron connecting to 
this firing neuron will receive a spike and its potential 
increases with respect to its connection weight to current 
firing neuron. The potential of each neuron has a small 
constant rate of leakage over the time unless it becomes 0. 
After learning, the connection weights in the reservoir 
encode temporal relationships from the input spatio-
temporal data.  

D. Training Stage II: Supervised Classifier Training 
The second training stage is to train the output 

classifier using class label information associated with the 
training samples. The dynamic evolving Spike Neural 
Networks (deSNN) [7, 8] is used here as an output 
classifier, because deSNN is computationally efficient and  
emphasizes the importance of the first spike, which has 
been observed in biological systems. For each training 
sample, we create an output neuron and connect it with 
each neuron in the reservoir. The initial connection 
weights are all zero. The connection weights are then 
established by the Rank-Order (RO) learning rule [9]. 
Specifically, the potential of neuron i at time t is 
computed using 

( )
,( , ) modorder j

j iP i t w=∑                      (1) 
where mod is a modulation factor; order(j) is the arriving 
order of the spikes to connection j, i, among all spikes 
from all connection to the neuron i. This learning rule 
endows a higher priority to the first spike coming to the 
output neuron. For the first spike in the reservoir excited 
by training sample k, the connection weights of 
corresponding output neuron are set by 

( )
, modorder j

j iw =                          (2) 
 After the first spikes, the connection weight is 

modified according to firing state of the corresponding 
neuron in the reservoir: if a neuron fires, it emits a spike 
to all output neurons that have a connection with it and, as 
a result, the connection weight between this neuron and 
the corresponding output neurons strengthens and the 
potentials of these output neuron increase; otherwise the 
connection weight weakens and the potential of the output 
neuron leaks as time elapses. When the potential of an 
output neuron exceeds a firing threshold, a spike is 
emitted by it. After training, the connection weights 
between the output neurons and the reservoir neurons 
encode both the spike order and the support neurons of 
each training sample. 

E. Testing with New Samples  
Once the NeuCube(ST) is trained, all connection 

weights in the reservoir and in the output classification 
layer are established. These connections and weights can 
change based on further training (adaptation), because the 

evolvable characteristic of the architecture.  For a given 
new sample without any class label information, the 
trained NeuCube(ST) can be used to predict its class label. 
For the deSNN classifier, there are two algorithms that 
can be used to determine the class label of the new sample 
[7, 8]: 

a) deSNNs: it creates an output neuron for the new test 
sample and after the connection synaptic weights of this 
neuron are calculated, it compares these weights with the 
synaptic weights of those training neurons that were 
established during the supervised training process; the 
new testing sample is labeled with the label of the existing 
neuron whose weight vector is closest to that of the new 
neuron, created for the new  sample. 

b) deSNNm:  it does not create any new output 
neuron. The new sample is fed to NeuCube(ST) and its class 
label is set to be same as the training sample whose 
corresponding output neuron fires first. 

III. INPUT VARIABLE MAPPING METHOD AND 
VISUALIZATION OF RESERVOIR ACTIVITY 

A.  Input variable mapping 
Given a particular spatio-temporal data set, it is 

important to know how to map the data into the reservoir. 
For some special data such as brain EEG data, there is 
prior information about the location of each signal 
channel being collected and this information can be 
readily utilized for mapping the signal channels into the 
reservoir [4]. But for much more common applications 
such as climate data and ecological data, we do not have 
such mapping. Here we introduce a new method to map 
the input variables into the reservoir.  

Suppose there are s samples in the data set and there 
are v variables for each sample and the observed time 
length of each variable is t. We first choose v input 
neurons from the SNNr. Then we map the variables into 
the computing SNNr following this principle: high 
correlated spike trains are mapped to nearby input 
neurons. Because high correlation indicates that the 
variables are likely to be more time dependent with each 
other, and this relationship should also be reflected in the 
reservoir. Spatially close neurons in the SNNr will capture 
in their connections more interactions between the input 
variables  mapped into these neurons.   

Specifically, we construct two weighted graphs: the 
input neuron distance graph (NDG) and the signal 
correlation graph (SCG). In NDG, the input neurons’ 
coordinate set, denoted by { }( , , z ) | 1..NDG i i iV x y i N= = , is 
the graph vertex set and the graph edges are determined in 
this way: each input neuron is connected to its k nearest 
input neurons and the edges are weighted by the inverse 
of the Euclidean distance between them. In SCG, we first 
use the Parzen window method to estimate the spike 
density function corresponding to each variable and then 
the graph vertex set, denoted by { }| 1..SCG iV f i N= = , is 
the spike density function. The graph edges are 
constructed in this way: each spike density function is 
connected to its k highest correlated neighbours and the 
edges are weighted by the statistical correlation between 
the spike density functions of the input variables. 

Fig. 4. STDP learning rule [6]. Left: the connection weight changes as 
a function of firing time difference between two connected neurons. 
Right: neuron j fires before neuron i fires, so connection from j to 
neuron i increase while connection from i to j decrease. 

j i 
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We adopt the graph matching technique, which is a 
powerful tool to solve mapping problems and has been 
widely used in computer vision and pattern recognition, to 
determine good mapping between any two weighted 
graphs under the mapping rule. In our case, the two 
graphs are NDG and SCG. For these two graphs, we can 
compute their adjacency matrices, written as nA  and sA . 
The graph matching method is aimed to find out a 
permutation matrix P that minimizes the following 
objective function: 

2min || ||T
n s FP

A PA P−                    (3) 

where || ||Fi  denotes the Frobenius matrix norm. Exactly 
solving this problem is known to be NP hard due to its 0-1 
combinatorial optimization property. Many algorithms 
have been proposed to find an approximated solution. 
Among these algorithms the Factor Graph Matching 
(FGM) algorithm [10] has been demonstrated to produce 
state-or-art results. So here we utilize the FGM algorithm 
to solve problem (3) with the following settings: suppose 
in NDG the sum of graph edge weights of an vertex, say 
vertex NDG NDGi V∈ , to all other vertices is ( )NDGd i , and, 
similarly, in SCG the sum of graph edge weights of vertex 

SCG SCGi V∈  to all other vertices is ( )SCGc i , then the 
difference between ( )NDGd i and ( )SCGc i reflects the 
similarity of the positions in this graph. So we compute 
the similarity of the two vertices by using the formula: 

 
( )2 2exp | ( ) ( ) | 2 ; , 1...NDG SCG n NDG SCGd i c i i i vσ− − =        (4) 

 
For the graph edge similarity, we use the formula:  

   ( )2 2exp | | 2 ;NDG SCG
ij kl ea a σ− −  , , , 1...i j k l v=            (5) 

 
where: ,NDG SCG

ij kla a are graph edge weights in NDG and 
SCG, respectively; nσ  and eσ  are two parameters to 
control the affinity between neurons and edges, 
respectively.  

 
Fig. 5 shows the matching result. The left graph is the 

input NDG and the right graph is SCG. We can see that 
after matching, highly correlated features are mapped to 
nearby input neurons. 

 
Fig. 5. An input mapping result obtained by the proposed method in the 
paper using graph matching technique. 

B. NeuCube(ST) visualization 
Visualization of the neuron activities, the connection 

weight changes and the structure of the SNNr are 

important for understanding the data and processes that 
generated it. In NeuCube(ST) we can visualise at each 
moment the spiking state of the neurons in the SNNr and 
their connection adjustment. Fig. 6 shows snapshots of the 
instantaneous neuron spiking state, the connections 
between neurons and the weight adjustment during a 
SNNr training. This is very different from traditional 
methods such SVM which have been used for same tasks 
but without offering facilities to trace the learning 
processes for the sake of data understanding.  

 
(a) 

 
(b) 

        
(c) 

 

 
 
 

After it is trained, the SNNr has captured spatial and 
temporal relationships from the data. We use the 
information spreading algorithm [11], which has been 
demonstrated to be powerful for analysis of dynamic 
activity spreading (here spike spreading) in networks [12], 

Fig. 6.  Snapshots from a dynamic visualisation of a SNNr: (a) 
Neuron spiking state; (b) Connections with weights larger than 0.08; 
(c) Connection weight changes. Left: the whole weight matrix; right: 
magnified illustration of the indicated small region (black indicates 
decreasing and grey indicate increasing). 
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to analyze network structure and to explore the relation 
between the learnt structure and the data set used for 
training. Further analysis will be presented in the 
experimental section. 

IV. CASE STUDY OF APHIDS POPULATION PREDICTION 
The NeuCube(ST) environment  described above is 

illustrated here on a case study involving predictive 
modelling in ecology. Specifically, a model is created to 
predict aphid abundances in autumn in a geographical 
location over 11 years.   

As major pests, some species of aphids can pose 
significant damage to autumn agricultural produce 
particularly wheat crops. Thus, the prediction of a 
possible abundance of aphids in the autumn seasons 
becomes important for growers to manage these pests.  
The numbers of a particular species of aphids (in this 
study Rophalosiphum padi) in autumn are considered to 
be correlated with environmental conditions and the 
numbers of aphids in previous spring [13]. The raw data 
which will be used in the prediction study includes two 
sets of temporal data. One set is weekly aphid trap catches 
recorded by Crop & Food Research, Lincoln, Canterbury, 
New Zealand. The other is made of weekly records for 
weather variables at the Canterbury Agricultural research 
centre, Lincoln, New Zealand.  

The weather variables include: 1) average rain fall 
(mm); 2) cumulative weekly rainfall (mm); 3) maximum 
air temperature (°C); 4) minimum air temperature (°C); 5) 
mean air temperature (°C); 6) cumulative degree days for 
the week (°C); 7) grass temperature (°C); 8) soil 
temperature at 100 cm below ground (°C); 9) Penman 
potential evaporation (mm); 10) vapour pressure (hPa); 
11) potential deficit of rainfall (i.e. accumulated excess of 
Penman over rainfall); 12), solar radiation (MJ/m2); and 
13) wind run (km/day).  

Some pre-processing was applied to the raw dataset 
used in this experiment. Firstly, following[14], some 
errors in the original data records are addressed, such as 
the negative records for solar radiations. Secondly, the 
pre-processing is carried out to take into consideration the 
relevant results from previous research on aphid 
prediction. Specifically, for each of the 13 environmental 
variables, six derived variables were calculated. 
According to [13], during the flight period for each year, 
the number of aphids caught in a week was correlated 
with the mean value of each weather variables over the 
previous N week, N can be from 1 week to a maximum of 
10 weeks. In this study, for each environmental variable, 
four variables were generated for the averages of previous 
1, 2, 3, and 4 weeks. Further, according to [15], it also 
appears that the numbers of aphids caught in the suction 
trap (A suction trap is an apparatus  catching aphids 
automatically when they fly into it) are closely related to 
the changes of some weather variables, rather than the 
exact measurements in the corresponding weeks, thus, two 
other variables, the first order derivative and second order 
derivative are also generated. Among these variables, 14 
of them are selected for the current study, based on two 
rules. Rule 1, for each original weather variable, either the 
original variable itself, or one of the six generated 
variables should be selected. Thus, the attribute dimension 
which is represented by them can be kept in the following 
study. Rule 2, to select a variable from either the original 

variable or its six derived variables, the one with the 
maximum correlation co-efficient with aphid counts will 
be chosen. Thus, for the following analysis, there are total 
of fourteen variables: 1) average rainfall (AR, mm); 2) 
cumulative rainfall, the average of 4 weeks (CR, mm); 3) 
cumulative degree days (DCT, °C); 4) grass temperature, 
average of four weeks (GT, °C); 5) maximum air 
temperature (MaxT, °C); 6) mean air temperature (MeanT, 
°C); 7) minimum air temperature, average of two weeks 
(MinT, °C); 8) Penman potential evaporation (PPE, mm); 
9) potential deficit of rainfall (PDR), first order derivative; 
10) soil temperature (ST, °C); 11) solar radiation (SR, 
MG/m2); 12) vapour  pressure, average of five weeks 
(VP, hPa); 13) wind run (WR4), average of four weeks 
(km/day); 14) wind run (WR5), average of five weeks 
(km/day). 

Thirdly, the pre-processing needs to coordinate the 
data with the experimental design (which will be 
discussed in detail in below). Instead of predicting weekly 
aphid counts as in previous studies on the aphid data set 
[13-15], the research here will predict the pattern of 
aphids number over the autumn season as a whole. While 
the time period covered by the original data is from week 
27 of 1981 to week 50 of 2000, the whole time series will 
be parsed into yearly based periods. Each of the time 
periods will start from week 31 to week 30 the following 
year. Each of the time segments will be treated as an 
individual case. For such cases, the associations of spring 
aphid patterns, the following autumn patterns, and the 
weather variables for the corresponding periods were the 
focus.  

Based on the examination of the aphid patterns for 
these time segments, data from 11 years were selected.  
These 11 years have their spring aphid spikes happening 
around week 46 of the Julian year. The autumn aphid 
patterns of these 11 years can be classified into two 
categories based on the original raw data - the high aphid 
pattern (class 1) or low aphid pattern (class 2) in autumn. 
The autumn patterns of aphids of these 11 years will be 
learnt by the NeuCube(ST). For any future year, when the 
spring aphid population peaks at about week 46, the 
potential autumn aphid pattern in the following year can 
be predicted. 

V. EXPERIMENTAL DESIGN AND RESULT 

A.  Design of Experiment 
We conduct three experiments on this real world aphid 

data set to show the validity of the NeuCube(ST) 
architecture and how soon before the event our model can 
achieve a good prediction.  

In the first experiment, we aimed to show the 
predictive ability of NeuCube(ST) for full time length 
variables. We use the whole time available, i.e. 52 weeks, 
for both training and testing under the assumption that a 
perfect weather forecast for the autumn season can be 
obtained which is an ideal case, but not a realistic one. In 
the following experiments two and three, we aimed to 
show the predictive ability of NeuCube(ST) and how early 
the model can predict the autumn pattern. In these two 
experiments, we trained NeuCube(ST) using 100% of the 
time length samples, but only 80% and 75% of the time 
length to predict the aphid population pattern in the last 
25% time period, as illustrated in Fig. 7. The white bars 
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represent training data length and the grey bars validation 
data length. 

 
 

 
 
 

 
 

 
 
 
 
 

 
 
 
 

 
In all these experiments, the size of the SNNr is 2000 

neurons (5x20x20). It is trained and tested in a leave-one-
out cross validation mode. This is based on the 
assumption that the climate change trend during these 11 
years can be ignored and the weather variables are 
independent between different years. 

B.  Experimental Result 
Fig. 8 shows the input variable mapping result on the 

minimal x coordinate face of the cubic reservoir. Note the 
two main groups of weather variables, in other words, 
temperature (MaxT, minT, MeanT, DCT, GT, ST) and 
rainfall (AR, CR, PDR), are mapped to nearby neurons. 
The solar radiation (SR) is mapped in the middle of 
temperature variables because temperature is greatly 
determined by solar radiation. 
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Fig. 9 (a) shows the neuron connections with absolute 
weights larger than 0.07 after the reservoir is trained in 
one run. Fig. 9 (b) plots the total number of spikes each 
neuron emitted during the training process. 

In Fig. 9 (a) grey lines represent connections with 
positive weight and black lines represent connections with  
negative weights. The line thickness indicates the strength 
of the connection. The neurons are coloured to indicate 

their connection strength with other neurons in the 
reservoir. Brighter neurons have stronger connections 
with other neurons while darker neurons have weaker 
connection with others.  

From the visualisation, we can derive some 
conclusions achieve a better understanding of the data and 
the problem: 

a)  Connections between nearby input neurons are 
denser than the connections between far away input 
neurons. This indicates that there are more interactions 
between input variables mapped to closer neurons.  

b). Neurons in the middle of the reservoir are 
generally more active than those on the edges. This 
indicates that the neurons in the reservoir are not 
uniformly activated that reflects on the input data.  
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We can also analyze the SNNr structure in terms of 
information distribution and spread [12]. We first treat the 
input neurons as the information sources in the network 
and then use the spreading algorithm from [11] to 
determine neuron clusters belonging to each information 
source based on the spike transmission in the network. So 
the more spikes that are transmitted between two neurons, 
the tighter they will be connected with each other. After 
this we link a neuron to the one from which it receives 
most spikes. Fig. 10 (a) shows the network structure after 
unsupervised training. The big solid dots represent input 
neurons and other neurons are labeled in the same 
intensity as the input neuron from which it receives most 
spikes. The unconnected dots mean no spike arrived at 
that neuron. In Fig. 10 (b), the left pane is spike number 

Fig. 7. Experimental design. White bars represent the time length of 
training samples and the grey bars represent the time length of testing 
samples. 

Fig. 8. Input variable mapping result by graph matching 

Fig. 9. (a) Reservoir connections after training. The black are negative 
weight connections and the grey are positive weight connections; (b) 
the total spikes amount emitted by each neuron during training 
process. Negative stems mean negative spikes. 
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for each variable after encoding and the right pane is the 
neuron number belonging to each input variable cluster. 
From this figure we can see the consistency between the 
input signal spike train and the reservoir structure. It is 
worth noting that variable 11 (solar radiation) is 
emphasized in the reservoir that suggests a greater impact 
of the solar radiation on the aphid number. This was 
observed also in a previous study [13].  

10
15

20
25

30
35

40
45

50

20
40

60
80

100
120

140
160

180
200

20

40

60

80

100

120

140

160

180

200

X

PPE

AR

WR5

CR

GT

WR4

MinT

ST

VP

PDR

Y

MeanTDCT

SR

MaxT

Z

 
(a) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

10

20

30

40

50

60

70

80

90

100

Input variable

sp
ik

e 
nu

m
be

r

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

50

100

150

200

250

Input variable

ne
ur

on
 n

um
be

r

 
(b) 

Fig. 10 (a) The SNNr structure after unsupervised training; (b) Input 
spike number of each feature (left) and neuronal connections of each 
input neuron (right). 
 

The early event prediction accuracy on the aphid data 
set is shown in table I, where the middle row is the time 
length of test data used for the prediction.  

TABLE I  AUTUMN APHID PREDICTION ACCURACY (%) 

 Accuracy of each testing time length (weeks) 
  52  

(full) 
41.6     
(early)  

39 

Accuracy  100% 90.91% 81.82% 

 
In the third experiment, 75% of the temporal input 

data (39 weeks, out of total 52 weeks per year) is used  
comprising data from week 31 in the previous year to 
week 18 in following year, where week 18 is at the 
beginning of the autumn period. At this time of the year 
an accurate prediction of whether there will be a high 
aphid amount peaks in later weeks is very important for 
both ecology and agriculture, because early actions can be 
taken to prevent the spread of aphid population. For this 
time length, with 75% of time observed, our model can 
give 81.82% prediction accuracy. In the second 
experiment, 80% of time length (41.6 weeks of total 52 
weeks per year) is from week 31 in previous year to week 
20.6 in next year, where week 20.6 is at the head of the 
aphid flight period. At this time of the year, some first 

small aphid peaks have arrived. From this we can see that 
our model can make early decision before the peak 
appears. With 80% of data observed (early in the aphid 
flight period), we can have more than 90% confidence to 
make an early decision. Furthermore, as the time passes, if 
new data are collected, it can be added directly to the 
testing sample to give a better prediction, without re-
training the model using both old and new data as it would 
be the case with SVM or MLP methods. This is the 
essential difference between the new method and  
traditional methods such as SVM and MLP. 

VI. COMPARATIVE STUDY  
We conducted experiments to compare between 

traditional modeling methods and our new modeling 
method for early event prediction. We used multiple-
linear regression (MLR), support vector machine (SVM), 
multilayer perceptron (MLP), k nearest neighbors (kNN) 
and weighted k nearest neighbors (wkNN) as the baseline 
algorithms. We designed three experiments for these 
baseline algorithms, as illustrated in Fig. 11. Note that for 
these baseline algorithms, the time length of training 
samples and testing samples have to be the same as these 
methods cannot tolerate different lengths of feature 
vectors for training and recall.   

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Experiment design for baseline machine learning algorithms. 
White bars represent the time length of training samples and the grey 
bars represent the time length of testing samples. 

 
We prepared the data set in this way: for experiment 1, 

we concatenated the weather variables one after another to 
form a long feature vector for each sample, as shown in 
Fig. 12. For each weather variable, there are 52 data 
points in one year (one data point per week), so the length 
of final feature, counting 14 variables data, will be 578. 
For experiments 2 and 3, we removed the corresponding 
percentage of data points from each year’s data and then 
perform the same procedure as in experiment 1. 

 
 
 
 
 

 Fig. 12. Data set preparation for baseline algorithms. 
 

 We tune the parameters of the baseline algorithms in 
a grid search way and the final parameters are: a degree 2 
polynomial kernel for SVM; 30 hidden neurons and 500 
training cycles for MLP; k=5 for both kNN and wkNN. 
Experimental results are shown in table II.  
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TABLE II  PREDICTION ACCURACY OF APHID DATA SET (%) 

 Accuracy of each training and testing time 
length (weeks) 

 

 52 41.6 39  
MLR  36.36 64.63 72.73  
SVM  72.73 72.73 63.64  
MLP  81.82 81.82 81.82  
kNN  72.73 63.64 63.64  
wkNN  72.73 63.64 63.64  
Max  81.82 81.82 81.82  

 

Comparing table I and table II, we can see that 
NeuCube(ST) can perform better for early event 
prediction. A realistic early event prediction should be 
that as the time length of observed data increases, the 
prediction accuracy will also increase. But from table II 
we can see that as the time length of training data 
increase, traditional modeling methods do not necessarily 
produce better results (some even worsen), because they 
cannot model the whole spatio-temporal relationship in 
the prediction task. They can only model a certain time 
segment. Because NeuCube(ST) models the whole spatio-
temporal relationship in the data, even a small amount of 
input data can trigger spiking activities in the SNNr that 
will correspond to the learned full temporal patterns 
resulting in a better prediction when more temporal data 
entered. 

VII. CONCLUSION & FUTURE WORKS 
The research presents a further development of a SNN 

architecture NeuCube, initially created for modelling 
spatio-temporal brain data [9,16]. The new architecture– 
NeuCube(ST) is suitable to model any spatio-temporal data. 
A method to map input variables onto neurons from the 
SNNr is proposed here, so that similar input variables 
based on their temporal similarity are mapped onto 
spatially closer neurons. The closer the neurons in the 
SNNr are, the more temporal relationships they learn from 
data. This is illustrated with analysis of ecological data 
comprising aphid pest abundance prediction.   

Future work includes experiments on other ecological 
and environmental data collected in New Zealand, China 
and other countries related to a range of ecological and 
environmental event prediction, such as earthquakes, 
tsunami and volcanic activity.  
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