
NeuCube(ST) for Spatio-Temporal Data Predictive
Modelling with a Case Study on Ecological Data

Enmei Tu, Nikola Kasabov, Muhaini Othman, Yuxiao Li, Susan Worner, Jie Yang and Zhenghong Jia

Abstract— Early event prediction challenges most of
existing modeling methods especially when dealing with
complex spatio-temporal data. In this paper we propose a
new method for predictive data modelling based on a new
development of the recently proposed NeuCube spiking
neural network architecture, called here NeuCube(ST). The
NeuCube uses a Spiking Neural Network reservoir (SNNr)
and dynamic evolving Spiking Neuron Network (deSNN)
classifier. NeuCube(ST) is an integrated environment
including data conversion into spike trains, input variable
mapping, unsupervised learning in the SNNr, supervised
classification learning, activity visualization and network
structure analysis. A case study on a real world ecological
data set is presented to demonstrate the validity of the
proposed method.

Keywords—NeuCube architecture; early event prediction;
spatio-temporal data; Ecological data processing

I. INTRODUCTION
Early event prediction is very crucial when solving

important ecological and social tasks described by
temporal- or/and spatio-temporal data, such as pest
population outbreak prevention, natural disaster warning
and financial crisis prediction. The generic task is to
predict early and accurately whether an event will occur in
a future time based on already observed spatio-temporal
data. The time length of the training data (samples,
collected in the past) and the test data (samples used for
prediction) can be different as illustrated in Fig. 1.

Predictive modeling of spatio-temporal data (SSD) is a
challenging task because it is difficult to model both time
and space components of the data because of their close
interaction and interrelationship. Traditional machine

learning methods, such as support vector machine (SVM)
and multi-layer perceptron (MLP), have limited success
modeling such data. Firstly, traditional machine learning
methods are suitable for classifying vector based and
static types of data but not spatio-temporal data [1].
Secondly, most of them use global modeling techniques
where a model is derived from all available data that
covers the whole problem space and is represented as a
single function. This function is then applied to new
samples anytime and anywhere regardless of possible
contradictory personalized features, thus causing
inaccurate decisions. Even though personalized modeling
techniques such as k nearest neighbors (kNN), weighted k
nearest neighbors (wkNN) [2] and weighted distance,
weighted variables k nearest neighbors (wwkNN) [3]
could overcome the drawbacks of global modeling, they
are still only suitable for vector based classification and
static types of data. Thirdly, traditional methods demand
the training samples and testing samples to have same
length of input features. For early event prediction, a pre-
processing technique has to be applied in order to keep all
features the same length, but this pre-processing will
either cause information loss (by cutting longer features to
be short) or introduce residual false information (by
padding shorter features to be long).

In this paper we introduce a new method for predictive
modeling based on spatio-temporal data using spiking
neural networks. Our method can work on both even-
feature-length data sets and uneven-feature-length data
sets. The proposed method first maps the input features
onto the neuron firing state space and the firing state
vectors of each sample are fed to a spike neuron network
classifier. The potential benefits of the proposed modeling
method are: (1) in the proposed modeling method, the
feature length (no the sample number) of training samples
can be different from that of testing samples. This is rather
common in applications of early event prediction, because
training samples are usually collected in the past, and thus
they have been fully observed; but predicting samples are
only partially observed and the feature length increases
along with time. This enables our modeling method to
make earlier prediction, not having to wait for the whole
predicting sample to be observed; (2) by introducing a
general mapping strategy which maps the similar features

Enmei Tu and Jie Yang are with the Institute of Image Processing and
Pattern Recognition, Shanghai Jiao Tong University, Shanghai 200240,
China. (corresponding author to provide phone: 0086-021-34204033;
e-mail: jieyang@sjtu.edu.cn)
 Nikola Kasabov, Muhaini Othman and Yuxiao Li are with the
Knowledge Engineering and Discovery Research Institute, Auckland
University of Technology, Auckland 1010 New Zealand (e-mail:
nkasabov@aut.ac.nz, muothman@aut.ac.nz, dawnliwatts@gmail.com).

Muhaini Othman is with Universiti Tun Hussein Onn Malaysia (e-
mail: muothman@aut.ac.nz).

Susan Worner is with Bio-Protection Research Centre, Lincoln
University, Canterbury, New Zealand (e-mail: worner@lincoln.ac.nz)

Zhenghong Jia is with School of Information Science and
Engineering, Xinjiang University, Urumqi, 830046, China (e-mail:
jzhh@xju.edu.cn)

The work is sponsored by the Tripartite Collaboration Programme
between China (Shanghai Jiao Tong University and Xinjiang University)
and New Zealand (Auckland University of Technology) funded by both
Education NZ and the Chinese Ministry of Education. This work is partly
supported by NSFC China (No: 61273258) and Ph.D. Programs
Foundation of Ministry of Education of China (No.20120073110018).

Fig. 1. A spatio-temporal data model used for early event prediction

Training samples

Predict sample

Time

Variables

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 638

onto nearby neurons, the modeling method can work on
any spatio-temporal data. Meanwhile, by doing so, the
model not only can capture the signal changes with time,
but also can take the correlations (hence the potential
interactions) between features into consideration; (3) the
modeling method provides an intuitive way to visualize
the inside activities of model during training and
predicting stages. This facilitates user to have a better
understanding of the model and the data being processed.
A case study on a real world ecological data set is
presented to demonstrate the validity of the proposed
method.

II. NEUCUBE(ST) FOR SPATIO-TEMPORAL DATA
PREDICTIVE MODELING

To capture the time and space characteristics of
spatio-temporal brain data in a spiking neural network
(SNN) architecture, NeuCube was proposed and
experimented in [1, 4]. The main parts of NeuCube are a
three-dimension spiking neural network reservoir (SNNr)
and an evolving SNN classifier. In this paper we extend
the NeuCube architecture with some new features that
make it usable not only for brain data, but for any spatio-
temporal data of any type. A block diagram of the
architecture is shown in Fig. 2. It contains three parts: an
input encoding module, a three-dimension SNNr and an
output dynamic evolving spike neural network (deSNN)
classifier [4]. The size of the SNNr is controlled by three
parameters: ,x yn n and zn , representing the neuron
numbers along x, y and z direction. And the total neuron
number in the reservoir is x y zN n n n= × × . We call our
computing model NeuCube(ST), where ST stands for
Spatio-Temporal.

A SNNr of 1000 (10 x 10 x 10) neurons is shown in
Fig. 3. The size of the SNNr can vary depending on the
prediction task and the data.

Fig. 3. A spiking neural network reservoir (SNNr) of 1000 neurons

The NeuCube(ST) is trained in a two-stage learning
process. The first stage is unsupervised learning that
makes the SNNr learn spatio-temporal relations from the
input data by adjusting the connection weights in SNNr.
The second stage is supervised learning that aims at
learning the class information associated with each
training spatio-temporal sample. The modeling process
contains five components: data encoding, reservoir
initialization, unsupervised training of the reservoir,
supervised training of the classifier and new sample
testing.

A. Data Encoding
In real world applications, spatio-temporal data are

often collected in the form of real value sequences. Such
sequences cannot be readily used by spiking neural
networks. So first of all, we need to convert the
continuous signal into discrete spike trains. We use the
Address Event Representation (AER) encoding method to
discretize the continuous signal. This encoding method
was applied successfully for the artificial retina sensor [5].

Specifically, we perform a bi-direction thresholding to
the signal gradient with respect to time, d/dt. The
threshold is self-adaptive and is determined in the
following way: for a signal f(t), we calculate the mean m
and standard deviation s of the gradient d/dt, then the
threshold is set to m sα+ , where α is a parameter
controlling the spiking rate after encoding.

After this, we obtain a positive spike train which
encodes the places of the increasing signal and a negative
spike train which encodes the places of the decreasing
signal.

B. NeuCube(ST) Initialization
We initialize the SNNr following the small world

connection rule where: each neuron in the reservoir is
connected to its nearby neurons which are within a
distance d, where d is equal to the longest distance
between any pair of neurons in the reservoir multiplied by
a parameter r. The initial weights of the connections are
set to the product of a random number within [-1, 1] and
the inverse of the distance between them. We randomly
select 80% of the connection weights to be positive and
20% to be negative.

 The connection weights between the input neurons
and other neurons are doubled in order to emphasize these
neurons’ significance in the reservoir.

C. Training Stage I: Unsupervised Reservoir Training
The unsupervised learning stage is intended to encode

‘hidden’ spatio-temporal relationships from the input data
into neuronal connection weights. According to Hebbian
learning rule, if the interaction between two neurons is
persistent, then the connection between them will be
strengthened. Specifically, we train the reservoir using
spike-timing dependent synaptic plasticity (STDP)
learning rule [6]: if neuron j fires before neuron i, then the
connection weight from neuron j to neuron i will increase
and, on the other hand, the connection from neuron i to
neuron j will decrease (Fig. 4). This ensures that the time
difference in the input spiking trains, which encode the
temporal patterns in the original input signals, will be
captured by the neuron firing state and the unsymmetrical
connection weights in the reservoir.

A
B
C

Fig. 2. The architecture of NeuCube(ST). Spike trains (left) are fed to
the SNNr and the neuron firing states vectors of this reservoir are
used to train a deSNN classifier.

639

In the SNNr, when a neuron fires, it emits a spike and
then its potential is reset to 0. Each neuron connecting to
this firing neuron will receive a spike and its potential
increases with respect to its connection weight to current
firing neuron. The potential of each neuron has a small
constant rate of leakage over the time unless it becomes 0.
After learning, the connection weights in the reservoir
encode temporal relationships from the input spatio-
temporal data.

D. Training Stage II: Supervised Classifier Training
The second training stage is to train the output

classifier using class label information associated with the
training samples. The dynamic evolving Spike Neural
Networks (deSNN) [7, 8] is used here as an output
classifier, because deSNN is computationally efficient and
emphasizes the importance of the first spike, which has
been observed in biological systems. For each training
sample, we create an output neuron and connect it with
each neuron in the reservoir. The initial connection
weights are all zero. The connection weights are then
established by the Rank-Order (RO) learning rule [9].
Specifically, the potential of neuron i at time t is
computed using

()
,(,) modorder j

j iP i t w=∑ (1)
where mod is a modulation factor; order(j) is the arriving
order of the spikes to connection j, i, among all spikes
from all connection to the neuron i. This learning rule
endows a higher priority to the first spike coming to the
output neuron. For the first spike in the reservoir excited
by training sample k, the connection weights of
corresponding output neuron are set by

()
, modorder j

j iw = (2)
 After the first spikes, the connection weight is

modified according to firing state of the corresponding
neuron in the reservoir: if a neuron fires, it emits a spike
to all output neurons that have a connection with it and, as
a result, the connection weight between this neuron and
the corresponding output neurons strengthens and the
potentials of these output neuron increase; otherwise the
connection weight weakens and the potential of the output
neuron leaks as time elapses. When the potential of an
output neuron exceeds a firing threshold, a spike is
emitted by it. After training, the connection weights
between the output neurons and the reservoir neurons
encode both the spike order and the support neurons of
each training sample.

E. Testing with New Samples
Once the NeuCube(ST) is trained, all connection

weights in the reservoir and in the output classification
layer are established. These connections and weights can
change based on further training (adaptation), because the

evolvable characteristic of the architecture. For a given
new sample without any class label information, the
trained NeuCube(ST) can be used to predict its class label.
For the deSNN classifier, there are two algorithms that
can be used to determine the class label of the new sample
[7, 8]:

a) deSNNs: it creates an output neuron for the new test
sample and after the connection synaptic weights of this
neuron are calculated, it compares these weights with the
synaptic weights of those training neurons that were
established during the supervised training process; the
new testing sample is labeled with the label of the existing
neuron whose weight vector is closest to that of the new
neuron, created for the new sample.

b) deSNNm: it does not create any new output
neuron. The new sample is fed to NeuCube(ST) and its class
label is set to be same as the training sample whose
corresponding output neuron fires first.

III. INPUT VARIABLE MAPPING METHOD AND
VISUALIZATION OF RESERVOIR ACTIVITY

A. Input variable mapping
Given a particular spatio-temporal data set, it is

important to know how to map the data into the reservoir.
For some special data such as brain EEG data, there is
prior information about the location of each signal
channel being collected and this information can be
readily utilized for mapping the signal channels into the
reservoir [4]. But for much more common applications
such as climate data and ecological data, we do not have
such mapping. Here we introduce a new method to map
the input variables into the reservoir.

Suppose there are s samples in the data set and there
are v variables for each sample and the observed time
length of each variable is t. We first choose v input
neurons from the SNNr. Then we map the variables into
the computing SNNr following this principle: high
correlated spike trains are mapped to nearby input
neurons. Because high correlation indicates that the
variables are likely to be more time dependent with each
other, and this relationship should also be reflected in the
reservoir. Spatially close neurons in the SNNr will capture
in their connections more interactions between the input
variables mapped into these neurons.

Specifically, we construct two weighted graphs: the
input neuron distance graph (NDG) and the signal
correlation graph (SCG). In NDG, the input neurons’
coordinate set, denoted by { }(, , z) | 1..NDG i i iV x y i N= = , is
the graph vertex set and the graph edges are determined in
this way: each input neuron is connected to its k nearest
input neurons and the edges are weighted by the inverse
of the Euclidean distance between them. In SCG, we first
use the Parzen window method to estimate the spike
density function corresponding to each variable and then
the graph vertex set, denoted by { }| 1..SCG iV f i N= = , is
the spike density function. The graph edges are
constructed in this way: each spike density function is
connected to its k highest correlated neighbours and the
edges are weighted by the statistical correlation between
the spike density functions of the input variables.

Fig. 4. STDP learning rule [6]. Left: the connection weight changes as
a function of firing time difference between two connected neurons.
Right: neuron j fires before neuron i fires, so connection from j to
neuron i increase while connection from i to j decrease.

j i

640

We adopt the graph matching technique, which is a
powerful tool to solve mapping problems and has been
widely used in computer vision and pattern recognition, to
determine good mapping between any two weighted
graphs under the mapping rule. In our case, the two
graphs are NDG and SCG. For these two graphs, we can
compute their adjacency matrices, written as nA and sA .
The graph matching method is aimed to find out a
permutation matrix P that minimizes the following
objective function:

2min || ||T
n s FP

A PA P− (3)

where || ||Fi denotes the Frobenius matrix norm. Exactly
solving this problem is known to be NP hard due to its 0-1
combinatorial optimization property. Many algorithms
have been proposed to find an approximated solution.
Among these algorithms the Factor Graph Matching
(FGM) algorithm [10] has been demonstrated to produce
state-or-art results. So here we utilize the FGM algorithm
to solve problem (3) with the following settings: suppose
in NDG the sum of graph edge weights of an vertex, say
vertex NDG NDGi V∈ , to all other vertices is ()NDGd i , and,
similarly, in SCG the sum of graph edge weights of vertex

SCG SCGi V∈ to all other vertices is ()SCGc i , then the
difference between ()NDGd i and ()SCGc i reflects the
similarity of the positions in this graph. So we compute
the similarity of the two vertices by using the formula:

()2 2exp | () () | 2 ; , 1...NDG SCG n NDG SCGd i c i i i vσ− − = (4)

For the graph edge similarity, we use the formula:

 ()2 2exp | | 2 ;NDG SCG
ij kl ea a σ− − , , , 1...i j k l v= (5)

where: ,NDG SCG

ij kla a are graph edge weights in NDG and
SCG, respectively; nσ and eσ are two parameters to
control the affinity between neurons and edges,
respectively.

Fig. 5 shows the matching result. The left graph is the

input NDG and the right graph is SCG. We can see that
after matching, highly correlated features are mapped to
nearby input neurons.

Fig. 5. An input mapping result obtained by the proposed method in the
paper using graph matching technique.

B. NeuCube(ST) visualization
Visualization of the neuron activities, the connection

weight changes and the structure of the SNNr are

important for understanding the data and processes that
generated it. In NeuCube(ST) we can visualise at each
moment the spiking state of the neurons in the SNNr and
their connection adjustment. Fig. 6 shows snapshots of the
instantaneous neuron spiking state, the connections
between neurons and the weight adjustment during a
SNNr training. This is very different from traditional
methods such SVM which have been used for same tasks
but without offering facilities to trace the learning
processes for the sake of data understanding.

(a)

(b)

(c)

After it is trained, the SNNr has captured spatial and
temporal relationships from the data. We use the
information spreading algorithm [11], which has been
demonstrated to be powerful for analysis of dynamic
activity spreading (here spike spreading) in networks [12],

Fig. 6. Snapshots from a dynamic visualisation of a SNNr: (a)
Neuron spiking state; (b) Connections with weights larger than 0.08;
(c) Connection weight changes. Left: the whole weight matrix; right:
magnified illustration of the indicated small region (black indicates
decreasing and grey indicate increasing).

641

to analyze network structure and to explore the relation
between the learnt structure and the data set used for
training. Further analysis will be presented in the
experimental section.

IV. CASE STUDY OF APHIDS POPULATION PREDICTION
The NeuCube(ST) environment described above is

illustrated here on a case study involving predictive
modelling in ecology. Specifically, a model is created to
predict aphid abundances in autumn in a geographical
location over 11 years.

As major pests, some species of aphids can pose
significant damage to autumn agricultural produce
particularly wheat crops. Thus, the prediction of a
possible abundance of aphids in the autumn seasons
becomes important for growers to manage these pests.
The numbers of a particular species of aphids (in this
study Rophalosiphum padi) in autumn are considered to
be correlated with environmental conditions and the
numbers of aphids in previous spring [13]. The raw data
which will be used in the prediction study includes two
sets of temporal data. One set is weekly aphid trap catches
recorded by Crop & Food Research, Lincoln, Canterbury,
New Zealand. The other is made of weekly records for
weather variables at the Canterbury Agricultural research
centre, Lincoln, New Zealand.

The weather variables include: 1) average rain fall
(mm); 2) cumulative weekly rainfall (mm); 3) maximum
air temperature (°C); 4) minimum air temperature (°C); 5)
mean air temperature (°C); 6) cumulative degree days for
the week (°C); 7) grass temperature (°C); 8) soil
temperature at 100 cm below ground (°C); 9) Penman
potential evaporation (mm); 10) vapour pressure (hPa);
11) potential deficit of rainfall (i.e. accumulated excess of
Penman over rainfall); 12), solar radiation (MJ/m2); and
13) wind run (km/day).

Some pre-processing was applied to the raw dataset
used in this experiment. Firstly, following[14], some
errors in the original data records are addressed, such as
the negative records for solar radiations. Secondly, the
pre-processing is carried out to take into consideration the
relevant results from previous research on aphid
prediction. Specifically, for each of the 13 environmental
variables, six derived variables were calculated.
According to [13], during the flight period for each year,
the number of aphids caught in a week was correlated
with the mean value of each weather variables over the
previous N week, N can be from 1 week to a maximum of
10 weeks. In this study, for each environmental variable,
four variables were generated for the averages of previous
1, 2, 3, and 4 weeks. Further, according to [15], it also
appears that the numbers of aphids caught in the suction
trap (A suction trap is an apparatus catching aphids
automatically when they fly into it) are closely related to
the changes of some weather variables, rather than the
exact measurements in the corresponding weeks, thus, two
other variables, the first order derivative and second order
derivative are also generated. Among these variables, 14
of them are selected for the current study, based on two
rules. Rule 1, for each original weather variable, either the
original variable itself, or one of the six generated
variables should be selected. Thus, the attribute dimension
which is represented by them can be kept in the following
study. Rule 2, to select a variable from either the original

variable or its six derived variables, the one with the
maximum correlation co-efficient with aphid counts will
be chosen. Thus, for the following analysis, there are total
of fourteen variables: 1) average rainfall (AR, mm); 2)
cumulative rainfall, the average of 4 weeks (CR, mm); 3)
cumulative degree days (DCT, °C); 4) grass temperature,
average of four weeks (GT, °C); 5) maximum air
temperature (MaxT, °C); 6) mean air temperature (MeanT,
°C); 7) minimum air temperature, average of two weeks
(MinT, °C); 8) Penman potential evaporation (PPE, mm);
9) potential deficit of rainfall (PDR), first order derivative;
10) soil temperature (ST, °C); 11) solar radiation (SR,
MG/m2); 12) vapour pressure, average of five weeks
(VP, hPa); 13) wind run (WR4), average of four weeks
(km/day); 14) wind run (WR5), average of five weeks
(km/day).

Thirdly, the pre-processing needs to coordinate the
data with the experimental design (which will be
discussed in detail in below). Instead of predicting weekly
aphid counts as in previous studies on the aphid data set
[13-15], the research here will predict the pattern of
aphids number over the autumn season as a whole. While
the time period covered by the original data is from week
27 of 1981 to week 50 of 2000, the whole time series will
be parsed into yearly based periods. Each of the time
periods will start from week 31 to week 30 the following
year. Each of the time segments will be treated as an
individual case. For such cases, the associations of spring
aphid patterns, the following autumn patterns, and the
weather variables for the corresponding periods were the
focus.

Based on the examination of the aphid patterns for
these time segments, data from 11 years were selected.
These 11 years have their spring aphid spikes happening
around week 46 of the Julian year. The autumn aphid
patterns of these 11 years can be classified into two
categories based on the original raw data - the high aphid
pattern (class 1) or low aphid pattern (class 2) in autumn.
The autumn patterns of aphids of these 11 years will be
learnt by the NeuCube(ST). For any future year, when the
spring aphid population peaks at about week 46, the
potential autumn aphid pattern in the following year can
be predicted.

V. EXPERIMENTAL DESIGN AND RESULT

A. Design of Experiment
We conduct three experiments on this real world aphid

data set to show the validity of the NeuCube(ST)
architecture and how soon before the event our model can
achieve a good prediction.

In the first experiment, we aimed to show the
predictive ability of NeuCube(ST) for full time length
variables. We use the whole time available, i.e. 52 weeks,
for both training and testing under the assumption that a
perfect weather forecast for the autumn season can be
obtained which is an ideal case, but not a realistic one. In
the following experiments two and three, we aimed to
show the predictive ability of NeuCube(ST) and how early
the model can predict the autumn pattern. In these two
experiments, we trained NeuCube(ST) using 100% of the
time length samples, but only 80% and 75% of the time
length to predict the aphid population pattern in the last
25% time period, as illustrated in Fig. 7. The white bars

642

represent training data length and the grey bars validation
data length.

In all these experiments, the size of the SNNr is 2000

neurons (5x20x20). It is trained and tested in a leave-one-
out cross validation mode. This is based on the
assumption that the climate change trend during these 11
years can be ignored and the weather variables are
independent between different years.

B. Experimental Result
Fig. 8 shows the input variable mapping result on the

minimal x coordinate face of the cubic reservoir. Note the
two main groups of weather variables, in other words,
temperature (MaxT, minT, MeanT, DCT, GT, ST) and
rainfall (AR, CR, PDR), are mapped to nearby neurons.
The solar radiation (SR) is mapped in the middle of
temperature variables because temperature is greatly
determined by solar radiation.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

AR

CR

DCT

GT

MaxT

MeanT

MinT

PPE

PDR

ST

SR

VP

WR4

WR5

Fig. 9 (a) shows the neuron connections with absolute
weights larger than 0.07 after the reservoir is trained in
one run. Fig. 9 (b) plots the total number of spikes each
neuron emitted during the training process.

In Fig. 9 (a) grey lines represent connections with
positive weight and black lines represent connections with
negative weights. The line thickness indicates the strength
of the connection. The neurons are coloured to indicate

their connection strength with other neurons in the
reservoir. Brighter neurons have stronger connections
with other neurons while darker neurons have weaker
connection with others.

From the visualisation, we can derive some
conclusions achieve a better understanding of the data and
the problem:

a) Connections between nearby input neurons are
denser than the connections between far away input
neurons. This indicates that there are more interactions
between input variables mapped to closer neurons.

b). Neurons in the middle of the reservoir are
generally more active than those on the edges. This
indicates that the neurons in the reservoir are not
uniformly activated that reflects on the input data.

10

20

30

40

50

20406080100120140160180200

20

40

60

80

100

120

140

160

180

200

ST

AR

WR5

CR

MinT

WR4

GT

VP

SR

Y

PPE

DCTMaxT

PDR

MeanT

X

Z

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-60

-40

-20

0

20

40

60

Neuron ID

S
pi

ke
s

nu
m

be
r

(b)

We can also analyze the SNNr structure in terms of
information distribution and spread [12]. We first treat the
input neurons as the information sources in the network
and then use the spreading algorithm from [11] to
determine neuron clusters belonging to each information
source based on the spike transmission in the network. So
the more spikes that are transmitted between two neurons,
the tighter they will be connected with each other. After
this we link a neuron to the one from which it receives
most spikes. Fig. 10 (a) shows the network structure after
unsupervised training. The big solid dots represent input
neurons and other neurons are labeled in the same
intensity as the input neuron from which it receives most
spikes. The unconnected dots mean no spike arrived at
that neuron. In Fig. 10 (b), the left pane is spike number

Fig. 7. Experimental design. White bars represent the time length of
training samples and the grey bars represent the time length of testing
samples.

Fig. 8. Input variable mapping result by graph matching

Fig. 9. (a) Reservoir connections after training. The black are negative
weight connections and the grey are positive weight connections; (b)
the total spikes amount emitted by each neuron during training
process. Negative stems mean negative spikes.

52 weeks
52 weeks

52 weeks

52 weeks

39 weeks

41.6 weeks

Previous year week 31 –
following year week 17

Week
18-30

Training

Testing

Training

Testing

Training

Testing

Experiment 1

Experiment 2

Experiment 3

643

for each variable after encoding and the right pane is the
neuron number belonging to each input variable cluster.
From this figure we can see the consistency between the
input signal spike train and the reservoir structure. It is
worth noting that variable 11 (solar radiation) is
emphasized in the reservoir that suggests a greater impact
of the solar radiation on the aphid number. This was
observed also in a previous study [13].

10
15

20
25

30
35

40
45

50

20
40

60
80

100
120

140
160

180
200

20

40

60

80

100

120

140

160

180

200

X

PPE

AR

WR5

CR

GT

WR4

MinT

ST

VP

PDR

Y

MeanTDCT

SR

MaxT

Z

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

10

20

30

40

50

60

70

80

90

100

Input variable

sp
ik

e
nu

m
be

r

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

50

100

150

200

250

Input variable

ne
ur

on
 n

um
be

r

(b)

Fig. 10 (a) The SNNr structure after unsupervised training; (b) Input
spike number of each feature (left) and neuronal connections of each
input neuron (right).

The early event prediction accuracy on the aphid data
set is shown in table I, where the middle row is the time
length of test data used for the prediction.

TABLE I AUTUMN APHID PREDICTION ACCURACY (%)

 Accuracy of each testing time length (weeks)
 52

(full)
41.6
(early)

39

Accuracy 100% 90.91% 81.82%

In the third experiment, 75% of the temporal input

data (39 weeks, out of total 52 weeks per year) is used
comprising data from week 31 in the previous year to
week 18 in following year, where week 18 is at the
beginning of the autumn period. At this time of the year
an accurate prediction of whether there will be a high
aphid amount peaks in later weeks is very important for
both ecology and agriculture, because early actions can be
taken to prevent the spread of aphid population. For this
time length, with 75% of time observed, our model can
give 81.82% prediction accuracy. In the second
experiment, 80% of time length (41.6 weeks of total 52
weeks per year) is from week 31 in previous year to week
20.6 in next year, where week 20.6 is at the head of the
aphid flight period. At this time of the year, some first

small aphid peaks have arrived. From this we can see that
our model can make early decision before the peak
appears. With 80% of data observed (early in the aphid
flight period), we can have more than 90% confidence to
make an early decision. Furthermore, as the time passes, if
new data are collected, it can be added directly to the
testing sample to give a better prediction, without re-
training the model using both old and new data as it would
be the case with SVM or MLP methods. This is the
essential difference between the new method and
traditional methods such as SVM and MLP.

VI. COMPARATIVE STUDY
We conducted experiments to compare between

traditional modeling methods and our new modeling
method for early event prediction. We used multiple-
linear regression (MLR), support vector machine (SVM),
multilayer perceptron (MLP), k nearest neighbors (kNN)
and weighted k nearest neighbors (wkNN) as the baseline
algorithms. We designed three experiments for these
baseline algorithms, as illustrated in Fig. 11. Note that for
these baseline algorithms, the time length of training
samples and testing samples have to be the same as these
methods cannot tolerate different lengths of feature
vectors for training and recall.

Fig. 11. Experiment design for baseline machine learning algorithms.
White bars represent the time length of training samples and the grey
bars represent the time length of testing samples.

We prepared the data set in this way: for experiment 1,

we concatenated the weather variables one after another to
form a long feature vector for each sample, as shown in
Fig. 12. For each weather variable, there are 52 data
points in one year (one data point per week), so the length
of final feature, counting 14 variables data, will be 578.
For experiments 2 and 3, we removed the corresponding
percentage of data points from each year’s data and then
perform the same procedure as in experiment 1.

 Fig. 12. Data set preparation for baseline algorithms.

 We tune the parameters of the baseline algorithms in
a grid search way and the final parameters are: a degree 2
polynomial kernel for SVM; 30 hidden neurons and 500
training cycles for MLP; k=5 for both kNN and wkNN.
Experimental results are shown in table II.

Feature length: 728

variable 1 ... Sample k variable 2 variable 14

52 weeks
52 weeks

41.6 weeks

39 weeks

39 weeks

41.6 weeks

Previous year week 31 –
following year week 17

Week
18-30

Training

Testing

Training

Testing

Training

Testing

Experiment 1

Experiment 2

Experiment 3

644

TABLE II PREDICTION ACCURACY OF APHID DATA SET (%)

 Accuracy of each training and testing time
length (weeks)

 52 41.6 39
MLR 36.36 64.63 72.73
SVM 72.73 72.73 63.64
MLP 81.82 81.82 81.82
kNN 72.73 63.64 63.64
wkNN 72.73 63.64 63.64
Max 81.82 81.82 81.82

Comparing table I and table II, we can see that
NeuCube(ST) can perform better for early event
prediction. A realistic early event prediction should be
that as the time length of observed data increases, the
prediction accuracy will also increase. But from table II
we can see that as the time length of training data
increase, traditional modeling methods do not necessarily
produce better results (some even worsen), because they
cannot model the whole spatio-temporal relationship in
the prediction task. They can only model a certain time
segment. Because NeuCube(ST) models the whole spatio-
temporal relationship in the data, even a small amount of
input data can trigger spiking activities in the SNNr that
will correspond to the learned full temporal patterns
resulting in a better prediction when more temporal data
entered.

VII. CONCLUSION & FUTURE WORKS
The research presents a further development of a SNN

architecture NeuCube, initially created for modelling
spatio-temporal brain data [9,16]. The new architecture–
NeuCube(ST) is suitable to model any spatio-temporal data.
A method to map input variables onto neurons from the
SNNr is proposed here, so that similar input variables
based on their temporal similarity are mapped onto
spatially closer neurons. The closer the neurons in the
SNNr are, the more temporal relationships they learn from
data. This is illustrated with analysis of ecological data
comprising aphid pest abundance prediction.

Future work includes experiments on other ecological
and environmental data collected in New Zealand, China
and other countries related to a range of ecological and
environmental event prediction, such as earthquakes,
tsunami and volcanic activity.

ACKNOWLEDGMENT
This work was completed during the visit of Enmei Tu

to the Knowledge Engineering and Discovery Research
Institute (KEDRI, www.kedri.aut.ac.nz). The authors
would like to thank the anonymous reviewers for their
helpful comments to improve this paper.

REFERENCES
[1] N. Kasabov, V. Feigin, Z. G. Hou, C. Y., L. Liang, R.

Krishnamurthi, et al., "Evolving Spiking Neural Network Method
and Systems for Fast Spatio-Temporal Pattern Learning and
Classification and for Early Event Prediction with a Case Study on
Stroke," Neurocomputing, in press, 2014.

[2] K. Hechenbichler and K. Schliep, "Weighted k-nearest-neighbor
techniques and ordinal classification," http://nbn-
resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-1769-9,
2004.

[3] N. Kasabov, "Global, local and personalised modeling and pattern
discovery in bioinformatics: An integrated approach," Pattern
Recognition Letters, vol. 28, pp. 673-685, 2007.

[4] N. Kasabov, "NeuCube evospike architecture for spatio-temporal
modelling and pattern recognition of brain signals", Artificial
Neural Networks in Pattern Recognition, Springer, 2012, pp. 225-
243.

[5] T. Delbruck, B. Christian, and L. Longinotti, "Real time sensory-
motor processing for event-based sensors and systems,"
http://sourceforge.net/p/jaer/wiki/Home/, 2007.

[6] S. Song, K. D. Miller, and L. F. Abbott, "Competitive Hebbian
learning through spike-timing-dependent synaptic plasticity,"
Nature neuroscience, vol. 3, pp. 919-926, 2000.

[7] K. Dhoble, N. Nuntalid, G. Indiveri, and N. Kasabov, "Online
spatio-temporal pattern recognition with evolving spiking neural
networks utilising address event representation, rank order, and
temporal spike learning," The 2012 International Joint Conference
on Neural Networks (IJCNN), 2012, pp. 1-7.

[8] N. Kasabov, K. Dhoble, N. Nuntalid, and G. Indiveri, "Dynamic
evolving spiking neural networks for on-line spatio-and spectro-
temporal pattern recognition," Neural Networks, vol. 141, pp.188-
201, 2012.

[9] S. Thorpe and J. Gautrais, "Rank order coding," Computational
Neuroscience, Springer, 1998, pp. 113-118.

[10] F. Zhou and F. De la Torre, "Factorized graph matching," 2012
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2012, pp. 127-134.

[11] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf,
"Learning with local and global consistency," NIPS, 2004, pp.
595–602.

[12] J. Shrager, T. Hogg, and B. A. Huberman, "Observation of phase
transitions in spreading activation networks," Science, vol. 236, pp.
1092-1094, 1987.

[13] S. Worner, G. Lankin, S. Samarasinghe, and D. Teulon,
"Improving prediction of aphid flights by temporal analysis of
input data for an artificial neural network," New Zealand Plant
Protection, pp. 312-316, 2002.

[14] M. J. Watts and S. P. Worner, Using multi-layer perceptrons to
model the Lincoln aphid data set: Lincoln University. Bio-
Protection & Ecology Division, 2007.

[15] M. J. Watts and S. P. Worner, Comparison of multi-layer
perceptrons and simple evolving connectionist systems over the
Lincoln aphid data set: Lincoln University. Bio-Protection &
Ecology Division, 2007.

[16] Kasabov, N. “NeuroCube: A Spiking Neural Network Architecture
for Mapping, Learning and Understanding of Spatio-Temporal
Brain Data”, Neural Networks, in press 2014

645

