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Fast Support Vector Data Description Training Using Edge
Detection on Large Datasets
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Abstract— Support Vector Data Description (SVDD) inherits
properties of Support Vector Machines (SVM) and has become
a prominent One Class Classifier (OCC). Same to standard
SVM, its O(n®) time and O(n?) space complexities, where
n is the number of training samples, have become major
limitations in cases of large training datasets. As a simple
and effective method, reducing the size of training dataset
through reserving only samples mostly relevant to learned
classifier, can be adopted to overcome the limitations. A trained
SVDD enclosed decision boundary always locates on edge
area of data distribution and is decided by a small subset of
Support Vectors(SVs). Therefore, in this paper, we present a
method based on edge detection such that edge samples mostly
relevant to decision boundary can be preserved. And clustering
techniques are also be applied to keep centroids representing
the global distribution properties so as to avoid over-outside of
decision boundary. To restrict the influences of noises, each
training pattern is assigned with a weight. Experiments on
real and artificial data sets prove that the classifier trained
on reconstruction training set consisting of edge points and
centroids can preserve performance with much faster training
speed.

I. INTRODUCTION

NE Class Classification (OCC) is a special type of
classification which estimates a description of a single
class of samples and to reject samples referred to outliers
or negative that don’t resemble this class. OCC assumes that
only information of one class is available(we call it target
class) [1]. The most intuitive method used for OCC may be to
train ordinary two class algorithms by generating some arti-
ficial negative data. However, since one has to create enough
artificial data to make negative samples around target class
in all feature directions, the methods can be available only
in low dimensional problems and some limited classifiers
[2]. In another kind of straightforward methods, one class
problem can be solved by probability density estimation of
target patterns and then decide whether a test object follow
the same distribution P or not. For instance, Gaussian and
mixture of Gaussian model are often adopted [3]. However,
the estimation methods depend critically on the parametric
form of the density function which is hard to be well-defined
in high-dimensional data. It may fail when this assumption
is incorrect [4]. Another drawback is that it often focuses
on modeling the high density areas resulting to reject low
density regions [1].
Self-organizing-mapping (SOM) [5] and kernel principal
component analysis (kernel PCA) [6] belong to reconstruc-
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tion methods wherein a model is built and fitted to target data
by using prior knowledge about the target class and making
assumptions about the generating process. Then outliers can
be rejected when they do not satisfy the assumptions about
the target distribution. However, the methods are relatively
sensitive to the scaling of the features and lead to poor
descriptions.

Finally, boundary methods follow the principle of Vapnik
that never to solve a general problem rather than the one we
actually need to solve [7]. Boundary methods attempt to only
train the description boundary of target data without a proba-
bility density estimation step which might be too demanding.
Support Vector Data Description [8] and v-Support Vector
Classifier (v-SVC) [9] are two commonly used boundary
methods for solving OCC problems. Above both boundary
methods also follow the Structural Risk Minimization (SRM)
principle and inherit the excellent generalization ability of
Support Vector Machines (SVM). v-SVC estimates a hyper-
plane in kernel feature space with maximum margin from
the origin. SVDD finds a minimum-volume hypersphere that
contains all or most of the training data. [1], [10] have proven
that these two approaches will give identical solution when
the data is preprocessed to unit norm.

In this paper, we will just focus on the implement and
improvement of SVDD. SVDD has successful applications in
various fields [11], [12], [13]. Same to SVM, SVDD classifer
is obtained through a quadratic programming (QP) formula.
Therefore, it has O(n3) time and O(n?) space complexities
which make it unapplicable on large training data. To solve
this problem, Sequential Minimal Optimisation(SMO) [14]
algorithm improves the complexity through breaking up large
QP into the smallest optimization steps. However it still
needs large training time with the implement of an improved
version of SMO algorithm, as shown in [10], [15].

Scaling down the training set as a pre-process step before
training is a simple but effective method to overcome the
limitation of time complexity. This means that some samples
mostly irrelevant to trained classifier should be discarded
while relevant samples must be reserved. Li et al. [16] and
Shin et al. [17] train two-class SVM classifier on a reduced
subset of original training set and achieve much faster
training speed. Though above methods can obtain successful
results on large two class problems, they cannot be directly
applied to one class case due to the lack of information
from both class labels. [18] proposes a method selecting
training points for one class v-SVC, but this approach may
suffer from bad descriptions because they didn’t concern the
structure of entire training set. Another method mentioned
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in [19] using simple neighbour number to obtain reduced
subset cannot perform well in case of different densities
existing and high dimensional data space.

Therefore, it is necessary to come up with an approach
which can efficiently and completely choose relevant subset
representing both local and global properties of training data
in high dimensional and different densities existing cases.
As a result, SVDD classifier trained on this subset must
has faster training process and comparative performance with
over result learned from the whole set. The closed decision
boundary of SVDD is decided by Support Vectors(SVs),
a small subset that locate close to edge areas of training
data [20]. Therefore, samples locating on edge areas seem to
be mostly relevant to decision boundary.

In this paper, we propose a fast training method based
on edge detection technique to reduce the training size.
A reduced reconstruction subset is obtained by merging
edge samples and clustering centers, which contains mostly
important relevant samples. Edge samples preserve local
properties around the enclosed SVDD boundary. In the pro-
posed Density-Angle edge detector, relative density of each
sample is taken into consideration to solve the bias problem
when different densities exists[21]. On the other hand, angle
variances between difference vectors from training object to
its neighbor are also taken into account because angles are
more robust in high dimensional data.

For efficiency and completeness of edge detector, we
combine both density and angle measurements to generate
two subsets using density based detector called Candidate
and Complement sets. Candidate set can be used to improve
the time efficiency of angle detection. And Complement set
fills up missing edge points can not be detected by pure angle
based method . The volume of edge set can be effectively and
smoothly controlled via two parameters relative to density
and angle respectively. In order to restrict over-outside of the
SVDD boundary result from the extremely small edge subset
sometimes, the global distribution properties of the entire
data set also should be obtained. The centers computed by
clustering techniques represent global distribution properties
and then are combined with edge samples to reconstruct a
more complete reduced training subset. However, the influ-
ences of noise data may be larger because of the reduction of
normal samples. Therefore, to enhance the ability of SVDD
in defending the sensitivity to noises, local data uncertainty
of each data is incorporated into the construction of the clas-
sifier by assigning each sample a weight. With incorporations
of weights, samples that are more likely to be noises possess
relative smaller importance in learning process. Finally, we
train weighted SVDD on the reconstruction subset with much
faster speed while preserving classification performances on
a variety of data sets.

The rest of this paper is organized as follows: Section
II introduces Support Vector Data Description. Section III
shows the details of proposed method. Some simulation
results are presented in Section IV to show its performance.
Finally, Section V concludes the paper.

II. SUPPORT VECTOR DATA DESCRIPTION

SVDD is one of the best-known support vector learning
methods for one-class classification. It is a data domain de-
scription method which aims to obtain a enclosed boundary
around the target data set. Let X = {@x1,..., &y} C X, be
a set of training samples, where N € N is the number of
observations and X is a compact subset of R?. Consider a
ball with center a and radius R, the main idea of SVDD
is to find a ball that can achieve the trade-off between the
volume of ball should be as small as possible and contain
as many training data as possible simultaneously. To solve a
quadratic program problem:

1
in F =R+ —3"¢ 1
min (R,a,&)=R +1/N i & €))
subject to Hwi—aHQgR?—{—& £ >0 2)

where &; is the slack variable representing a penalty associ-
ated with the deviation of ith training sample outside the ball
and v is the parameter controls tradeoff between volume of
ball and cost of misclassification. By introducing Lagrange
multipliers, the above optimization problem is transformed
into the dual formulation :

maxXe, Zaz<w‘h$7«> _Zaiaj<wi’wj> (3)
i ,J
1
bject t i=L0<a; < — 4
subject to Za s )

(3

By incorporating feature map ®: X — F, mapping
feature vector in X’ to a inner product space F such that
the dot products in high-dimensional feature spaces can
be obtained efficiently via a suitable pre-specified kernel
function k: k(x,2’) = (®(x),®(x’)) ( Gaussian kernel:
k(x,x') = exp(—||z — x’||?>/20?%) ), we can express more
flexible decision boundary in X as shown in Fig.1. From
Karush-Kuhn-Tucker (KKT) conditions, the center a can be
expressed as:

a= Zai@(w) ®)]

Equation (5) shows that the center of the sphere is a linear
combination of the objects. It is necessary to be noticed that
samples with a;; > 0 usually decide the decision boundary of
SVDD. Therefore, we call the small set the support vectors
(SV’s) of the description. Finally, the decision function can
be obtained as :

y(@) = sign(||z — a||* - R?)
= sign(flz — Y ai®(z:)|* — R?) ©)

From Equation (6), it is more clear that the construction of
SVDD classifier only depends on SVs. A new test object x
will be accepted as target class if y(x) is non-positive, i.e.
the distance to the center of the sphere is not greater than
than the radius R.
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Fig. 1.

SVDD Decision Boundary

III. REDUCING TRAINING SET USING EDGE DETECTION

SVDD classifiers are found by solving a quadratic pro-
gramming(QP) problem which can get unique global opti-
mization. However, the QP problem here has O(n?) time
and O(n?) space complexities, where n is the number of
training samples, and makes SVDD become unapplicable on
large data sets. As a pre-processing method, reducing the
training size with discarding irrelevant samples can be taken
into consideration. The idea of this method is to construct
a complete and small reduced subset composing of samples
mostly decisive to SVDD boundary. Then SVDD classifier
learned from reduced training set should obtain comparative
classification performance as that on whole training set. The
reduced training set should capture the whole properties
which decide the performance of classifier. As mentioned
in Section II, the description boundary of SVDD is decided
on the basis of SVs. Therefore, samples that are likely to be
SVs are important samples to test accuracy. So firstly, we
want to precisely and completely detect edge samples which
seem to play most important roles in the training case.

A. Input and Kernel Space

With the incorporation of kernel function, an implicit
mapping of the data samples from input space into another
feature space is defined. For instance, the feature space
induced by the Gaussian kernel is infinite-dimensional. And
all mapped feature vectors ®(a) with equal norm 1 lie on
a unit ball [22]. Kernel functions are always adapted into
SVDD training to learn a more flexible description instead
of a rigid hypersphere in input space. However, we want to
perform the selection of samples close to decision boundary
in input data space. If we want to use neighbour relationships
among training samples to do this, the invariance features of
neighborhood relations under input space to feature space
mapping must be guaranteed. The validity of proposed
method cannot be preserved in case of neighborhood relation
in the input space is not constant. Shin et al. [17] has proven
and tested the invariant property of the neighborhood relation
from input to feature space mapping in SVMs with different

kernels. This result can also be used in SVDD. In the case
of Gaussian kernel, the relationship can be preserved very
well. This means that if Gaussian kernel is accepted, we can
perform edge detection in input space and get a comparative
size reduction in feature space.

B. Density-Angle Based edge detection

To retrieve edge subset efficiently and completely, we
adapt considerations from both density and angle based
differences between training samples. In our density-angle
based edge detection method, we firstly incorporate density
step to obtain two subsets of input data, Candidate set and
Complement set. Candidate set can be used to improve the
time efficiency of purely angle based detector and Comple-
ment set fills the missing edge patterns which angle method
could not acquire in some cases.

As shown in Fig.1, edge samples aim to be extracted are
locating at the outside margin of densely distributed data.
From the perspective of density, we can judge edge patterns
if they are located in lower density areas. In another aspect,
consider the angle motivation in Fig.2, P is an edge pattern
aim to detect and Q is an inner sample burying inside the data
cluster. The neighbors of P scatter in similar directions, and
angles between difference vectors from P to its neighbors
vary in smaller range compared with Q. One step further,
we can assert a training sample z; need to be labelled as
edge set when the variance of the angles between difference
vectors of x; to its k neighbors is smaller than a threshold
value. The variance v(z;) related to each sample x; and its
k neighbors z;’s can be computed by formula:

v(z;) = Variance (6(Z;z}, 7;0)) , ¢, x5 € knn(x;),j # j'

(N
where 6 denotes the angle between two vectors ffﬁ] and
m, then we can judge x; as edge set if the edge label
e(z;) equals to 1.

1 w(z) <7
0 otherwise

e(z;) = (3)
here the threshold 7 is defined as |e * N |-th largest v(z;)
value and determine the volume of detected edge set, ¢ is
the parameter of angle method.

Since density based methods implicitly utilize assessments
of differences in distances between objects, and the perfor-
mance of purely distance based differences may suffer to
deteriorate in high dimensional data space. While angle based
method can alleviate the effects of “curse of dimensionality”
and thus becomes more robust than purely density method.
However, when the size of input data is very large, angle
based method has the problem of time complexity due to :

« All input objects must be considered ;
« All neighbor difference vectors for each object must be
considered.

Another problem comes from the observation of experiments,
neither angle method nor density method can acquire com-
plete edge points in some cases. Thus, to utilize the merits of
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(a) Edge sample P

(b) Inner sample Q

Fig. 2. Angles variances between inner and edge sample )

angle method with small time consuming and completeness
of edge set, density based method is introduced. The pro-
posed Density-Angle based edge detection method can be
summarized as following 4 steps :

Step 1 Choose Candidate set C1 and Complement set C2
for angle detector using Algorithm 1 ;

Step 2 Determine Support Neighbor of z; to refine the
computation of v(z;);

Step 3 Detect edge set A based on Equation(8)

Step 4 Combine A and C2 to obtain final edge set E

Candidate set C1 is a subset of entire input data chose to
reduce the judge turns of edge based detector. Algorithm 1
illustrates the implementation of detecting C1. The determi-
nation of C1 can be seen as a rough pre-selection process
by using density based edge detector, and the parameter
0 representing the volume of C1 usually is assigned to a
large value. As discussed above, samples possessing small
density are more likely to be edge patterns. So samples with
small density degree are chose as Candidate set. Inspired
from local outlier factor (LOF) [21], we estimate the relative
density to avoid the shortcoming in case of different densities
exits where edge samples located at high density areas are
easy to discarded incorrectly and a biased classifier boundary
is estimated. Here, each object x; is given a score o(i)
to measure how isolated the object is with respect to its
surrounding neighbours. For most inner points, their o(i) are
approximately close to 1, while edge points output larger
values of o(3).

In step (2), with the introduction of Support Neighbor I
which has the largest density value, as shown in Fig.2, only
variances of the angles between difference vectors of xz; to
its neighbors and the vector of x; to support neighbor I,
instead of all pairs of feature vectors. The computation of
v(x;) turns into :

v(z;) = Variance (H(xi ,m)) ,xj € knn(z;)  9)

In step (3), the parameter of angle edge detector is the same
with € appeared on the selection of Complement set C2.
And once the threshold 7 known, calculations and ranking
of v(z;)s complete immediately. Then we can get edge set A.
From Algorithm 1, we also know that Compliment set C2 can
be chose in the same way with C1. The parameter € means
the size of C2. Note that in the step (4), we combine edge
set detected by angle based method and Complement C2 to

acquire a complete edge set E = A U C2. This based on the
observation that some edge samples cannot be determined
with purely angle method and Compliment set detected by
density based method can become a complement of angle
method. Two parameters € and J can precisely and effectively
control time cost of edge detection and the volumes of edge
set, i.e. e < +[E[ < 4.

Algorithm 1 Select Candidate and Complement sets
Input:
Training set X = {x1,...,2n} ;
The number of neighbors , k ;
Parameters 0 < d <landO<e<lande <§¢
QOutput:
Candidate C1 and Complement set C2;
1: Construct the k-distance neighbor matrix Dy, ;
: Compute reachabability distance matrix :

(3]

reach-disty, (z;, x;) = max{k-dist(z;), dist(z;, z;)}
3: Compute local reachability distance (Ird) :

1
= Jknn(z;)| >

zjEknn(x;)

Irdg (z;) reach-disty, (z;, =)

4: Compute local outlier factor(lof) :

lof(z;) = m >

xj€knn(z;)

lrd(xj )
Ird(x;)

Let o(i) = lof(z;)

Samples are sorted in ascending order of o(¢)
Choose largest |§ * N | samples as C1
Choose largest |& * N | samples as C2
return C1 and C2 ;

R

C. Training set reconstruction

Reduced training set using edge detection can scale down
the time complexity problem of SVDD. The edge points
detected possess local properties of data distribution and
we can get an approximate description boundary. However,
in some simulations, SVDD may suffer from over-outside
problem which means that the boundary is much too loose re-
sulting in enclose excess outliers. These results don’t follow
the destination of SVDD that to obtain a minimum volume
boundary while reject all other negative objects. Hence, it is
better to add some data representing the structure information
of target data set. Therefore, we use clustering technique to
reserve centroids of data clusters. These centroids amount to
global properties relative to local properties represented by
edge data. This idea is something like reconstruction methods
in one class problems which use a model to represent the
distribution of target data. K-means clustering group data
into £ number of clusters based on the measure distance
similarity. The optimization function of K-means is a non-
convex function, and so it is not guaranteed to converge to
the global minimum [23]. But the destination of K-means we
use here is different from what in reconstruction methods.
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So precision of clustering here is not quite important as
reconstruction methods do. After the detection of centroids,
reconstruction set can be obtained by merging edge set and
clustering centroids.

D. Noises to be considered

It must be considered that noises are easy to detected
as edge points and added to training process. And their
influences become larger because of the reduction of normal
patterns even though SVDD can reject part of these noises
and tolerate some misclassifications. Therefore, we assign a
weight to each point so as to restrict the influence to the
classifier. Here, based on the knowledge from Algorithm
1 of edge detection, we make m(i) = 1/0(i) to be the
weight of ¢th edge pattern in reconstruct training set. This
designs mean that each noises data get less importance in
the training process. This consideration can be seen as an
incorporation of local uncertainty into the construction of
global classifier [24]. It must be mentioned that weights of
centers obtained by clustering techniques equal to 1, since
centers represent global distribution of target class data.

IV. EXPERIMENTS

In order to evaluate the proposed method described above,
we conduct experiments on a variety of data sets. All reported
results are implemented by matlab code based on DDtools,
an OCC tool developed by David Tax [25]. Our experiments
are run on a dell desktop with Intel Core 2 Duo CPU, 2.66
GHZ, and the OS is Linux 2.6.18.

For comparisons, SVDD classifiers learned from original
training data are utilized here as baselines. Experiment results
on artificial and real word data sets are shown on Section
III-A and B respectively. Among the three comparison met-
rics, the first is the size of reduced training set to check
whether our proposed method can significantly scale down
the training size. And we can prove that weighted SVDD
trained on reduced training set take much less CPU time
over SVDD on whole sets. AUC accuracy, the area under
the curve of receiver operating characteristic (ROC), used to
evaluate the performance of proposed method. AUC value
is always between O and 1, and the larger AUC indicates
the better performance of a method. In all tables here,
we use WSVDD+Re to represent the proposed method,
which means weighted SVDD trained on Reconstruction
training set(we use SVDD+Re in figures). Gaussian kernels:
k(z,2') = exp(—||x — 2'||*/20?) are chose, and all the
parameters of SVDD and Gaussian kernels are set to default
values, i.e. 0 =5, v = 0.05 in all experiments mentioned.

A. Artificial Data

Firstly, we investigate 10 independent experiment results
on two artificial data sets: circle shaped and banana shaped
data sets. We use training data sets with different sizes from
100 to 6,000, and the amounts of testing data here are same
with corresponding training data. Based on the simulations,
the neighbor number £ will be set to 35. Two parameters
of edge detection are set to § = 0.3 and ¢ = 0.1, which

TABLE I
COMPARISON RESULTS ON 10 TIMES EXPERIMENTS(CIRCLE
DATA,WITH STANDARD DEVIATIONS)

Target Method AUC Size(%) | Time(%)
. SVDD 0.9667(0.0004 ) 100 100
Cricle100
WSVDD+Re 0.9631(0.0004) 45.00 381.06
Cricle200 SVDD 0.8891(0.0022) 100 100
WSVDD+Re 0.8945(0.0110) 26.50 160.74
. SVDD 0.86840(0.0034) 100 100
Cricle300
WSVDD+Re 0.8653(0.0035) 23.00 84.34
Cricle400 SVDD 0.9046(0.0062) 100 100
WSVDD+Re 0.8901(0.0045) 22.20 51.34
CricleS00 SVDD 0.8997(0.0018) 100 100
WSVDD+Re 0.9003(0.0006) 19.4 33.67
Cricle600 SVDD 0.8890(0.0026) 100 100
WSVDD+Re 0.8917(0.0098) 19.00 26.45
Cricle700 SVDD 0.8886( 0.0020) 100 100
WSVDD+Re 0.8907(0.0023) 16.71 18.59
. SVDD 0.8951(0.0006) 100 100
Cricle800
WSVDD+Re 0.8934(0.0005) 16.625 14.52
Cricle900 SVDD 0.9043(0.0019) 100 100
WSVDD+Re 0.9052(0.0012) 16.77 11.87
Cricle]1000 SVDD 0.8974( 0.0013) 100 100
WSVDD+Re | 0.8988(0.0001 ) 15.80 10.86
Cricle]500 SVDD 0.8808(0.0006 ) 100 100
WSVDD+Re 0.8729(0.0049) 15.64 4.38
Cricle2000 SVDD 0.8861(0.0011) 100 100
WSVDD+Re 0.8817(0.0038) 15.45 2.84
Cricle3000 SVDD 0.8891 (0.0064 ) 100 100
WSVDD+Re 0.8886(0.0034) 14.43 1.75
£ * *
Cricle6000 SVDD
WSVDD+Re 0.8931(0.0010) 15.18 *

mean that Candidate set and Complement set account for
30% and 10% of training set respectively. And at least 10%
of samples will be preserved. And the number of clustering
centers detected is 30 which is nonsensitive to the training
sizes. Results of circle data are shown in Table I and Fig.3.
The third column of Table I presents comparison results
of AUC accuracy, we can see that the proposed method
preserves AUC accuracy on acceptable levels and shows
better sometimes. Training data size and CPU time in terms
of percentages are shown in last two columns. When original
data sizes are smaller than 300, SVDD runs faster than the
proposed method since edge detection and clustering have
to run. However, we can obtain much smaller training set
and CPU time on large data sets. To understand the effects
better, the variant tendencies of training size and time are
also described in Fig.3.

Similar results are obtained on banana shaped data sets.
As shown in Table II and Fig.4, variations of training size
and CPU time follow the same tendencies with circle data
sets. About AUC accuracy, our method takes better values
with most volumes of data. Therefore, the proposed method
can successfully obtain reconstruction set with much smaller
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size and the decision classifier trained on it can achieve
comparable accuracy. It must be added that SVDD cannot
be operated on our machines when training sizes surpass
6,000. The symbol “*” appeared in Table I and II indicates
that there’s no result in that block .

B. Real World Data

We then conduct simulations on two real world data sets,
MNIST handwrite data set [26] and Abalone class data
from UCI machine learning repository [27]. Abalone data
set contains 4,177 instances and is used to the prediction
of abalone ages from physical measurements. A common
preprocess step is to treat Abalone problem as a 3-category
classification problem by grouping ring classes 1-8, 9 and
10, 11-29. 70% percent of target class are used as original
training set. MNIST is a high dimensional data set which
has a handwritten digit from 0 to 9 with 784 pixel in total
as the features. The task is to classify a digit as one of the
10 categories. Digits 1, 2, 3 are chose as targets, all other
digits as negative class. MNIST has a training set of 60, 000
examples, and testing set consists of 10,000 patterns. Since
SVDD can not get results on three digits with more than
4,000 training size, we just choose 4,000 target digits for
experiments. The kernel we used here is still Gaussian kernel.
Clustering number and the neighbor number £ will be set to

30 and 35 respectively.

The comparison results between the proposed method and
weighted SVDD are presented in Table III. Parameters of
edge detector presented in the first column with different
data sets. First three rows presents three class problems about
Abalone data. The proposed approach successfully decreased
the training size and preserved the accuracy with much faster
speed. In the last three rows of Table III, similar results prove
that our fast training method using edge detection can obtain
desirable performance on large MNIST data set.

V. CONCLUSIONS

In this paper, we proposed a fast SVDD training method
using edge detection to improve the time complexity problem
of SVDD on large data sets. For better edge detection,
an Density-Angle based edge detector was presented. Edge
points and clustering centers were extracted and merged to
the reconstruction training set with small size. And weighted
SVDD was also adapted to defend the influences of noises.
Experiments on a number of artificial and real-world data
sets have shown its performances in terms of training size,
training time and AUC accuracy. As shown in the results, our
method trained on reduced training set could spend much less
CPU time and get comparative AUC accuracy or even better
than SVDD in some cases.
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TABLE I
COMPARISON RESULTS ON 10 TIMES
EXPERIMENTS(BANANA DATA,WITH STANDARD

DEVIATIONS)
[3]
Target Method AUC Size(%) | Time(%)
SVDD 0.9992(0.0211) 100 100 [4]
Bananal00
WSVDD+Re | 0.9996(0.0032) | 43.00 436.96 (5]
SVDD 0.9321(0.0569) 100 100
Banana200 (6]
WSVDD+Re | 0.9847(0.0124) | 30.10 116.85
Banana300 SVDD 0.8959(0.0196) 100 100 (7]
WSVDD+Re | 0.9915(0.0135) | 22.33 59.95 (8]
Bananad00 SVDD 0.9088(0.0372) 100 100 ]
WSVDD+Re | 0.9941(0.0033) | 21.00 48.82
SVDD 0.8839(0.0363) 100 100
Banana500 10
WSVDD+Re | 0.9932(0.0029) | 19.20 32.92 [10]
SVDD 0.8916(0.0191) 100 100
Banana600
WSVDD+Re | 0.9960(0.0145) 18.33 18.37 [11]
SVDD 0.9199(0.0061) 100 100
Banana700
WSVDD+Re | 0.9916(0.0208) 17.57 20.35 [12]
SVDD 0.9063(0.0228) 100 100
Banana800
WSVDD+Re | 0.9948(0.002) 16.23 15.88 ”
SVDD 0.9052(0.0124) 100 100 [13]
Banana900
WSVDD+Re | 0.9893(0.001) 15.44 12.67
SVDD 0.9046(0.0117) 100 100 [14]
Bananal000
WSVDD+Re | 0.9797(0.0168 ) | 15.20 10.43 [15]
SVDD 0.9038(0.0092) 100 100
Bananal500
WSVDD+Re | 0.8974(0.0027) 14.66 438
Banana2000 SVDD 0.9078(0.0035) 100 100 [16]
WSVDD+Re | 0.8966(0.0275) 15.00 5.45
Banana3000 SVDD 0.8963(0.0023) 100 100 -
WSVDD+Re | 0.8894(0.0046) 14.35 1.65
Banana6000 SVDD
WSVDD+Re | 0.8931(0.0198) 14.32 * [18]
[19]
TABLE III
COMPARISON RESULTS ON 10 TIMES EXPERIMENTS(REAL [20]
DATA,WITH STANDARD DEVIATIONS )
] ) [21]
Target Method AUC Size(%) | Time(%)
SVDD 0.8515(0.0493) | 100 100
Abalonel-8 [22]
£=0.30=006 | WSVDD+Re| 0.8509(0.0063)| 56.15 | 28.44
SVDD 0.6375(0.0054)| 100 100 (23]
Abalone9-10
e=0.1,6 =04 | WSVDD+Re | 0.6551(0.0124)| 18.85 | 2 [24]
SVDD 0.7560(0.0171)| 100 100
Abalone11-29 ( ) [25]
e=0.406=05 | WSVDD+Re| 0.7563(0.0135)| 49.24 | 17.48 061
SVDD 0.9843(0.0015)| 100 100
MNISTO
e=0.1,6 =03 | WSVDD+Re | 0.9842(0.0020)| 26.62 | 3.51 7]
SVDD 0.9941(0.0023)| 100 100
MNISTI
e=0.1,6=0.3 | WSVDD+Re | 0.9949(0.0147)| 26.04 | 3.58
SVDD 0.8197(0.0031)| 100 100
MNIST2
£=0.1,6 = 0.3 | WSVDD+Re | 0.8199(0.0027)| 26.42 | 3.97
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