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Abstract—Clustering, one of the important data mining 
techniques, has two main processing methods on data-based 
similarity clustering and space-based density grid clustering. The 
latter has more advantage than the former on larger and multiple 
shape and density dataset. However, due to a global partition of 
existing grid-based methods, they will perform worse when there 
is a big difference on the density of clusters. In this paper, we 
propose a novel algorithm that can produces appropriate grid 
space in different density regions by simulating cell division 
process.  The time complexity of the algorithm is O(n) in which n 
is number of points in dataset. The proposed algorithm will be 
applied on popular chameleon datasets and our synthetic 
datasets with big density difference. The results show our 
algorithm is effective on any multi-density situation and has 
scalability on space optimization problems. 

Keywords—data clustering; grid clustering;unsupervised 
learningt  

I.  INTRODUCTION  
Clustering is an important data analysis method with 

unsupervised learning process. The objective of clustering is 
to divide a given dataset into several clusters based on data 
similarity or density distribution. So, it can be applied in many 
fields such as machine learning, biology, image processing 
and pattern recognition. 

In [1], there are four major categories classified on 
clustering patterns as following: partition-based, hierarchical-
based, density-based and grid-based methods. K-means [2], a 
typical partition-based method and hierarchical clustering 
(HC) have been popular in clustering analysis area.  Many 
research efforts have been done on them such as Genetic K-
means [3], CURE [4] and ROCK [5]. However, these 
algorithms require the number of clusters in advance, which is 
considered to be one of the biggest drawbacks and are 
weakness on dealing with multiple shape dataset.  

For avoiding the above problems, DBSCAN [6] and SNN 
[7], density-based methods, have been proposed. These 
density-based algorithms assume that two neighbor points with 
same cluster share similar number of points in a given area and 
find clusters automatically by expanding points adjacent to 
each other. Although they can easily find clusters with different 

sizes and shapes, there is evident drawback on processing 
dataset with variant densities. Moreover, the time complexity is 
high on large dataset because they need to calculate the 
similarity of all pairs of points. There are many variants trying 
to improve effect and speed such as DD-DBSCAN [8] and ST-
DBSCAN [9]. 

In order to process large dataset more efficiently, the grid-
based clustering algorithm [10] [11], has been proposed. It 
partitions data space into a given number cells and all 
operations of clustering are on these cells instead of data 
objects. The feature of the high processing rate has attracted 
many attentions. In [12-16], these researches attempt to 
overcome the drawback of the gird structure caused by the 
global density parameter so that the algorithms can accurately 
process the multiple density dataset.  GMDBSCAN [12] and 
GRPDBSACN [14] use suitable local parameters by 
combining DBSCAN algorithm in different density regions to 
generate clusters. GDCLU [16] identifies local density based 
on the density of neighbor grids. Edla and Jana [15] try to find 
an optimal gird size using the cluster and local outlier factor. 
But the existing grid-based algorithms still cannot break the 
limitation on processing dataset with big density difference, 
because they do the clustering on the global size of the gird 
structure. For example, Fig. 1 shows a dataset with two small 

 
Fig. 1.  A dataset with three clusters with big difference of density. 
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clusters and one big cluster.  If the global size is set well for 
the big cluster, two small clusters will be identified as a same 
group. If it is set for the small cluster, all of points in the big 
cluster will be regarded as noise. So, there is no a suitable 
global size for this kind of dataset. Existing grid-based 
algorithms cannot deal with this problem. 

In this paper, we propose a new half-split grid clustering 
algorithm which partitions different density areas into suitable 
gird structures respectively by simulating cell division. 

Our algorithm uses the binary tree to construct the half-split 
grid structure. Initially, the whole data space is regarded as the 
root node of the tree. When the number of data points 
contained by some leaf node exceeds a given threshold, the 
space of the node will be split into two child nodes with the 
same size of the space. The split process will continue until 
the space of all leaf nodes of the binary tree contains the data 
points whose number is less than the threshold. So, our gird 
structure consists of space grids contained by all leaf nodes 
whose density distribution of data points is similar in the same 
level of the binary tree.  Finally, clusters will be produced in 
our half-split gird structure. 

Therefore, the proposed algorithm can process arbitrary 
multi-density dataset and the time complexity is the same low 
as grid-based algorithm. 

The organization of the rest of paper is as follows. In 
Section II, we describe the idea and implementation of our 
half-split grid clustering algorithm in data space. Section III 
gives the experimental results. Section IV is the conclusions 
and the future work. 

II. THE PROPOSED HALF-SPLIT GRID ALGORITHM 

A. A Behavior Simulation on Cell Division 
Existing grid-based algorithms regard data space as a 

collection of cells with the same size.  Clustering on the same 
cells has a great limitation on processing multi-density dataset. 
In our research, we find we can break the limitation and let 
cells multiply their generations with a suitable size in different 
density areas by simulating the division behavior of cells. In 

Fig.2, the left shows a Meiosis process in which DNA is 
reduced to half the original number when some condition is 
satisfied.  The right of the Fig.2 shows our simulation on cell 
division. But the space of the parent gird will be reduced to half 
the original size rather than points (like DNA). In our half-spilt 
method, a split condition needs to be set in advance. When 
some gird reaches the condition, the half-split will be caused on 
this grid. For example, in Fig.2, SplitCon(D (g)= 3) means that 
a grid containing 3 points will be split to half iteratively until 
no any descendant grid contains more than 2 points. 

So, our method initially regards whole data space as a cell.  
We put points into their corresponding cells one by one. If 
some cell reaches the split condition, we do the half-split 
operation on this cell until no descendant of it satisfies the split 
condition. Then we repeat the procedure until all points are put 
in the cells they belong to. Finally, we generate clusters on the 
half-split gird structure which is built by using binary tree. 
Fig.3 shows a half-split result of the dataset in Fig.1 with the 
SplitCon(D(g) = 4). 

B. Formal Definitions 
Definition 1: Let S = S1×S2×···×Sd  be the given data space 

with d dimensions where Si = [xi,yi] (1≤i≤d) (xi,yi ∈R and xi < yi). 
The dataset in the S containing n data points can be represented 

 
Fig. 2. (a) Division process on cell meiosis. (b) Half-split process on a grid with satisfying the split state SplitCon(D(g) = 3).   

Fig. 3.  A split result of the dataset in Fig.1. 
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as P = (p1, p2, …, pn) where pi = (pi1, pi2, …, pid)(1≤i≤n), pij 
(pij∈Sj) represents the value in the jth dimension of the ith data 
points. 

Definition 2: Half-Split Tree (HS-Tree) is a structure of the 
Binary Tree generated by half split of the data space as follows: 

(1) The initial data space S is the root of the HS-Tree.  All 
other notes are the sub space s of the S where s = s1×s2×…×sd  
(si  ⊆ Si and s⊂ S, 1≤i≤d). 

(2) Each non-leaf note is the space split to two sub space 
with the same size and contains the position information of the 
split.  

(3) All leaf notes constitute our half-split grid structure. 
Each data point will be put in its corresponding leaf note by 
indexing HS-Tree from top to down. So, each leaf note is a grid 
which can be represented as Gi = (gi1, gi2, …, gid)( gij ⊆ Sj, 
1≤j≤d) (i=1,2, ..., n, n is the number of leaf notes) and G1 ∪ G2 
∪…∪ Gn = S. 

Definition 3: Let Gx = (gx1, gx2, …, gxd) and Gy = (gy1, gy2, 
…, gyd) be any two grids. If {∃ gxi∈Gx, ∃ gyi∈Gy | gxi∩ gyi = 
∅ and gxi∪ gyi is a continuous space gxyi defined as {∀ k ∈ 
[Min(gxyi), Max(gxyi)] | ¬∃  (k ∉gxi  and k ∉gyi  )}( 1≤i≤d)}, 
then we call Gx and Gy are neighbor each other defined as 
Neighbor(Gx, Gy, con) where con means a connection between 
two neighbor grids. When a gird is split, it is necessary to 
evaluate each neighbor of the parent gird whether it is also 
neighbor for two child grids. If it is judged neighbor to a child 
grid by the above definition, then a connection will be created 
between them. 

Fig.4 shows an example to illustrate the production of 
neighbor connections on the split process.  In the left graph, 
the 2D space X×Y  has been split into three grids with G1, G2 
and G3. G3 has two connections C2 and C3 which connect 
two neighbors G1 and G2 respectively. In the right graph, G3 
is split into G4 and G5, and a connection C4 is created firstly 
between G4 and G5 because they must be neighbor each other. 
Then the neighbors of the parent G3 are assigned to the child 
grids.  

For the child G4, (G1, G4) in X dimension and (G2, G4) in 
Y dimension satisfy the definition 3. So, G1 and G2 also are 
neighbors of G4 and two connections C2 and C3 are produced 
to connect two neighbors labeled as Neighbor(G1, G4, C2) and 
Neighbor(G2, G4, C3). For the child G5, it does not satisfy the 

definition 3 with G1 in Both X and Y. So G5 only has two 
neighbors G2 and G4. 

Definition 4: Grid density D(Gi) is defined as number of 
points contained by the grid Gi. 

N(Gi) is defined as a neighbor gird set of the grid Gi. 
L(Gi) represents a value about which lever the grid Gi 

located at on the HS-tree.  
So, a grid Gi can be called a core grid if only if it satisfies 

two conditions as follows: 
1. D(Gi) is equal or larger than the input parameter 

MinPts 

2. (2) ( )iL Gσ < γ.  

( )iL Gσ is the level deviation degree defined as: 
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Whereγis a threshold, Gj∈N(Gi) and n is the number of 
neighbor grids of the grid Gi.   

Definition 5: SplitCon(condition) is defined as a trigger 
condition. The half-spilt will take place when the condition is 
satisfied. In this paper, we set the condition as D(Gi) = 
2*MinPts. That means a grid will be split when the number of 
points in the grid reaches 2*MinPts. However, it is our future 
work that the condition can be set appropriately to solve other 
problems.  

In the following, we will introduce the detailed 
implementation about the half-spilt grid algorithm and the 
clustering on the gird structure. 

C. Grid Structure Production by Half-Split Algorithm 
Before we do the clustering, the data space should be 

changed into the grid structure by our half-split algorithm.  
Firstly, the HS-Tree will be initialized and the root of the 

tree is the whole data space S.  So, all notes under the root are 
the sub space of the S. In this paper, they are regarded as gird 
space Gi = (gi1, gi2, …, gid)( gij ⊆ Sj, 1≤j≤d). 

 
Fig. 4.  Neighbor relation construction of a grid being spilt 
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Secondly, we put data point into its corresponding leaf note 
one by one by indexing HS-Tree from top to bottom. If some 
leaf note contains 2*MinPts points (the split condition of the 
definition 5), this note Gi will be split into two child grids 
from the center of the MAX(gij)( gij∈Gi, 1≤j≤d).  Then, the 
neighbors of the parent note will be assigned to its 
corresponding child grids by the definition 3. The split process 
also will be run on child grids iteratively until no any grid 
satisfies the split condition. The spilt procedure ends when all 
data points are put into the HS-Tree and all leaf nodes do not 
reach the split condition.  

Finally, for optimizing the border grids of clusters, we will 
split the leaf node again whose level deviation degree is equal 
and larger than the threshold.  
The algorithm procedure is described as follows: 

( , , ) {
1 . {
2 . ;
3 . ;
4 ( ( ) 2 * ) {
5

I n i t i a l i z e H S T r e e w i t h w h o l e d a t a s p a c e a s t h e r o o t
G r i d S t r u c t u r e B u i l d H S T r e e h s D a t a s e t d M i n P t s

F o r e a c h p o i n t p i n d
f i n d c o r r e s p o n d i n g l e a f n o t e g f o r p o n h s
p u t p i n t o g

I f S p l i t C o n D g M i n P t s i s t r u e
H a l f S p l i t

−

=

( )

( ) ;
6 }
7 . }
8 . {
9 . {

1 0 . ( ) ;
1 1 . }
1 2 . }
1 3 . ;
}

iL G

g

F o r e a c h l e a f n o t e g o n h s
I f

H a l f S p l i t g

R e t u r n h s

σ γ≥

( ){
1. ;
2. 1 2 ;
3. 1 2;
4. ( ( 1) 2* ) {
5. ( 1);
6. }
7.

HalfSplit HSTree g
Select a dimension s with the largest size in all dimensions of g
Split g into g and g from the center of s
Create neighbor grids for g and g

if SplitCon D g MinPts is true
HalfSplit g

i

=

( ( 2) 2* ) {
8. ( 2);
9. }
}

f SplitCon D g MinPts is true
HalfSplit g

=

 

So, all leaf nodes and their connections on the HS-tree form 
our grid structure where the clustering will be done after the 
half-split algorithm. 

D. Clustering on Half-Split Grid Structure 
The clustering pattern on our gird structure is similar with 

the basic grid-based method which generates clusters by 
finding their core girds and expanding them from their 
neighbors. But, the definitions of the core gird and neighbor 
grid is different with the existing grid-based methods.   

For our gird structure, there could be two close or 
overlapped clusters with different grid size. So, it is not 
enough to define a dense grid as a core grid. Our core girds are 
not only the dense grids whose density is equal or larger than 

the MinPts, but also have the similar size with the neighbor 
girds. The similarity of the size can be indicated by the level 
deviation degree with the neighbor girds because the girds in 
the same level of the HS-Tree have the same size. The 
definition 5 shows the definition of our core grids. 

Our neighbor grids are also different with the existing gird 
structure which has the uniform gird size so that the neighbor 
grids can be found by the serial number of the gird in ever 
dimension.  The neighbor connections should be generated in 
the split process of the gird for locating the neighbor girds. 
The definition 3 shows the process about the production of 
neighbor grids. 

So, our clustering algorithm is showed as follows: 
Step 1: Find a core grid as an initial core area of a cluster.  
Step 2: Expand the core area by merging neighbor core grids 
continuously until no core grid can be found around the core 
area. 
Step 3: Generate a cluster by merging boundary girds around 
the core area. 
Step 4: Repeat Step 1 to Step 3 until no core gird can be found. 
Step 5: The data points in the rest grids will be labeled as 
noises. 

III. EXPERIMENTS 
In this section, we evaluate the performance of our half-split 

grid clustering algorithm on three datasets. Two datasets are 
frequently used by the existing grid-based clustering 
algorithms and we want to prove we also can do well in their 
datasets. The other one is our complex synthetic dataset which 
cannot be processed by other grid-based algorithms.  

In experiment 1, we use two Chameleon datasets [17] t4.8k 
and t7.10k showed by Fig.5(a) and (b). The t4.8k   has 8000 
data points and 6 clusters with many noises. T7.10k has 10000 
data points and 9 clusters with many noises. Each cluster has 
arbitrary shape and similar density in these datasets. Many 
existing gird-based algorithms can process this datasets well.  

Fig.5(c) and (e) shows the space partition by using our 
algorithm. Fig.5(d) and (f) shows the results of our half-spilt 
grid clustering algorithm on the two datasets.  

Table I shows the comparison with GDCLU on the speed. 
So, from the above results, we can see our algorithm has the 

similar effect and speed on the datasets experimented by other 
grid-based algorithms. But, our half-spilt gird structure has 
more advantages than the uniform grid structure because the 

TABLE I 
PERFORMANCE COMPARISON OF GDCLU AND HALF-SPLIT GRID 

 IN MILLISECOND  
 

 t4.8k t7.10k 

Our algorithm 68 72 

GDCLU 63 36 
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sparse space will be partitioned as one big grid rather than 
many empty girds partitioned by existing grid-based algorithm. 
The advantage of the structure could be reflected in sparse 
high dimension space because the data space is partitioned 
optimally. So, the next step of our research is going to 
improve our algorithm to process high dimension datasets 
efficiently. 

In experiment 2, we create a complex synthetic dataset 
which has the embedded clusters structure with big difference 

on the density. The dataset showed in Fig.6(a) consists of 5 
clusters and has 984 data points. Two middle clusters and two 
small clusters are embedded in a big cluster. The whole space 
of each embedded cluster is smaller than the interval space 
among data points of the big cluster. Fig.6(b) shows a uniform 
gird structure with a critical size on the synthetic dataset. If the 
uniform size is smaller than the critical size, then all the points 
of the big cluster will be regarded as noises. Fig.6(c) shows 
the above situation. On the contrary, if the uniform size is 

Fig. 5.  Experiments on dataset t4.8k and t7.10k with MinPts = 4 and γ=0.8 
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equal or larger than the critical size, then two middle clusters 
and two smaller clusters will be regarded by existing grid-
based clustering algorithms as two clusters. Our half-split gird 
structure which generates appropriate grid structure in 
different density space are showed in Fig.6(d) and the 
clustering results are showed in Fig.6(e). From the 
experiments, we see our half-split gird clustering algorithm 
can process arbitrary density and shape dataset. Moreover, the 
algorithm can utilize the data space optimally according to the 
density and it could be extend to process space optimization 
and segmentation problems in future our work.  

However, the high dimension space is still the weakness of 
our algorithm. When producing our gird structure on a high 
dimension space, our algorithm will take much time on 
splitting a sparse grid space. We call this split shocking 
problems. Solving the above problem is also our next work. 

IV. CONCLUSIONS 
In this paper, we introduce a new half-split grid clustering 

algorithm on multiple density dataset. The algorithm partitions 
data space into the gird structure which has the corresponding 
suitable size in different density areas by simulating the 
behavior of the cell division. So, the half-split gird algorithm 
can generate clusters efficiently on arbitrary multi-density 
dataset.  The experiments show our algorithm can deal with the 

synthetic dataset which existing grid-based methods cannot 
deal with. 

But our algorithm still cannot process high dimension space 
well. Especially, it will take much time on space split process 
when data are discrete in high dimension space. 

In the future research, we will improve our algorithm for 
processing high dimension dataset. We also want to apply our 
space division ideas in other fields such as image processing 
and classification by extracting optimal space. 
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