
Improving Machine Vision via Incorporating
Expectation-Maximization into Deep Spatio-Temporal Learning

Min JIANG∗, Yulong DING∗, Ben GOERTZEL†, Zhongqiang HUANG∗, Changle ZHOU ∗,Fei CHAO ∗ ‡
∗Department of Cognitive Science and Fujian Provincial Key Laboratory of Brain-like Intelligent Systems

Xiamen University, P. R. China
{minjiang, dozero, fchao}@xmu.edu.cn

†Novamente LLC, 1405 Bernerd Place, Rockville,MD, 20851, USA
ben@goertzel.org

Abstract—The Deep Spatio-Temporal Inference Network
(DeSTIN) is a deep learning architecture which combines un-
supervised learning and Bayesian inference. The original version
of DeSTIN incorporates k-means clustering inside each process-
ing node. Here we propose to replace k-means with a more
sophisticated algorithm, online EM (Expectation Maximization),
and show that this improves DeSTIN’s performance on image
classification and restoration tasks.

I. INTRODUCTION

Deep learning systems are receiving increasing attention
lately, for two good reasons. There is escalating biological
evidence [1, 2] supporting these networks as models of neural
information processing, especially in the perceptual cortices.
Further, an increasing variety of applications [3–5] have shown
that deep networks can greatly increase accuracy, within
reasonable computational performance bounds. A number of
influential and successful deep learning models have been
introduced, including Deep Belief Networks (DBN) [6], S-
tacked Autoencoders (SAE) [7] and Convolutional Neural Nets
(CNN) [8]. Here we focus on the DeSTIN deep learning
system [9, 10], which differs from the most common deep
learning frameworks in multiple respects. DeSTIN bears the
closest resemblance to Jeff Hawkins’ Hierarchical Temporal
Memory (HTM) system [11], but differs from HTM in many
ways, some of which (such as the differing mechanisms for
top-down feedback) are critical to its successful functionality.

DeSTIN originated as a mathematical model of the concep-
tual structure and dynamics of the human visual and auditory
cortex; and, since its release as open source software, has
acquired a variety of sophisticated features. Particular strengths
of DeSTIN are its ability to handle temporal data, to learn
from a small number of training examples, and to interface
with external cognitive software systems [12]. While DeSTIN
is in principle intended as a general model of perception
processing, prior practical work with DeSTIN has focused on
vision processing, and we will continue this focus here.

In an image classification context, it has been shown that
use of DeSTIN to generate feature vectors can improve clas-
sification performance over standard methods [13]. However
the speed of convergence and accuracy of DeSTIN is still far
from perfect, particularly when the training examples contain
noise. Hence, the DeSTIN research community has recently
focused its efforts on techniques to improve DeSTIN’s internal
mechanisms, so as to create a more powerful machine vision
system. The present paper reports one thrust in this direction,

the replacement of k-means with online EM within DeSTIN’s
internal clustering, which appears to have a positive effect on
DeSTIN performance.

DeSTIN’s dynamics may be divided into feedforward and
feedback aspects. In the former, a DeSTIN processing node
in a certain layer handles the information passed from the
lower layers by unsupervised clustering, and then passes the
processed information to the higher level, thus enabling higher
layers to encompass increasingly abstract data patterns. In the
feedback aspect, each layer of DeSTIN can use feedback from
the higher layers, which is regarded as “advice” about how
to modify the beliefs in that layer. The advice is inserted into
the “belief”data structures on which clustering operates, within
each node.

From this capsule description, it is easy to see that improve-
ment of the core clustering algorithm used within each DeSTIN
node, has significant potential to improve DeSTIN’s overall
performance. This observation motivated the work reported
here, the goal of which was to obtain a new deep network by
replacing the k-means-like clustering method (Starvation Trace
Winner-Take-ALL or ST-WTA) standardly used within DeS-
TIN, with a more sophisticated clustering algorithm, online
Expectation-Maximization (EM). Our goals were to increase
the accuracy and training speed of the DeSTIN system. Online
EM was chosen for this purpose for theoretical reasons; it has
been shown by Cappé et al. [14] to have a number of useful
properties, e.g. fast and monotone convergence to a stable point
of maximum likelihood.

There have been two previous attempts to improve DeS-
TIN’s clustering component. Young, S.R. [15] replaced the
WTA with an incremental version. However, his work retained
the mechanism of WTA, so the inherent limitations of WTA
were not overcome. Rose D.C. [12] evaluated the results of the
unsupervised clustering algorithm in every layer of DeSTIN by
a pseudo-entropy method and then adjusted the learning rate.
We feel our current approach, replacing WTA with online EM,
is more promising than putting band-aids on the fundamentally
limited WTA algorithm.

There have also been other papers improving and applying
the original DeSTIN algorithm, in ways largely orthogonal to
the present contribution. Zhang, Y. [13] made interesting use
of DeSTIN’s recognition ability by combining DeSTIN with
KNN, thus achieving good performance. Based on DeSTIN

. The Corresponding author: Fei CHAO, email: fchao@xmu.edu.cn.

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1804

, Goertzel [16] proposed Uniform DeSTIN, the basic idea
being that all the nodes on the same level of the DeSTIN
hierarchy should share the same library of patterns. That is,
all the nodes on the same level should share the same list of
centroids. This change helps to deal with large scale data since
it is computationally feasible to have a much larger library of
patterns utilized by each node.

The paper is organized as follows. In Section II, we will
briefly introduce DeSTIN and its training process, including
ST-WTA, the clustering approach used in DeSTIN traditional-
ly. In Section III, after a short account of Online EM, we will
make a comparison between ST-WTA and Stepwise Online
EM from a theoretical point of view, and introduce EM-
DeSTIN. Comparative analysis of the ST-WTA and Online
EM approaches in the DeSTIN context gives insight into why
the standard DeSTIN version’s performance declines sharply
when noisy training data are present. We will prove that, under
certain assumptions, EM-DeSTIN, possesses better properties
than the original DeSTIN network.

In Section IV, experimental results will be presented. These
experiments were carried out to show the performance of
EM-DeSTIN in different aspects, such as accuracy, speed of
convergence, and the ability to handle noisy training examples.
As well as comparing EM-DeSTIN to traditional DeSTIN
on classification and image restoration tasks, we will also
compare it to other mainline Deep Networks, e.g. Deep Belief
Network (DBN), Convolutional Neural Network (CNN) and
Autoencoder. Finally, Section V gives a brief conclusion.

II. BACKGROUND

In this section, we give a basic overview of DeSTIN, and
then briefly analyze the reason why DeSTIN, in its traditional
form, cannot deal with noisy data as well as one might hope.

A. DeSTIN

At the macroscopic level, as shown in Fig. 1, the structure
of DeSTIN is pyramidal. The pyramid has the following
meaning: at the n−1-th level, every 2*2 nodes forms a group,
and the outputs of the nodes are fed to a node on the n-
th level. Similarly, on the n-th level, every 2*2 nodes will
form a group, and these nodes are connected to a node on the
n + 1-th level. Each layer of DeSTIN contains a square grid
of nodes and every node in the intermediate layers (hidden
layers) contains a number of centroids 1. In the lowest level of
DeSTIN, raw data feeds into the corresponding nodes directly.
We can consider that DeSTIN abstracts the raw input data to
a different extent in the different levels.

The centroids associated with a node depict each possible
“state”s for the node. At the beginning, the estimated centroids
are initialized to random values. DeSTIN employs a special
online algorithm, ST-WTA, to carry out a clustering operation
on the input (or observation) at a given time, based on
the centroids for that node at that time. It means that an
observation o coming from the lower level is assigned to a
single estimated centroid χ based on the minimum distance.
Given observation o, a belief state s, and belief state of a higher
level node a 2, DeSTIN uses the following formula to update
the belief state of a node from s to s′:

Fig. 1. The construction of DeSTIN

b(s′|a) ∝ P (o|s′){
∑
s∈S

P (s′|s, a)b(s)} (1)

where P (o|s′) =
d−1
j∑

j d
−1
j

is static pattern similarity. dj
means the distance between the observation and the centroid
j. The thinking behind the formula is that: P (s′|s, a) is used
to characterize the system dynamics and it modulates the static
pattern similarity, so that the belief state inherently captures
both spatial and temporal information regarding the raw input
data.

The training process of a layer in DeSTIN can be un-
derstood roughly as follows: At first, every node obtains
observations from the corresponding lower layer nodes, and
DeSTIN calculates the “belief state” of the winning centroid
based on the clustering results and computes the belief values
of the nodes according to the above formula 1, after that
DeSTIN will feed the belief values to the corresponding nodes
in the higher level. (and recalled that when computing the
belief value of a node, DeSTIN will receive information, called
“advice”, from the higher level node.) Repeating this form
bottom to top, and DeSTIN outputs a “belief” value at the top
level. Those belief values obtained from higher levels 3 can
be regarded as a special kind of feature derived and abstracted
from the raw data. The feature could have different uses, for
example it can be fed into different classifiers, says KNN or
SVM, to carry out pattern recognition.Or they can be fed into
a more general cognitive system, to be correlated with other
types of inputs such as auditory, verbal or sensory input, or
with abstract knowledge obtained from language or structured
knowledge bases.

1. How many centroids in a node depends on a balance between resource
limitation and representational capacity.

2. In DeSTIN, the belief state of a higher level node is called advice, which
is the index of the winning centroid in the higher level node.

3. Depending on various applications, we can take the belief values that
come from different numbers of levels as a “feature”.

1805

B. ST-WTA and its drawback

The Winner-Take-All approach is a well-known competi-
tive learning algorithm. When the algorithm is used to carry
out clustering in DeSTIN, only one centroid – the one which
is most similar to the observation, based on minimum distance
– is updated, and the rest of the centroids remain unchanged.
Despite the fact that WTA is rapid and simple, if the centroids
are in poor initial positions, it can give bad results. DeSTIN
utilizes a variety of the normal WTA, starvation trace WTA
(ST-WTA for short), to circumvent this problem. The key idea
of the ST-WTA is depicted by the following formula:

dxi = ‖xi − o‖(1− ψi) (2)

where xi is a high-dimensional vector which be used to
describe the i-th centroid and o represents an observation,
so that di is the distance between the i-th centroid and the
observation. ψi is called starvation factor. When a centroid,
for example the i-th centroid, is updated, the starvation factors
ψj(j 6= i) of the other centroids are increased correspondingly.
This was designed to avoid a certain centroid has the sole right
to be updated which is caused by the special initial value.

However, all approaches based on the WTA, by nature, are
following the logic of gradient descent, which has implications
for the convergence speed of DeSTIN, and its robustness with
regard to noisy data. We will analyze these aspects in more
detail in the next section.

III. EM-DESTIN

The key innovation described in the current paper, EM-
DeSTIN, results from replacing ST-WTA with Online EM,
an alternative unsupervised clustering algorithm. In the first
section, we introduce the main ideas of Online EM and then
analyze why Online EM possesses better convergence speed
and robustness than ST-WTA. After that, we described the
training steps of EM-DeSTIN in detail.

A. Online EM

A traditional EM algorithm is an iterative method for
finding maximum likelihood or maximum a posteriori (MAP)
estimates of parameters in statistical models. Briefly, EM
algorithms alternately carry out two steps: an Expectation
(E) step and a Maximization (M) step. The E step computes
an expectation of the likelihood estimate by including the
latent variables as if they were observed, and the M step,
computes the maximum likelihood estimates of the parameter
by maximizing the expected likelihood obtained in the E step.
The parameters found in the M step are then used to initiate
another E step, and the process is repeated.

Traditional EM algorithms always run in an offline mode,
which means that the algorithms are given the entire dataset
under consideration from the beginning, and are required to
output maximum likelihood or MAP estimates of the param-
eters at hand. However, the offline mode is not always effi-
ciently applicable, so some scholars have conducted research
[14, 17, 18] on Online EM algorithms. Unlike offline EM,
Online EM algorithms process their observations one-by-one,
in a serial fashion.

The first online EM algorithm, incremental online EM
(iEM) was proposed by R.M. Neal and G.E. Hinton [18].
The basic idea of the iEM is that it computes a maximum
likelihood estimate for each just arrived sample, thus obtaining
a parameter estimate s′. After that the difference between s′

and s (the parameter estimate based on last observation) is
used to adjust the next round of computation. A point worth
emphasis is that, although iEm has a fast speed of convergence,
it is still has jump-updating problems if there exists noise in
the observations.

Cappé and Moulines [14, 19] proposed another online EM
algorithm, step-wise online EM (sEM), which takes advantage
of stochastic approximation theory. The sEM seeks the esti-
mated value of the parameter in a successive approximation
manner, which provides effective performance even under the
impact of random noisy data. Algorithm 1 depicts the working
process of sEM.

Algorithm 1: Stepwise Online EM(sEM)
si ← initialization;
k ← 0;
for each example x(i), i = 1, . . . , n in random order do

E:
s′i ←

∑
z P (z|x(i); θ)φ(x(i), z);

si ← (1− ηk)si + ηks
′
i;

k ← k + 1;
M:
θi+1 = argmax si(x);

end

The first part of the E step of sEM is similar to classical EM
algorithms. It computes the posteriori probability of the hidden
variable, s′i according to the newly arrived sample, and it takes
this value as the current estimate of the hidden variable. How-
ever, due to the assumed imprecision of parameter estimation
for each sample, in the last part of the E step, the sEM updates
the parameter as a weighted mean according to the formula
si ← (1 − ηk)si + ηks

′
i, where ηk = k−α, where k is the

number of updates made so far. In this way, sEM can decrease
the effect of an excessively limited number of samples, as well
as disturbances caused by noisy samples. Finally, sEM doesn’t
require solution of the problem of choosing the stepsize ηk,
results from the stochastic approximation field prove that if the
conditions,

∑∞
i=0 ηk =∞ and

∑∞
i=0 η

2
k ≤ ∞, are satisfied, the

algorithm can be guaranteed to converge to a local optimum.
In practical use [20], we generally take ηk = (k+2)−α, where
0.5 < α ≤ 1.

B. sEM VS ST-WTA

The version of EM-DeSTIN to be proposed here deploys
sEM in place of ST-WTA within each DeSTIN node. In order
to more fully motivate and understand this substitution, we
present a few theoretical results regarding these methods.

ST-WTA updates cluster centers based on the following
formula: {

j = argmini ||µti − ot||
µt+1
j = µtj − α(µtj − ot)

(3)

where ot is the t-th (t ∈ {1, . . . ,m}) sample and µtj is the
location of the center j when sample ot at the time t. The first

1806

part of the above formula is used to determine which cluster
center to be updated, and the second part describes how to
update the center.

Theorem 1 The ST-WTA is a first-order approximation.

Proof: Let us define a target function f(µ1, . . . , µn) as
follows:

f(µ1, . . . , µn) =
m∑
i=1

min
j=1...n

‖µj − oi‖2

where µj(1 ≤ j ≤ n) represents the location of the j-th
clustering center and oi means the i-th observation. It sums
distance between each observation and the closest clustering
center. If we use a first order approximating method to min-
imize the function, for each µj (1 ≤ j ≤ n), the first partial
derivative is:

∂f

∂µj
= 2

∑
oi∈µj

(µj − oi)

where oi ∈ µj indicates that µj is closest to oi over all centers.
Then µj is updated by

µ′j = µj − α
∂f

∂µj
= µj − α

∑
oi∈µj

(µj − oi) (4)

Consider that observations are received one at a time, we
can rewrite Eq.4 in an online form:

µ′j = µ
tk+1

j = µt1j − α(µ
t1
j − o

t1)− · · · − α(µtk−1

j − otk−1)

µ
tk
j

− α(µtkj − o
tk)

(5)

where k is the number of observations which belong to µj ,
oti means that the observation is received at time ti (0 < t1 <
t2 · · · < tk) and µtij represents the center µj at time ti. As a
consequence, when an observation ot is received, we update
the closest center µtj by

µt+1
j = µtj − α(µtj − ot) (6)

It can be seen that Eq.6 is equal to Eq.3, which indicates
that the ST-WTA is working as a first order approximation.

It is easy to get the following theorem from the literature
[19].

Theorem 2 The sEM is a second order approximation.

Proof: According to algorithm of the sEM (algorithm1),
we find that for n+1-th sample On+1, the parameter θn+1 is
updated as follows:

θn+1 =argmax(Qn(θn)+

ηn+1(E[log{f(Xn+1; θn)}|On+1)]−Qn(θn))
(7)

where Qn(θn) is the posteriori probability of the hidden
variable Xn, which is calculated according to probability
density function f(x; θn), and ηn is the relaxation factor of
nth sample. Through the first-order Taylor series expansion,
the formula 7 is transformed into:

θn+1 = θn + γn+1I
−1(θn)∇θ log{f(Xn+1; θn)}+ γn+1ρn+1

Fig. 2. The experimental result of sEM and ST-WTA

where ρn+1 is the integral remainder term of the above Taylor
series, and limn→∞ ρn = 0. I(θn) is the Fisher-information
matrix. When the model is an exponential family model,I =

−∇2
θ log{f(Xn+1; θ)}. So θn+1 = θn− f ′(θn)

f ′′(θn)
, which means

sEM is a second approximation method.

The above theorems show that, in most cases, sEM will
have better performance than ST-WTA. An intuitive way to
summarize these theorems is to say that sEM uses a quadratic
surface to fit the local surface of the current location, whereas
ST-WTA just uses a flat surface to fit the local surface.
So under ordinary circumstances, sEM should have better
robustness and convergence speed than ST-WTA.

To validate the practical relevance of these theoretical
notions, we conducted comparative experiments with sEM and
ST-WTA in a noisy environment. The result (Fig. 2) verifies
our theoretical conclusions.

C. EM-DeSTIN

In this section, we will describe the training and testing
process of EM-DeSTIN in more detail. The overall structure
of EM-DeSTIN is identical to that of DeSTIN (refer to Fig.
1). In the architecture of EM-DeSTIN, four nodes in a level
are assembled into a single group, and the output of the group
is associated with the input of a corresponding node in the
upper level. There are several centroids in a node, and those
centroids can be understood as “distribution of distributions” of
the features contained in raw data in some sense. The primary
difference between EM-DeSTIN and DeSTIN is the training
process; Fig 3 is a brief explanation of the training process of
EM-DeSTIN.

The following steps detail the process of training one level
in EM-DeSTIN.

Step 1: Some initializations need to be performed before
learning begins. This includes determining the number
of levels according to input data, determining how

1807

Fig. 3. The Training Process of
EM-DeSTIN

Fig. 4. The Testing Process of EM-
DeSTIN

many centroids will be included in a node, setting
an initial value for each centroid, and initializing the
PSSA table.

Step 2: Each node receives a belief vector sent from the nodes
in the lower level and advice sent from the parent
node.

Step 3: Each centroid in a node can be regarded as a dis-
tribution of belief values regarding the contents of
the spatiotemporal region referred to by the node.
Concretely, the value of a centroid is a vector that
has the same dimension as the belief vector a node
has received. For all nodes in a level, EM-DeSTIN
uses the sEM algorithm to update those centroids.

Step 4: EM-DeSTIN will calculate the belief value for every
centroid according to the updated results obtained
from the above step, the updated PSSA table, and the
“advice” sent from the parent node. Recall that the
belief value of a node is a vector which includes all
the values of the beliefs belonging only to itself; and
that the advice passed from the parent node denotes
the ordinal of a centroid in the upper level, which is
closest to the input belief value.

Step 5: EM-DeSTIN will combine the belief values of the four
nodes in a group into a vector, and output the vector
to the corresponding node in the upper level.

Step 6: The PSSA table will be updated according to the
results obtained from Step 4 and the parent node’s
advice.

Fig. 4 describes the testing process of EM-DeSTIN. It
resembles the training process. The main difference is that the
belief value centroids and PSSA table are not updated during
the testing phase.

IV. EXPERIMENT

We have implemented EM-DeSTIN as a modification of
the standard DeSTIN codebase, and uploaded the code4 to the

Fig. 5. The sample of dataset Fig. 6. The sample of noise dataset

open source version of DeSTIN, which is hosted in the Github
repository of the OpenCog AI project. Using this implemen-
tation, we conducted a three-part program of experiments. In
the first part we compared the speed of convergence of EM-
DeSTIN and DeSTIN. In the second part, EM-DeSTIN was
compared with DeSTIN and other deep networks, including
DBN and Stacked Auto-Encoders, in a noise-free situation.
In the third part, we tested the performance of these deep
networks under noisy environments. Our experiments were run
on a HP Z800 machine (96G memory) with Ubuntu 12.04 LTS.

Taking our cue from prior DeSTIN publications, we took
the MNIST handwritten Digit database5 as a benchmark. The
images in the MNIST were normalized and fixed-size (28×28
pixels). We randomly selected 5000 pictures from the MNIST
as training samples and 10,000 pictures as testing samples. For
the training samples, there were 500 pictures with each picture
represented by a single digit, such as a 9 or 3. Since there
are ten digits, there were 5,000 pictures total in the training
samples.

In order to carry out noise tests, two kinds of common
noise were added to the training samples: Gaussian noise and
Salt-and-Pepper noise. For the Gaussian noise, the mean was
0 and the variance was set to 0.01, 0.06 and 0.1 respectively.
For the Salt-and-Pepper noise, the noise density was set to
0.01, 0.1 and 0.5 respectively. Fig. 5 is the original pictures in
the MNIST dataset and Fig. 6 shows the pictures after adding
Gaussian noise and Salt-and-Pepper noise.

In these experiments, due to the size of the pictures in the
MNIST dataset, EM-DeSTIN was set to have 4 layers. Each
layer contained 8*8, 4*4, 2*2 and 1 nodes and every node in
the different layers included 16, 8, 4 and 1 centroids separately.
DeSTIN also had a similar setup.

For testing the convergence speed of EM-DeSTIN and
DeSTIN, we recorded the changes of the belief value of the top

4. https://github.com/minjiang/EM-DeSTIN
5. http://yann.lecun.com/exdb/mnist/

1808

Fig. 7. The speed of convergence: EM-DeSTIN VS DeSTIN

layers when the networks were trained to recognize the digit
“0”. Fig. 7 describes the result. It is clear that EM-DeSTIN
has a smoother converging curved line than DeSTIN, and it
reduces the time to reach steady state.

We also tested the robustness of EM-DeSTIN and DeSTIN.
We used noisy samples to train the networks. When the
networks were stable, we restored the images by using the
centroids in the top layers of the two network. The right part
of Fig.8 and Fig.9 indicates restored photos from EM-DeSTIN
under Gaussian noise and Salt-and-Pepper noise. The left part
of the same figure is a collection of restored photos from
DeSTIN under the same noisy setting. The experiment shows
that we can get a more detailed photo from EM-DeSTIN, and
that EM-DeSTIN has better performance.

In the second part of our experiments, we compared the
classification accuracy rate of EM-DeSTIN with that of other
deep networks. In our DeSTIN classification experiments, we
took the outputs of the top two layers of EM-DeSTIN and
DeSTIN as input features to train two SVMs, and used the
trained SVMs to classify the same testing samples separately.
For our testing with other deep networks, we chose three
different approaches, Deep Belief Nets (DBN), Convolutional
Neural Nets (CNN) and Stacked Autoencoders (SAE) to be
equal. The source code of these three other approaches was
obtained from DeepLearnToolbox 6.

Fig. 10 shows the changes of the accuracy rates over
different iterations. According to the figure, we can see that
EM-DeSTIN and CNN both have high accuracy (over 90%)
with 2000 iterations.

In the third part of our experiments, we carried out com-
parison tests under noisy environments. In this experiment, we
randomly selected 500 pictures of the digit “7” and added the
six different types of noise we mentioned above to the pictures
separately. Next, we used the noisy pictures to train DeSTIN
and EM-DeSTIN, and then took their outputs to train SVMs.
After the trainings were finished, we fed some pictures of the
same digit but without noise into the trained SVMs to carry
out recognition test. Table I describes the results, which shows
that EM-DeSTIN maintained a high accuracy rate in different
situations.

Fig. 8. The figure indicates feature restored photo of DeSTIN and EM-
DeSTIN under of the Gaussian noise.

Fig. 9. The figure indicates feature restored photo of DeSTIN and EM-
DeSTIN under of the Salt-and-Pepper noise.

The above results show, in terms of accuracy rate, CNN is
the winner of this particular contest. However, there are two
points requiring some explanation. At first, in our experiment,
the training time of EM-DeSTIN is much shorter than CNN.
For example, one iteration of training EM-DeSTIN takes 1.4s
but CNN spends 20s. Secondly, EM-DeSTIN constitutes a very
different sort of general pattern recognition framework than
CNN, as discussed in [9, 10, 16]. The experiments given here
were not designed to explore the full generality of DeSTIN’s
applicability or capability, but merely to investigate the impact
of substituting k-means with EM within DeSTIN. These results
quite clearly suggest that such a substitution is a good idea.

6. https://github.com/rasmusbergpalm/DeepLearnToolbox/

1809

TABLE I. SHOW THE ROBUST TEST OF EM-DESTIN ,UNIFORM DESTIN ,DBN,CNN AND AUTOENCODER(ITERATION 2000)

Gauss Salt-Pepper
0.01 0.06 0.1 0.01 0.1 0.5

DBN 0.808 0.635 0.575 0.884 0.727 0.239
CNN 0.972 0.963 0.962 0.979 0.971 0.923
SAE 0.878 0.846 0.833 0.904 0.856 0.778

DeSTIN 0.848 0.716 0.551 0.907 0.851 0.234
EM-DeSTIN 0.961 0.936 0.843 0.950 0.915 0.742

Fig. 10. Accuracy rate: EM-DeSTIN VS other Deep Networks

V. CONCLUSIONS

We have explored a modification of a deep learning archi-
tecture, DeSTIN, consisting of a replacement of DeSTIN’s in-
ternal ST-WTA clustering algorithm with a more sophisticated
online EM algorithm. First we performed a theoretical analysis,
indicating that online EM is likely to provide superior perfor-
mance due to providing a second order approximation, whereas
ST-WTA is first order. Then we conducted experiments on
image classification and restoration, whose results validated the
hypothesis suggested by the theoretical analysis: EM-DeSTIN,
incorporating online EM, provides superior performance. Com-
parisons between EM-DeSTIN and the other Deep Neural
Networks, including DBN, CNN and Stacked Auto-Encoders,
also confirmed the effectiveness of our approach.

The DeSTIN architecture is a work in progress, and many
other avenues for improvement remain. However, the replace-
ment of ST-WTA with online EM seems a solid step forward.
In future studies, we will pay more attentions on neural-
symbolic integration [21]. On the one hand, we will study
how to encode a probabilistic or multi-dimensional modal
logic program into a deep neural network [22, 23]. On the
other hand, we will investigate how to implement an eye-hand
coordination [24, 25] or path planning system [26] by using
EM-DeSTIN.

VI. ACKNOWLEDGEMENTS

This work was supported by the National Natural Sci-
ence Foundation of China (No.61003014, 61273338 and
61203336).The authors are very grateful to William Gunther
Lauritzen and the anonymous reviewers for their constructive
comments that have helped significantly in revising this work.

REFERENCES

[1] T. S. Lee, D. Mumford, R. Romero, and V. A. Lamme,
“The role of the primary visual cortex in higher level
vision,” Vision research, vol. 38, no. 15, pp. 2429–2454,
1998.

[2] D. J. Felleman and D. C. Van Essen, “Distributed hi-
erarchical processing in the primate cerebral cortex,”
Cerebral cortex, vol. 1, no. 1, pp. 1–47, 1991.

[3] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Large
vocabulary continuous speech recognition with context-
dependent dbn-hmms,” in Acoustics, Speech and Signal
Processing (ICASSP), 2011 IEEE International Confer-
ence on. IEEE, 2011, pp. 4688–4691.

[4] V. Nair and G. E. Hinton, “3d object recognition with
deep belief nets,” in Advances in Neural Information
Processing Systems, 2009, pp. 1339–1347.

[5] T. Deselaers, S. Hasan, O. Bender, and H. Ney, “A deep
learning approach to machine transliteration,” in Pro-
ceedings of the Fourth Workshop on Statistical Machine
Translation. Association for Computational Linguistics,
2009, pp. 233–241.

[6] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning
algorithm for deep belief nets,” Neural computation,
vol. 18, no. 7, pp. 1527–1554, 2006.

[7] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle,
“Greedy layer-wise training of deep networks,” Advances
in neural information processing systems, vol. 19, p. 153,
2007.

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[9] I. Arel, D. Rose, and R. Coop, “Destin: A scalable
deep learning architecture with application to high-
dimensional robust pattern recognition,” in Proc. AAAI
Workshop on Biologically Inspired Cognitive Architec-
tures, 2009, pp. 1150–1157.

[10] I. Arel, D. Rose, and T. Karnowski, “A deep learning
architecture comprising homogeneous cortical circuits for
scalable spatiotemporal pattern inference,” in NIPS 2009
Workshop on Deep Learning for Speech Recognition and
Related Applications, 2009.

[11] J. Hawkins and D. George, “Hierarchical temporal mem-
ory: Concepts, theory and terminology,” Whitepaper, Nu-
menta Inc, 2006.

[12] D. C. Rose, I. Arel, T. P. Karnowski, and V. C. Paquit,
“Applying deep-layered clustering to mammography im-
age analytics,” in Biomedical Sciences and Engineering
Conference (BSEC), 2010, 2010, pp. 1–4.

[13] Y. Zhang, C. Shang, and Q. Shen, “Interpolating destin
features for image classification,” in Computational In-
telligence (UKCI), 2013 13th UK Workshop on. IEEE,

1810

2013, pp. 292–298.
[14] O. Cappé and E. Moulines, “Online expectation-

maximization algorithm for latent data models,” Journal
of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 71, no. 3, pp. 593–613, 2009.

[15] S. R. Young and I. Arel, “Recurrent online clustering
as a spatio-temporal feature extractor in destin,” arXiv
preprint arXiv:1301.3385, 2013.

[16] B. Goertzel, “Modifying the destin perception architec-
ture to enable representationally transparent deep learn-
ing,” 2012.

[17] D. Li, L. Xu, and E. Goodman, “On-line em variants
for multivariate normal mixture model in background
learning and moving foreground detection,” Journal of
Mathematical Imaging and Vision, pp. 1–20, 2012.

[18] R. M. Neal and G. E. Hinton, A view of the EM algorithm
that justifies incremental, sparse, and other variants.
Springer, 1998, pp. 355–368.

[19] O. Cappé, “Online expectation-maximisation,” Mixtures:
Estimation and Applications, pp. 1–53, 2011.

[20] P. Liang and D. Klein, “Online em for unsupervised
models,” in Proceedings of human language technolo-
gies: The 2009 annual conference of the North American
chapter of the association for computational linguistics.
Association for Computational Linguistics, 2009, pp.
611–619.

[21] M. Jiang, C. Zhou, and S. Chen, “Embodied concept
formation and reasoning via neural-symbolic integration,”
Neurocomputing, vol. 74, no. 1, pp. 113–120, 2010.

[22] M. Jiang, Y. Yu, F. Chao, M. Shi, and C. Zhou, “A
connectionist model for 2-dimensional modal logic,” in
Computational Intelligence for Human-like Intelligence
(CIHLI), 2013 IEEE Symposium on. IEEE, 2013, pp.
54–59.

[23] M. Jiang, J. Xu, and F. Liu, “Uncertain formal concept
based on 3-valued lukasiewicz logic,” in Computation-
al Intelligence and Software Engineering (CiSE), 2010
International Conference on. IEEE, 2010, pp. 1–4.

[24] F. Chao, Z. Wang, C. Shang, Q. Meng, M. Jiang, C. Zhou,
and Q. Shen, “A developmental approach to robotic point-
ing via human-robot interaction,” Information Sciences,
2014.

[25] F. Chao, L. Hu, M. Shi, and M. Jiang, “Robotic 3d
reaching through a development-driven double neural
network architecture,” in Knowledge Engineering and
Management. Springer, 2011, pp. 179–184.

[26] M. Jiang, Y. Yu, X. Liu, F. Zhang, and Q. Hong,
“Fuzzy neural network based dynamic path planning,”
in Machine Learning and Cybernetics (ICMLC), 2012
International Conference on, vol. 1. IEEE, 2012, pp.
326–330.

1811

