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Stochastic Gradient Based Iterative Identification Algorithm for a

Class of Dual-rate Wiener Systems

Jing Leng, Junpeng Li, Changchun Hua, Xinping Guan

Abstract— Parameter estimation problem is considered for a
class of dual-rate Wiener systems whose input-output data are
measured by two different sampling rate. Firstly, a polynomial
transformation technique is used to derive a mathematical
model for such dual-rate Wiener systems. Then, directly based
on the dual-rate sampled data, a dual-rate Wiener systems
stochastic gradient algorithm (DRW-SG) is presented. In order
to improve the algorithm convergence rate, a dual-rate Wiener
systems stochastic gradient algorithm with a forgetting factor
algorithm (DRW-FF-SG) is presented. For making full use of
the forgetting factor, a dual-rate Wiener systems stochastic gra-
dient algorithm with an increasing forgetting factor algorithm
(DRW-IFF-SG) is presented which performs excellently. Finally,
an example is provided to test and illustrate the proposed
algorithms.

I. INTRODUCTION

Wiener systems are block-oriented systems which are
useful nonlinear dynamical systems [1]. They consist of
interconnected linear dynamic systems and nonlinear static
systems. Wiener systems identification has attracted much
attention in the last decades [2-5]. However, most of the
works are about single-rate Wiener systems.

Systems operating at different input and output sampling
rates are called multirate systems [6-9] which can find many
engineering applications, e.g., in digital signal processing
[10], sensor networks [11], communications [12], process
control [13] and so on. The parameter estimation problem
is quite important in the analysis and design for multirate
systems. In this paper, we focus on the identification of dual-
rate Wiener systems.

Since the output y(kq) is sampled at a slower rate than
the input u(k), the intersample outputs {y(kq + j),j =
1,2,.....,q — 1} are missing. In this case, Shumway and
Stoffer used an expectation maximization (EM) algorithm
to handle the missing measurements for the linear state-
space models [14]. These results have been extended to
handle the nonlinear state-space models in [15] and [16].
The identification problems of ARX models with missing
data is studied by Isaksson based on the Kalman filtering
(fixed-interval smoothing) technique and maximum likeli-
hood (ML) methods [17]. Sheng et al. [18] discussed model-
based predictive control of multirate systems in the process
control area. In the process identification literature, Li et al.
[19] assumed that the system states were known, and they
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used them and the multirate input-output data to estimate the
parameters of lifted state-space models for multirate systems.
They attempted to extract fast single-rate models from the
obtained lifted models, but the accuracy of the single-rate
models was limited by that of the lifted models because the
model conversion error was amplified greatly.

Based on the auxiliary model identification principle, Ding
and Chen proposed a recursive least squares algorithm and
a gradient-based recursive algorithm for the dual-rate output
error type systems in [20] and [21], respectively. Then, the
consistency of the SG algorithm for dual-rate sampled data
systems was analyzed in [22]. In [23], Ding proposed a new
hierarchical least squares algorithm for the dual-rate AR-
MAX systems. Recently, Chen et al. proposed a modified SG
algorithm and a multi-innovation SG algorithm for the dual-
rate Hammerstein system with preload nonlinearity in [24]
and [25], respectively. On the other hand, multirate sampled-
data systems were treated as missing data systems, and the
expectation maximization (EM) algorithm was employed to
estimate the parameters [26-28]. However, when too many
data are missing, the EM algorithm results in poor parameter
estimation accuracy.

In this paper, the parameter estimation problem is con-
sidered for a class of dual-rate Wiener systems whose static
nonlinear block is expressed by the sum of known nonlinear
(orthogonal or nonorthogonal) basis functions and unknown
coefficients [29]. The polynomial transformation technique
is introduced to derive a mathematical model for such dual-
rate Wiener systems. Based on the mathematical model we
use a dual-rate Wiener systems stochastic gradient algorithm
(DRW-SG) to estimate the parameters directly using the dual-
rate sampled data. In order to improve the convergence rate
of the DRW-SG algorithm, a forgetting factor is introduced
which is dual-rate Wiener systems stochastic gradient with a
forgetting factor algorithm (DRW-FF-SG). Lastly, we analyze
the affect of the forgetting factor on the algorithm, a dual-
rate Wiener systems stochastic gradient with an increasing
forgetting factor algorithm (DR-IFF-SG) is proposed which
perform excellently.

The rest of the paper is organized as follows. In sec-
tion 2, the identification problem formulation for dual-rate
Wiener systems is described. Section 3 derive identification
algorithms for dual-rate Wiener systems. Section 4 provides
an illustrative example and compare the performance of the
proposed algorithms. Finally, concluding remarks are given
in section 5.
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Fig. 1. The dual-rate sampled-data Wiener system.

II. PROBLEM FORMULATION

Consider the following dual-rate Wiener system which
consists of a linear dynamic block followed by a static
nonlinear subsystem, shown in Fig.1:

2(k) = igu(m ()
y(k) = g(z(k)) + v(k) 2)

Where u(k) and x(k) are the input and output of the linear
dynamic block, respectively. y(k) is the system output, and
y(kq) is the measurable system output whose sampling
period is ¢ times of y(k). v(k) is a white noise sequence
with zero mean and variance o2, and A(z) and B(z) are
polynomials as follows

A)=14a1z7 ' +agz ™2+ +a,, 2z " 3)

B(z) =biz 7 4 boz 24 by, 2™ 4

where the parameters a; and b; are unknown, the orders
n, and np are assumed to be known, and z~! is the unit
backward shift operator, i.e., 2z~ 'y(k) = y(k — 1).

The inner variables x(k) is unmeasurable and g(-) is a
static nonlinear function, including the piecewise nonlinear-
ity, the monotonous (odd) nonlinearity, the polynomial non-
linearity and so on. Here, we assumed that the nonlinearity
y(k) = g(xz(k)) is the sum of the known nonlinear (orthog-
onal or nonorthogonal) basis functions (g1, g2, , gn. ) and
unknown coefficients ~y; as follows.

g(x(k)) = y191(x(k)) + v2g2(x(k)) + - - - + Y, gn,, (2(k))

= [[igi(x(k)) 5)
i=1

The following assumptions are made about the system:the

linear dynamic system is asymptotically stable. The static

nonlinear function can be expressed as a polynomial:

9(z(k)) = nz(k) + v2x(k)® + - + Yo, (k)™
= H’Yﬂ(k)i

where the polynomial order n. is known. The inner output
x(k) of the linear dynamic system is unmeasurable. In order
to get unique parameter estimate, we need to fix a coefficient
of the nonlinear block. Here, we let the first entry of 7; be

(6)
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unity, i.e., y; = 1. Then, the static nonlinear function can be
rewritten as

gte(h) = k) + [T ria k) )
Formula (1) can be rewritten as
z(k) = [1 — A(z)z(k)] + B(z)u(k) ®)

Substituting it into (2) for the separated z(t), the system
output is written in the form

) = 1~ AG)(8) + BEulh) + [[riah) +(8

€))

However, notice that the available output in Fig.1 is y(kq),
that is, The outputs y(kq — r) is missing when r is not a
multiple of q. In this paper, we would make use of the poly-
nomial transformation technique to obtain a new model that
can directly use the dual-rate sampled data {u(k),y(kq)}.
Then we can make use of the stochastic gradient algorithm
and improved stochastic gradient algorithm to estimate the
parameters.

III. THE STOCHASTIC GRADIENT ALGORITHM AND THE
IMPROVED STOCHASTIC GRADIENT ALGORITHM
Let us define the roots of A(z) be z;(i =1,2,--- ,n,) to
get

AZ) = (1 — 2127 (1 — 20271 oo (1 — 2,27 1) (10)

Define the polynomials

G(Z) = H(l + ZiZ_l + Zizz_z 4.4 Zlfl_lzl—q)
=1
=1+ glz_l +gzz_2 4. —4—gngz_”g7 ng = (q—1)ng
(11)
a(z) = G(2)A(z)
= 1+a12_q—|—a22_2q+...+anaz—naq (12)

8(z) = G(2)B(2)

=Bz + Bar P+ Bz m=ng+m

(13)
Multiplying both sides of (1) by G(z) gives
~ B(2)
xz(k) = a(z)u(k) (14)
The above formula can be rewritten as
z(k) = [1 — a(z)z(k)] + B(z)u(k) (15)

Substituting it into (2) for the separated x(t), the system
output is written in the form

y(k) = [1 — a(2)]z(k) + B(z)u(k) + H iz (k)" + v(k)
=2 (16)



Define the parameter vector ¢, 3 and - as

a=lag, 0, o, € R (17)
B =181, ,m)" € R" (18)
Y= [727’737"' a’Ym]T ERn’Y_l (19)
Define the information vector ¢(k), ¢p(k) and v(k) as
Lp(k) = [-.’E(k - q>7 _J"(k/’ - 2q)7 e 7-.1'(]{3 - naq)}T

(20)
o(k) = [~u(k — 1), —u(k — 2), -, —u(k —m)]* @21
P(k) = [a?(k), 2 (k), - 2™ (k)T (22)

From (16)-(22), we have
y(k) = " (K)a+ @™ (k)B + 4" (k)y + (k)

Define the parameter vector 6 and the information vector ¥
as follows

(23)

0 =[a" B 4" € et 24)
O (k) =" (k),@" (k), " (k)" € Rretmim=t (25)
Then, formula (23) can be written as

y(k) = 7 (k)0 + v(k) (26)
Replaceing k with kq gives

y(kq) = ©7 (kq)6 + v(kq) 27

Notice that o(z) and 3(z) are polynomials in z=9 and 271,
respectively. Thus the above model can be identified directly
by using the dual-rate sample data {u(k), y(kq)}. However,
the difficulty of identification is that (kq) contains the
unknown variables x(kq — iq). The solution is to replace
x(kq — iq) with its estimate & (kg — i¢) and to be computed
as follows.

i(kq —iq) = ¢" (kq — iq)&u(kq — iq) + ¢" (kg —iq)B
(28)

@(kq) is the estimate of ¢(kq) as follows

@(kq) = [~2(kq — q),~i(kq = 29), -~ , ~2(kq — nag)]”
(29)

b (kq) is the estimate of (kq) as follows

W (kq) = [%(kq), 2% (kq), -, " (kq))" (30)

Based on the square criterion we have

J(0) = lly(kq) — ¥7 (kq)0||? 3D

In order to minimizing the above cost function, we can use
the stochastic gradient search algorithm [33] as follows

N N 1 ~

0(kq) = 0(kq — q) + ——¥(kq)[y(kq
(ka) = Oka ) + 5 ko) ly(ka)

(32)

~T ~
— W (kq)0(kq—q

Eq.(32) can be rewritten as

O(kq) =

[T — ——W(kg) ¥ (kq)O(kq —q) +

1
r(kq) r(kq)
(33)

Note that Eq.(33) is equivalent to one discrete-time sys-
tem with the state 6. In order to guarantee the conver-
gence of the parameters 0, the symmetric matrices [I —

(kq) \Il(kq)\Il (kq)] need to have all eigenvalues inside the
unit circle. One conservative choice is to have the conver-

gence factors to satisfy
1 2
0< <

34
r(k) = e[ G4
T

" (kq)]

is the maximum eigenvalues of

q)¥

(k
Here, fnas [A‘i’(kQ)A‘I; (kq)]
the matrix W(kq)¥ (kq). The convergence factor
updated as follows

r(kq) = r(kq — q) + | ¥ (kq)||?,

Therefore, the dual-rate Wiener systems stochastic gradient
algorithm (DRW-SG) can be summarized as follows:

(k) 18

r(0) =1 35)

0ka) = (kg — 0) + (ko) ly(ka) — & (kq)O(hg — )]
(36)
r(kq) = (kg — q) + | (kg)|?, (0) =1 37)
@ (kqg) = [@(kq), ¢(ka), P (kq)]" (38)
(kg —iq) = @" (kq — iq)&(kq — iq) + " (kq — iq)B
(39)
@(kq) = [~2(kq — q), —2(kq — 2q),-- - , —2(kq — naq)]"
(40)
o(k) = [~u(k — 1), ~u(k = 2),--- , —u(k —=m)]"  (@41)
P(kq) = [2°(kq), &°(kq), -~ ,&" (kq)]" (42)
0=1a".8 47" 43)
& = [dy, da, -, ap,]" (44
B =161,z B]” (45)
Y =2, 93,5 Y] (46)

Just as verified in [29,30], the stochastic gradient algorithm
has low convergency rate. In order to improve the con-
vergence rate of the DRW-SG algorithm, we introduce a
forgetting factor A in the DRW-SG algorithm to get a dual-
rate Wiener systems stochastic gradient algorithm with a
forgetting factor, which is abbreviated as DRW-FF-SG.

Ni(kg) = Mtk — ) + [ E(Rg)|2. 0<A<1: #(0)=1
47
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In fact, when the forgetting factor X\ is small, the algo-
rithm’s convergence rate is fast. However, the algorithm’s
convergence stationarity is bad. When the forgetting factor
A is large, the algorithm shows the converse performance.
During the iterative process of the algorithm, we hope that
the convergence rate of the algorithm is fast at the beginning.
With the increasing of the number of iterations the algorithm
strengthens the convergence stationarity. Base on the above
idea we proposed another improved dual-rate Wiener systems
stochastic gradient algorithm with an increasing forgetting
factor, which is abbreviated as DRW-IFF-SG.

r(kq) = A(t)r(kq — q) + [ ¥ (kg)||*, r(0) =1 (48)
The A(t) is define as follows

t
A(t) = )\mzn + ()\maac - Amzn)(ti)w (49)

where A0 and \,,;, are the maximum and minimum
values of . t,,4. 1S the maximum iterative numbers, and t is
the present iterative numbers. w is the increasing adjustment
factor.

Remark 1. The DRW-IFF-SG algorithm fully make
use of the forgetting factor’s effect. At the beginning, the
convergence rate of the algorithm is fast at the cost of the
poor convergence stationarity of the algorithm. Finally, the
algorithm strengthens the convergence stationarity at the
cost of the slow convergence rate. This draws on the idea of
swarm intelligent optimization that explore first, and then
exploit. The increasing adjustment factor w can control the
balance of them. The DRW-IFF-SG algorithm performs
excellently.

IV. EXAMPLE

Consider the following dual-rate system model:

V) = Za(0) + o(h)
(k) = gla(k)) + (k)

A(z) =1+ a1zt +a2272 =1.00 — 0.8027 +0.162 2
B(z) =biz7 ' +by27% = 05027 +0.402 2
g(x(k)) =12 (k) + 122(k) + ys2(k) = 2(k) + 0.402% (k)

+0.2523 (k)

Here, we take ¢ = 2 and G(z) = 1+ 0.80z7! + 0.16272,
then have

a(z) = G(2)A(z) = 1.00 — 0.32272 + 0.02562*

B(2) =G(2)B(z) = 0.502"" +0.80z"2 + 0.40z*
1 0.064274

6 = [—0.32,0.0256,0.50, 0.80, 0.40, 0.064, 0.40, 0.25]7
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The input {u(k)} is taken as a persistent excitation signal
sequence with zero mean and unit variance, and {v(k)} as
a white noise sequence with zero mean and variance o2 =
0.12, the corresponding noise-to-signal ratio is ,,, = 7.66%.
To quantify the estimation accuracy, define the estimation
error as |0 — 6]//]|6].
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Fig. 2. The estimated parameters and the estimation error § versus k using
DRW-FF-SG algorithm with the forgetting factors A = 1.

The estimated parameters and the estimation error §
versus k using DRW-FF-SG algorithm with the different
forgetting factors A are illustrated in Fig.3, Fig.4 and Fig.5.
It is apparent that the DR-FF-SG algorithm with A = 1 is
equivalent to DRW-SG algorithm. To clearly compare the
performance of DRW-FF-SG algorithm with the different
forgetting factors A, the estimated parameter values and
the estimation error values § versus k are illustrated in
Table.1. From Fig.3-Fig.5 and Table.1, we can know that
the convergence speed is very slow when the forgetting
factorss A 1 which is equal to DRW-SG algorithm.
In fact, the estimation error of DRW-SG algorithm is
lager than 40% at the end of the iteration which is very
bad. The convergence speed is fast when the forgetting
factor A 0.8, and the estimation error is equal to
1.9818% at the end of the iteration. When the forgetting
factor A = 0.6 the convergence speed is faster than that
with A 0.8. However, the convergence stationarity is
worse. Due to the large trembling, the the estimation error
is lager which is equal to 5.6509% at the end of the iteration.

Remark 2. The smaller the forgetting factor A is, the



TABLE I
THE ESTIMATED PARAMETER VALUES AND THE ESTIMATION ERROR VALUES § VERSUS k USING DRW-FF-SG ALGORITHM WITH THE DIFFERENT
FORGETTING FACTORS A.

X 3 o D) B1 Ba B3 Ba 1 Xo 5
=1 100 018433 00062062 0.68378  0.68819 072806 0.34577 0.1643 012446 48415
200 018265 00049324 0.68183  0.69217 072557 034437 017735  0.12036 4778
500 018045 00037748 0.67931 069567 072204 034368 018661  0.11166  47.371
1000 2017937 00030277 067841 069805 072055  0.34302 0.1941 0.11563 46,907
2000 2017803 00022353 067767 070093 071861 034204 020012 011614  46.536
3000 2017716 00018697  0.67728 070233 07175 034153 020203 0.11471 46418
4000 017704 00014306 0.67704 070357 071692 034139 020438 0.12144 46.15
5000 2017676 00011767 0.6768 070421 071641 034119 020559 012231 46.054
XN=038 100 010917 003267 062585 083007 061729 032254 026948 0087492 40.122
200 010834 0071234 056653 089762  0.58676 027932 031648 015992  34.527
500 2015705 006482 051922 0.88997  0.55385 0.2436 031072 014754 29.19
1000 016803 -0.040232  0.52691  0.84337 048968  0.19876 036839 022024  20.525
2000 025869 -0.011541 051629 081354  0.44601 0.1055 037597 022386 88015
3000 029534 0013545 050124 078639 04218 0074949 041013 025568  3.4797
4000 031676 0030161 047991 079688 03852 0082695 041474 026192 3154
5000 033249 0022812 050374 0.80145 039496 0054418 038445 025172 19818
XN=106 100 010352 -0077461 053462 087468 057295 026343 030065  0.11297 34329
200 2013631 -0.061057  0.54783 091576  0.54438 020565 03339 0.1931 27.646
500 02325 002293 048697  0.84078 048371 016162 035613  0.19612 15515
1000 026579 0015847 049233 078684 042177 0.093634 041276 027789 63473
2000 030428 0.011746 05206 080763 041789  0.046859 037777 022581 43537
3000 038 0014625 049617 078637 04274 0060843 039078 023874  3.1691
4000 032888 0044999 046123 081316 038113 0077792 042177 026042 4861
5000 033631 0021131 051086 0.81859 040836 0.046342 034893 022419 56509
True values 032 0.0256 035 08 04 0.064 04 025 0
TABLE 1T

THE ESTIMATED PARAMETER VALUES AND THE ESTIMATION ERROR VALUES § VERSUS k USING DRW-IFF-SG ALGORITHM WITH THE DIFFERENT

INCREASING ADJUSTMENT FACTOR w.

w k =31 =D 51 D) B3 B4 Al A2 [
w =205 100 20.10112 -0.071888  0.54862  0.87458  0.57688  0.27992  0.29501 01059 35619
200 -0.12071 007217 05487 09168 055073 022837 033133 019042  29.894
500 2020064 -0.0416390 050137 086497 051111 0.19464 033449 017232 21323
1000 2021566 -0.014923 051178 081822 045212 014934 039278 02481 12.927
2000 2027919 00021706 050845 081012 043145 0.09174 038577 023208 58179
3000 029328 0014258 050143 079305 041467 0080479 040995 025774  3.3393
4000 2029957 0015067 049717 079418 040094 0083194 040716 025768  2.7584
5000 -0.3005 0012916 049918 079428 040119 0.078997  0.40966 02568  2.6108
©w=20.38 100 0.1029 0.076164 053795  0.87487 057388 026765 029929  0.11108  34.655
200 -0.131 20065149 054786 091612 054576 02131 033358 0.19264  28.354
500 021943 -0030749 049372 085188 049386 017462 034713  0.8579  17.856
1000 024282 00015684 050025 080307 043439 0.11986 040653 026558  8.9826
2000 2029906 0012278 051094 080986 041894 0068343 038626 023288  3.5022
3000 0311 0023001 050116 078738 040742 0063652 041573  0.26135 222
4000 031605 0.023841 049613 079459 038967 0071124 040853 025809  1.6125
5000 031664 0020269 049896 079365 03923 0066145 0.40982  0.25838  1.5029
©=1.0 100 0.1033 0076923 053596 087478 057331 026517 0.3001 011218 34461
200 013374 -0063102 054779 091591 054486 020928 033388 0.19296  27.979
500 022505 -0.027445 049118 084749 048917  0.16888 035101  0.19007 16836
1000 2025137 00066646 04969 079802 042928  0.11041 040975 027038 7.897
2000 -0.30299 001384 051205 080982 041653 0061681 038557 023222 3.2917
3000 031459 0.024328 05011 078575 040722 005978 041625 026117  2.2427
4000 031951 0026107 049525 079495 038664 0069372 040908 025847  1.7244
5000 032019 0021757 049906 079347 039028  0.063842 040921 025864 1.5044
o =15 100 010351 -0077396 053477 087469 057298 026363 030059  0.11288 34343
200 -0.13588 061421 054781 091577 0.5444 020627 033398 0.1931 27.699
500 023056 -0.024138 048828 084274 048497 016344 035479 0.19445 15854
1000 2026079 0012457 049368 079154 042406 0099694 041231 027534  6.8304
2000 03053 0013885 051648 080918 041554 0054174 038355 023032 35154
3000 031662 0.02385 050095 078431 041007 0056645 04134 025791 21859
4000 032279 0.0294 049177 079509 038312 0069925 041052 026003  2.1629
5000 032387 0023384 049916 079297 038778 0.06266 040739 025899  1.6075
=3 100 20.10352 0.07746 053462 0.87468 057295 026343 030065  0.11297  34.329
200 0.13631  -0061059 054783 091576 054438 020565 033396  0.1931 27.646
500 023246 -0.022058 048701 084084 048373  0.16166 0.3561 019608 15522
1000 -0.2655 0015625 04924 078721 042186 0094017 04128 027774 63727
2000 030469 0012288 051988 080799 041700 0048439 037945 022707  4.1294
3000 031419 0019184 049935 078424 04184 0057449 040207  0.24831 2272
4000 2032585 0034968 047924 079747 038043 0075466 041421 026204  3.2088
5000 -0.32869 0.02567 0.49991 0.7934 03861 0061654 040183 025736 1.6491
True values 032 0.0256 035 03 04 0.064 04 025 0

faster the convergence speed is. But the convergence
tremble is larger. On the contrary, the larger the forgetting
factor A is, the slower the convergence speed is. But the
convergence stationarity is greater.

The estimated parameters and the estimation error § versus
k using DRW-IFF-SG algorithm with the different increasing
adjustment factor w are illustrated in Fig.6-Fig.10. To clearly
compare the performance of DRW-DFF-SG algorithm with
the different increasing adjustment factors A, the estimated
parameter values and the estimation error values ¢ ver-

sus k are illustrated in Table.2. Fig.2 shows the curvature
of X\ for the different increasing adjustment factor (w =
0.5,0.8,1,1.5,3). From Fig.6-Fig.10 and Table.2, we can
know that the DRW-IFF-SG algorithm perform excellently.
The increasing adjustment factor w is used to adjust the
increasing speed of the forgetting factor. When w = 3, the
increasing speed of A is small at the beginning stage, and
is large at the final stage. Therefore, the DRW-IFF-SG algo-
rithm’s convergence rate is very fast at the beginning stage,
and keep steady transitorily at the final stage. When w = 0.5,
the increasing speed of A is large at the beginning stage,
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Fig. 3. The estimated parameters and the estimation error § versus k using
DRW-FF-SG algorithm with the forgetting factors A = 0.8.
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Fig. 4. The estimated parameters and the estimation error § versus k using
DRW-FF-SG algorithm with the forgetting factors A = 0.6.
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Fig. 5.

increasing adjustment factor w.
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Fig. 6. The estimated parameters and the estimation error § versus k using

DRW-IFF-SG algorithm with the increasing adjustment factor w = 0.5.
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Fig. 7. The estimated parameters and the estimation error § versus k using

DRW-IFF-SG algorithm with the increasing adjustment factor w = 0.8.

Fig. 9. The estimated parameters and the estimation error § versus k using

DRW-IFF-SG algorithm with the increasing adjustment factor w = 1.5.
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Fig. 8. The estimated parameters and the estimation error § versus k using
DRW-IFF-SG algorithm with the increasing adjustment factor w = 1.

Fig. 10. The estimated parameters and the estimation error § versus k
using DRW-IFF-SG algorithm with the increasing adjustment factor w = 3.
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and is small at the final stage. Therefore, the DRW-IFF-
SG algorithm’s convergence rate is fast in a short period of
time at the beginning stage, and keep steady for a long time
at the final stage. In fact, The increasing adjustment factor
w can control the balance of the DRW-IFF-SG algorithm’s
convergence rate and convergence stationarity. From the
simulations, we can know that the DRW-IFF-SG algorithm
performs the best with w = 0.8.

V. CONCLUSIONS

In this paper, a dual-rate Wiener systems stochastic gradi-
ent algorithm (DRW-SG) is presented. In order to improve
the algorithm’s convergence rate, a dual-rate Wiener sys-
tems stochastic gradient algorithm with a forgetting factor
algorithm (DRW-FF-SQG) is presented. The simulation shows
the forgetting factor’s impact on the performance of the
algorithm. In order to further improve the performance of
the algorithm, a dual-rate Wiener systems stochastic gradient
algorithm with an increasing forgetting factor algorithm
(DRW-IFF-SQG) is presented which performs excellently. The
numerical simulation confirms the established theorem.
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