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Abstract— Parameter estimation problem is considered for a
class of dual-rate Wiener systems whose input-output data are
measured by two different sampling rate. Firstly, a polynomial
transformation technique is used to derive a mathematical
model for such dual-rate Wiener systems. Then, directly based
on the dual-rate sampled data, a dual-rate Wiener systems
stochastic gradient algorithm (DRW-SG) is presented. In order
to improve the algorithm convergence rate, a dual-rate Wiener
systems stochastic gradient algorithm with a forgetting factor
algorithm (DRW-FF-SG) is presented. For making full use of
the forgetting factor, a dual-rate Wiener systems stochastic gra-
dient algorithm with an increasing forgetting factor algorithm
(DRW-IFF-SG) is presented which performs excellently. Finally,
an example is provided to test and illustrate the proposed
algorithms.

I. INTRODUCTION

Wiener systems are block-oriented systems which are
useful nonlinear dynamical systems [1]. They consist of
interconnected linear dynamic systems and nonlinear static
systems. Wiener systems identification has attracted much
attention in the last decades [2-5]. However, most of the
works are about single-rate Wiener systems.

Systems operating at different input and output sampling
rates are called multirate systems [6-9] which can find many
engineering applications, e.g., in digital signal processing
[10], sensor networks [11], communications [12], process
control [13] and so on. The parameter estimation problem
is quite important in the analysis and design for multirate
systems. In this paper, we focus on the identification of dual-
rate Wiener systems.

Since the output y(kq) is sampled at a slower rate than
the input u(k), the intersample outputs {y(kq + j), j =
1, 2, ....., q − 1} are missing. In this case, Shumway and
Stoffer used an expectation maximization (EM) algorithm
to handle the missing measurements for the linear state-
space models [14]. These results have been extended to
handle the nonlinear state-space models in [15] and [16].
The identification problems of ARX models with missing
data is studied by Isaksson based on the Kalman filtering
(fixed-interval smoothing) technique and maximum likeli-
hood (ML) methods [17]. Sheng et al. [18] discussed model-
based predictive control of multirate systems in the process
control area. In the process identification literature, Li et al.
[19] assumed that the system states were known, and they

Jing Leng, Junpeng Li, Changchun Hua and Xinping Guan are with
the Department of Institute of Electrical Engineering, Yanshan University,
Qinhuangdao, Hebei, China (email:zicheyue.324@163.com).

This work was supported by the Major Program of the National Natural
Science Foundation of China (No.61290322)

used them and the multirate input-output data to estimate the
parameters of lifted state-space models for multirate systems.
They attempted to extract fast single-rate models from the
obtained lifted models, but the accuracy of the single-rate
models was limited by that of the lifted models because the
model conversion error was amplified greatly.

Based on the auxiliary model identification principle, Ding
and Chen proposed a recursive least squares algorithm and
a gradient-based recursive algorithm for the dual-rate output
error type systems in [20] and [21], respectively. Then, the
consistency of the SG algorithm for dual-rate sampled data
systems was analyzed in [22]. In [23], Ding proposed a new
hierarchical least squares algorithm for the dual-rate AR-
MAX systems. Recently, Chen et al. proposed a modified SG
algorithm and a multi-innovation SG algorithm for the dual-
rate Hammerstein system with preload nonlinearity in [24]
and [25], respectively. On the other hand, multirate sampled-
data systems were treated as missing data systems, and the
expectation maximization (EM) algorithm was employed to
estimate the parameters [26-28]. However, when too many
data are missing, the EM algorithm results in poor parameter
estimation accuracy.

In this paper, the parameter estimation problem is con-
sidered for a class of dual-rate Wiener systems whose static
nonlinear block is expressed by the sum of known nonlinear
(orthogonal or nonorthogonal) basis functions and unknown
coefficients [29]. The polynomial transformation technique
is introduced to derive a mathematical model for such dual-
rate Wiener systems. Based on the mathematical model we
use a dual-rate Wiener systems stochastic gradient algorithm
(DRW-SG) to estimate the parameters directly using the dual-
rate sampled data. In order to improve the convergence rate
of the DRW-SG algorithm, a forgetting factor is introduced
which is dual-rate Wiener systems stochastic gradient with a
forgetting factor algorithm (DRW-FF-SG). Lastly, we analyze
the affect of the forgetting factor on the algorithm, a dual-
rate Wiener systems stochastic gradient with an increasing
forgetting factor algorithm (DR-IFF-SG) is proposed which
perform excellently.

The rest of the paper is organized as follows. In sec-
tion 2, the identification problem formulation for dual-rate
Wiener systems is described. Section 3 derive identification
algorithms for dual-rate Wiener systems. Section 4 provides
an illustrative example and compare the performance of the
proposed algorithms. Finally, concluding remarks are given
in section 5.
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Fig. 1. The dual-rate sampled-data Wiener system.

II. PROBLEM FORMULATION

Consider the following dual-rate Wiener system which
consists of a linear dynamic block followed by a static
nonlinear subsystem, shown in Fig.1:

x(k) =
B(z)

A(z)
u(k) (1)

y(k) = g(x(k)) + v(k) (2)

Where u(k) and x(k) are the input and output of the linear
dynamic block, respectively. y(k) is the system output, and
y(kq) is the measurable system output whose sampling
period is q times of y(k). v(k) is a white noise sequence
with zero mean and variance σ2, and A(z) and B(z) are
polynomials as follows

A(z) = 1 + a1z
−1 + a2z

−2 + · · ·+ anaz
−na (3)

B(z) = b1z
−1 + b2z

−2 + · · ·+ bnb
z−nb (4)

where the parameters ai and bi are unknown, the orders
na and nb are assumed to be known, and z−1 is the unit
backward shift operator, i.e., z−1y(k) = y(k − 1).

The inner variables x(k) is unmeasurable and g(·) is a
static nonlinear function, including the piecewise nonlinear-
ity, the monotonous (odd) nonlinearity, the polynomial non-
linearity and so on. Here, we assumed that the nonlinearity
y(k) = g(x(k)) is the sum of the known nonlinear (orthog-
onal or nonorthogonal) basis functions (g1, g2, · · · , gnγ ) and
unknown coefficients γi as follows.

g(x(k)) = γ1g1(x(k)) + γ2g2(x(k)) + · · ·+ γnγgnγ (x(k))

=

nγ∏
i=1

γigi(x(k)) (5)

The following assumptions are made about the system:the
linear dynamic system is asymptotically stable. The static
nonlinear function can be expressed as a polynomial:

g(x(k)) = γ1x(k) + γ2x(k)
2 + · · ·+ γnγx(k)

nγ

=

nγ∏
i=1

γix(k)
i (6)

where the polynomial order nγ is known. The inner output
x(k) of the linear dynamic system is unmeasurable. In order
to get unique parameter estimate, we need to fix a coefficient
of the nonlinear block. Here, we let the first entry of γi be

unity, i.e., γ1 = 1. Then, the static nonlinear function can be
rewritten as

g(x(k)) = x(k) +

nγ∏
i=2

γix(k)
i (7)

Formula (1) can be rewritten as

x(k) = [1−A(z)x(k)] +B(z)u(k) (8)

Substituting it into (2) for the separated x(t), the system
output is written in the form

y(k) = [1−A(z)]x(k) +B(z)u(k) +

nγ∏
i=2

γix(k)
i + v(k)

(9)

However, notice that the available output in Fig.1 is y(kq),
that is, The outputs y(kq − r) is missing when r is not a
multiple of q. In this paper, we would make use of the poly-
nomial transformation technique to obtain a new model that
can directly use the dual-rate sampled data {u(k), y(kq)}.
Then we can make use of the stochastic gradient algorithm
and improved stochastic gradient algorithm to estimate the
parameters.

III. THE STOCHASTIC GRADIENT ALGORITHM AND THE
IMPROVED STOCHASTIC GRADIENT ALGORITHM

Let us define the roots of A(z) be zi(i = 1, 2, · · · , na) to
get

A(z) = (1− z1z−1)(1− z2z−1) · · · (1− znaz
−1) (10)

Define the polynomials

G(z) =

na∏
i=1

(1 + ziz
−1 + z2i z

−2 + · · ·+ zq−1i z1−q)

= 1 + g1z
−1 + g2z

−2 + · · ·+ gngz
−ng , ng = (q − 1)na

(11)

α(z) = G(z)A(z)

= 1 + α1z
−q + α2z

−2q + · · ·+ αnaz
−naq (12)

β(z) = G(z)B(z)

= β1z
−1 + β2z

−2 + · · ·+ βmz
−m, m = ng + nb

(13)

Multiplying both sides of (1) by G(z) gives

x(k) =
β(z)

α(z)
u(k) (14)

The above formula can be rewritten as

x(k) = [1− α(z)x(k)] + β(z)u(k) (15)

Substituting it into (2) for the separated x(t), the system
output is written in the form

y(k) = [1− α(z)]x(k) + β(z)u(k) +

nγ∏
i=2

γix(k)
i + v(k)

(16)
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Define the parameter vector α, β and γ as

α = [α1, α2, · · · , αna ]
T ∈ Rna (17)

β = [β1, β2, · · · , βm]T ∈ Rm (18)

γ = [γ2, γ3, · · · , γm]T ∈ Rnγ−1 (19)

Define the information vector φ(k), ϕ(k) and ψ(k) as

φ(k) = [−x(k − q),−x(k − 2q), · · · ,−x(k − naq)]T
(20)

ϕ(k) = [−u(k − 1),−u(k − 2), · · · ,−u(k −m)]T (21)

ψ(k) = [x2(k), x3(k), · · · , xnγ (k)]T (22)

From (16)-(22), we have

y(k) = φT (k)α+ ϕT (k)β +ψT (k)γ + v(k) (23)

Define the parameter vector θ and the information vector Ψ
as follows

θ = [αT ,βT ,γT ]T ∈ Rna+m+nγ−1 (24)

Ψ(k) = [φT (k),ϕT (k),ψT (k)]T ∈ Rna+m+nγ−1 (25)

Then, formula (23) can be written as

y(k) = ΨT (k)θ + v(k) (26)

Replaceing k with kq gives

y(kq) = ΨT (kq)θ + v(kq) (27)

Notice that α(z) and β(z) are polynomials in z−q and z−1,
respectively. Thus the above model can be identified directly
by using the dual-rate sample data {u(k), y(kq)}. However,
the difficulty of identification is that φ(kq) contains the
unknown variables x(kq − iq). The solution is to replace
x(kq− iq) with its estimate x̂(kq− iq) and to be computed
as follows.

x̂(kq − iq) = φ̂T (kq − iq)α̂(kq − iq) + ϕT (kq − iq)β̂
(28)

φ̂(kq) is the estimate of φ(kq) as follows

φ̂(kq) = [−x̂(kq − q),−x̂(kq − 2q), · · · ,−x̂(kq − naq)]T
(29)

ψ̂(kq) is the estimate of ψ(kq) as follows

ψ̂(kq) = [x̂2(kq), x̂3(kq), · · · , x̂nγ (kq)]T (30)

Based on the square criterion we have

J(θ̂) = ∥y(kq)−ΨT (kq)θ∥2 (31)

In order to minimizing the above cost function, we can use
the stochastic gradient search algorithm [33] as follows

θ̂(kq) = θ̂(kq − q) + 1

r(kq)
Ψ̂(kq)[y(kq)− Ψ̂

T
(kq)θ̂(kq − q)]

(32)

Eq.(32) can be rewritten as

θ̂(kq) = [I − 1

r(kq)
Ψ̂(kq)Ψ̂

T
(kq)]θ̂(kq − q) + 1

r(kq)
Ψ̂(kq)y(kq)

(33)

Note that Eq.(33) is equivalent to one discrete-time sys-
tem with the state θ̂. In order to guarantee the conver-
gence of the parameters θ̂, the symmetric matrices [I −

1
r(kq)Ψ̂(kq)Ψ̂

T
(kq)] need to have all eigenvalues inside the

unit circle. One conservative choice is to have the conver-
gence factors to satisfy

0 <
1

r(kq)
≤ 2

µmax[Ψ̂(kq)Ψ̂
T
(kq)]

(34)

Here, µmax[Ψ̂(kq)Ψ̂
T
(kq)] is the maximum eigenvalues of

the matrix Ψ̂(kq)Ψ̂
T
(kq). The convergence factor 1

r(kq) is
updated as follows

r(kq) = r(kq − q) + ∥Ψ̂(kq)∥2, r(0) = 1 (35)

Therefore, the dual-rate Wiener systems stochastic gradient
algorithm (DRW-SG) can be summarized as follows:

θ̂(kq) = θ̂(kq − q) + 1

r(kq)
Ψ̂(kq)[y(kq)− Ψ̂

T
(kq)θ̂(kq − q)]

(36)

r(kq) = r(kq − q) + ∥ψ̂(kq)∥2, r(0) = 1 (37)

Ψ̂(kq) = [φ̂(kq),ϕ(kq), ψ̂(kq)]T (38)

x̂(kq − iq) = φ̂T (kq − iq)α̂(kq − iq) + ϕT (kq − iq)β̂
(39)

φ̂(kq) = [−x̂(kq − q),−x̂(kq − 2q), · · · ,−x̂(kq − naq)]T
(40)

ϕ(k) = [−u(k − 1),−u(k − 2), · · · ,−u(k −m)]T (41)

ψ̂(kq) = [x̂2(kq), x̂3(kq), · · · , x̂nγ (kq)]T (42)

θ̂ = [α̂T , β̂
T
, γ̂T ]T (43)

α̂ = [α̂1, α̂2, · · · , ˆαna ]
T (44)

β̂ = [β̂1, β̂2, · · · , β̂m]T (45)

γ̂ = [γ̂2, γ̂3, · · · , γ̂m]T (46)

Just as verified in [29,30], the stochastic gradient algorithm
has low convergency rate. In order to improve the con-
vergence rate of the DRW-SG algorithm, we introduce a
forgetting factor λ in the DRW-SG algorithm to get a dual-
rate Wiener systems stochastic gradient algorithm with a
forgetting factor, which is abbreviated as DRW-FF-SG.

r(kq) = λr(kq − q) + ∥Ψ̂(kq)∥2, 0 < λ ≤ 1; r(0) = 1
(47)
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In fact, when the forgetting factor λ is small, the algo-
rithm’s convergence rate is fast. However, the algorithm’s
convergence stationarity is bad. When the forgetting factor
λ is large, the algorithm shows the converse performance.
During the iterative process of the algorithm, we hope that
the convergence rate of the algorithm is fast at the beginning.
With the increasing of the number of iterations the algorithm
strengthens the convergence stationarity. Base on the above
idea we proposed another improved dual-rate Wiener systems
stochastic gradient algorithm with an increasing forgetting
factor, which is abbreviated as DRW-IFF-SG.

r(kq) = λ(t)r(kq − q) + ∥Ψ̂(kq)∥2, r(0) = 1 (48)

The λ(t) is define as follows

λ(t) = λmin + (λmax − λmin)(
t

tmax
)ω (49)

where λmax and λmin are the maximum and minimum
values of λ. tmax is the maximum iterative numbers, and t is
the present iterative numbers. ω is the increasing adjustment
factor.

Remark 1. The DRW-IFF-SG algorithm fully make
use of the forgetting factor’s effect. At the beginning, the
convergence rate of the algorithm is fast at the cost of the
poor convergence stationarity of the algorithm. Finally, the
algorithm strengthens the convergence stationarity at the
cost of the slow convergence rate. This draws on the idea of
swarm intelligent optimization that explore first, and then
exploit. The increasing adjustment factor ω can control the
balance of them. The DRW-IFF-SG algorithm performs
excellently.

IV. EXAMPLE

Consider the following dual-rate system model:

y(k) =
B(z)

A(z)
x(k) + v(k)

y(k) = g(x(k)) + v(k)

A(z) = 1 + a1z
−1 + a2z

−2 = 1.00− 0.80z−1 + 0.16z−2

B(z) = b1z
−1 + b2z

−2 = 0.50z−1 + 0.40z−2

g(x(k)) =γ1x(k) + γ2x(k) + γ3x(k) = x(k) + 0.40x2(k)

+ 0.25x3(k)

Here, we take q = 2 and G(z) = 1 + 0.80z−1 + 0.16z−2,
then have

α(z) = G(z)A(z) = 1.00− 0.32z−2 + 0.0256z−4

β(z) =G(z)B(z) = 0.50z−1 + 0.80z−2 + 0.40z−3

+ 0.064z−4

θ = [−0.32, 0.0256, 0.50, 0.80, 0.40, 0.064, 0.40, 0.25]T

The input {u(k)} is taken as a persistent excitation signal
sequence with zero mean and unit variance, and {v(k)} as
a white noise sequence with zero mean and variance σ2 =
0.12, the corresponding noise-to-signal ratio is δns = 7.66%.
To quantify the estimation accuracy, define the estimation
error as ∥θ̂ − θ∥/∥θ∥.
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Fig. 2. The estimated parameters and the estimation error δ versus k using
DRW-FF-SG algorithm with the forgetting factors λ = 1.

The estimated parameters and the estimation error δ
versus k using DRW-FF-SG algorithm with the different
forgetting factors λ are illustrated in Fig.3, Fig.4 and Fig.5.
It is apparent that the DR-FF-SG algorithm with λ = 1 is
equivalent to DRW-SG algorithm. To clearly compare the
performance of DRW-FF-SG algorithm with the different
forgetting factors λ, the estimated parameter values and
the estimation error values δ versus k are illustrated in
Table.1. From Fig.3-Fig.5 and Table.1, we can know that
the convergence speed is very slow when the forgetting
factorss λ = 1 which is equal to DRW-SG algorithm.
In fact, the estimation error of DRW-SG algorithm is
lager than 40% at the end of the iteration which is very
bad. The convergence speed is fast when the forgetting
factor λ = 0.8, and the estimation error is equal to
1.9818% at the end of the iteration. When the forgetting
factor λ = 0.6 the convergence speed is faster than that
with λ = 0.8. However, the convergence stationarity is
worse. Due to the large trembling, the the estimation error
is lager which is equal to 5.6509% at the end of the iteration.

Remark 2. The smaller the forgetting factor λ is, the

2193



TABLE I
THE ESTIMATED PARAMETER VALUES AND THE ESTIMATION ERROR VALUES δ VERSUS k USING DRW-FF-SG ALGORITHM WITH THE DIFFERENT

FORGETTING FACTORS λ.

λ k α1 α2 β1 β2 β3 β4 λ1 λ2 δ

λ = 1 100 -0.18433 0.0062062 0.68378 0.68819 0.72806 0.34577 0.1643 0.12446 48.415
200 -0.18265 0.0049324 0.68183 0.69217 0.72557 0.34437 0.17735 0.12036 47.78
500 -0.18045 0.0037748 0.67931 0.69567 0.72204 0.34368 0.18661 0.11166 47.371

1000 -0.17937 0.0030277 0.67841 0.69805 0.72055 0.34302 0.1941 0.11563 46.907
2000 -0.17803 0.0022353 0.67767 0.70093 0.71861 0.34204 0.20012 0.11614 46.536
3000 -0.17716 0.0018697 0.67728 0.70233 0.7175 0.34153 0.20203 0.11471 46.418
4000 -0.17704 0.0014306 0.67704 0.70357 0.71692 0.34139 0.20438 0.12144 46.15
5000 -0.17676 0.0011767 0.67686 0.70421 0.71641 0.34119 0.20559 0.12231 46.054

λ = 0.8 100 -0.10917 -0.03267 0.62585 0.83007 0.61729 0.32254 0.26948 0.087492 40.122
200 -0.10834 -0.071234 0.56653 0.89762 0.58676 0.27932 0.31648 0.15992 34.527
500 -0.15705 -0.06482 0.51922 0.88997 0.55385 0.2436 0.31072 0.14754 29.194

1000 -0.16803 -0.040232 0.52691 0.84337 0.48968 0.19876 0.36839 0.22024 20.525
2000 -0.25869 -0.011541 0.51629 0.81354 0.44601 0.1055 0.37597 0.22386 8.8015
3000 -0.29534 0.013545 0.50124 0.78639 0.4218 0.074949 0.41013 0.25568 3.4797
4000 -0.31676 0.030161 0.47991 0.79688 0.3852 0.082695 0.41474 0.26192 3.154
5000 -0.33249 0.022812 0.50374 0.80145 0.39496 0.054418 0.38445 0.25172 1.9818

λ = 0.6 100 -0.10352 -0.077461 0.53462 0.87468 0.57295 0.26343 0.30065 0.11297 34.329
200 -0.13631 -0.061057 0.54783 0.91576 0.54438 0.20565 0.33396 0.1931 27.646
500 -0.2325 -0.02293 0.48697 0.84078 0.48371 0.16162 0.35613 0.19612 15.515

1000 -0.26579 0.015847 0.49233 0.78684 0.42177 0.093634 0.41276 0.27789 6.3473
2000 -0.30428 0.011746 0.5206 0.80763 0.41789 0.046859 0.37777 0.22581 4.3537
3000 -0.31038 0.014625 0.49617 0.78637 0.4274 0.060843 0.39078 0.23874 3.1691
4000 -0.32888 0.044999 0.46123 0.81316 0.38113 0.077792 0.42177 0.26042 4.861
5000 -0.33631 0.021131 0.51086 0.81859 0.40836 0.046342 0.34893 0.22419 5.6509

True values -0.32 0.0256 0.5 0.8 0.4 0.064 0.4 0.25 0

TABLE II
THE ESTIMATED PARAMETER VALUES AND THE ESTIMATION ERROR VALUES δ VERSUS k USING DRW-IFF-SG ALGORITHM WITH THE DIFFERENT

INCREASING ADJUSTMENT FACTOR ω.

ω k α1 α2 β1 β2 β3 β4 λ1 λ2 δ

ω = 0.5 100 -0.10112 -0.071888 0.54862 0.87458 0.57688 0.27992 0.29501 0.1059 35.619
200 -0.12071 -0.07217 0.5487 0.9168 0.55073 0.22837 0.33133 0.19042 29.894
500 -0.20064 -0.041639 0.50137 0.86497 0.51111 0.19464 0.33449 0.17232 21.323

1000 -0.21566 -0.014923 0.51178 0.81822 0.45212 0.14934 0.39278 0.2481 12.927
2000 -0.27919 0.0021706 0.50845 0.81012 0.43145 0.09174 0.38577 0.23208 5.8179
3000 -0.29328 0.014258 0.50143 0.79305 0.41467 0.080479 0.40995 0.25774 3.3393
4000 -0.29957 0.015067 0.49717 0.79418 0.40094 0.083194 0.40716 0.25768 2.7584
5000 -0.3005 0.012916 0.49918 0.79428 0.40119 0.078997 0.40966 0.2568 2.6108

ω = 0.8 100 -0.1029 -0.076164 0.53795 0.87487 0.57388 0.26765 0.29929 0.11108 34.655
200 -0.131 -0.065149 0.54786 0.91612 0.54576 0.2131 0.33358 0.19264 28.354
500 -0.21943 -0.030749 0.49372 0.85188 0.49386 0.17462 0.34713 0.18579 17.856

1000 -0.24282 0.0015684 0.50025 0.80307 0.43439 0.11986 0.40653 0.26558 8.9826
2000 -0.29906 0.012278 0.51094 0.80986 0.41894 0.068343 0.38626 0.23288 3.5022
3000 -0.311 0.023001 0.50116 0.78738 0.40742 0.063652 0.41573 0.26135 2.22
4000 -0.31605 0.023841 0.49613 0.79459 0.38967 0.071124 0.40853 0.25809 1.6125
5000 -0.31664 0.020269 0.49896 0.79365 0.3923 0.066145 0.40982 0.25838 1.5029

ω = 1.0 100 -0.1033 -0.076923 0.53596 0.87478 0.57331 0.26517 0.3001 0.11218 34.461
200 -0.13374 -0.063102 0.54779 0.91591 0.54486 0.20928 0.33388 0.19296 27.979
500 -0.22505 -0.027445 0.49118 0.84749 0.48917 0.16888 0.35101 0.19007 16.836

1000 -0.25137 0.0066646 0.4969 0.79802 0.42928 0.11041 0.40975 0.27038 7.897
2000 -0.30299 0.01384 0.51295 0.80982 0.41653 0.061681 0.38557 0.23222 3.2917
3000 -0.31459 0.024328 0.5011 0.78575 0.40722 0.05978 0.41625 0.26117 2.2427
4000 -0.31951 0.026107 0.49525 0.79495 0.38664 0.069372 0.40908 0.25847 1.7244
5000 -0.32019 0.021757 0.49906 0.79347 0.39028 0.063842 0.40921 0.25864 1.5044

ω = 1.5 100 -0.10351 -0.077396 0.53477 0.87469 0.57298 0.26363 0.30059 0.11288 34.343
200 -0.13588 -0.061421 0.54781 0.91577 0.5444 0.20627 0.33398 0.1931 27.699
500 -0.23056 -0.024138 0.48828 0.84274 0.48497 0.16344 0.35479 0.19445 15.854

1000 -0.26079 0.012457 0.49368 0.79154 0.42406 0.099694 0.41231 0.27534 6.8304
2000 -0.3053 0.013885 0.51648 0.80918 0.41554 0.054174 0.38355 0.23032 3.5154
3000 -0.31662 0.02385 0.50095 0.78431 0.41007 0.056645 0.4134 0.25791 2.1859
4000 -0.32279 0.0294 0.49177 0.79509 0.38312 0.069925 0.41052 0.26003 2.1629
5000 -0.32387 0.023384 0.49916 0.79297 0.38778 0.06266 0.40739 0.25899 1.6075

ω = 3 100 -0.10352 -0.07746 0.53462 0.87468 0.57295 0.26343 0.30065 0.11297 34.329
200 -0.13631 -0.061059 0.54783 0.91576 0.54438 0.20565 0.33396 0.1931 27.646
500 -0.23246 -0.022958 0.48701 0.84084 0.48373 0.16166 0.3561 0.19608 15.522

1000 -0.2655 0.015625 0.4924 0.78721 0.42186 0.094017 0.4128 0.27774 6.3727
2000 -0.30469 0.012288 0.51988 0.80799 0.41709 0.048439 0.37945 0.22707 4.1294
3000 -0.31419 0.019184 0.49935 0.78424 0.4184 0.057449 0.40207 0.24831 2.272
4000 -0.32585 0.034968 0.47924 0.79747 0.38043 0.075466 0.41421 0.26204 3.2088
5000 -0.32869 0.02567 0.49991 0.7934 0.3861 0.061654 0.40183 0.25736 1.6491

True values -0.32 0.0256 0.5 0.8 0.4 0.064 0.4 0.25 0

faster the convergence speed is. But the convergence
tremble is larger. On the contrary, the larger the forgetting
factor λ is, the slower the convergence speed is. But the
convergence stationarity is greater.

The estimated parameters and the estimation error δ versus
k using DRW-IFF-SG algorithm with the different increasing
adjustment factor ω are illustrated in Fig.6-Fig.10. To clearly
compare the performance of DRW-DFF-SG algorithm with
the different increasing adjustment factors λ, the estimated
parameter values and the estimation error values δ ver-

sus k are illustrated in Table.2. Fig.2 shows the curvature
of λ for the different increasing adjustment factor (ω =
0.5, 0.8, 1, 1.5, 3). From Fig.6-Fig.10 and Table.2, we can
know that the DRW-IFF-SG algorithm perform excellently.
The increasing adjustment factor ω is used to adjust the
increasing speed of the forgetting factor. When ω = 3, the
increasing speed of λ is small at the beginning stage, and
is large at the final stage. Therefore, the DRW-IFF-SG algo-
rithm’s convergence rate is very fast at the beginning stage,
and keep steady transitorily at the final stage. When ω = 0.5,
the increasing speed of λ is large at the beginning stage,
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Fig. 3. The estimated parameters and the estimation error δ versus k using
DRW-FF-SG algorithm with the forgetting factors λ = 0.8.
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Fig. 4. The estimated parameters and the estimation error δ versus k using
DRW-FF-SG algorithm with the forgetting factors λ = 0.6.
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Fig. 5. The increasing forgetting factor λ versus k for the different
increasing adjustment factor ω.
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Fig. 6. The estimated parameters and the estimation error δ versus k using
DRW-IFF-SG algorithm with the increasing adjustment factor ω = 0.5.

2195



0 2000 4000
0

0.1

0.2

0.3

0.4

0.5

t

d
(
%

)

0 2000 4000
−0.4

−0.3

−0.2

−0.1

0

t

a
1

0 2000 4000
−0.1

−0.05

0

0.05

0.1

t

a
2

0 2000 4000
0.4

0.5

0.6

0.7

0.8

t

b
1

0 2000 4000
0.7

0.75

0.8

0.85

0.9

0.95

t

b
2

0 2000 4000

0.4

0.5

0.6

0.7

0.8

t

b
3

0 2000 4000
0

0.1

0.2

0.3

0.4

t

b
4

0 2000 4000
0.1

0.2

0.3

0.4

0.5

t

g
1

0 2000 4000
0.05

0.1

0.15

0.2

0.25

0.3

t

g
2

Fig. 7. The estimated parameters and the estimation error δ versus k using
DRW-IFF-SG algorithm with the increasing adjustment factor ω = 0.8.
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Fig. 8. The estimated parameters and the estimation error δ versus k using
DRW-IFF-SG algorithm with the increasing adjustment factor ω = 1.
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Fig. 9. The estimated parameters and the estimation error δ versus k using
DRW-IFF-SG algorithm with the increasing adjustment factor ω = 1.5.
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Fig. 10. The estimated parameters and the estimation error δ versus k
using DRW-IFF-SG algorithm with the increasing adjustment factor ω = 3.
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and is small at the final stage. Therefore, the DRW-IFF-
SG algorithm’s convergence rate is fast in a short period of
time at the beginning stage, and keep steady for a long time
at the final stage. In fact, The increasing adjustment factor
ω can control the balance of the DRW-IFF-SG algorithm’s
convergence rate and convergence stationarity. From the
simulations, we can know that the DRW-IFF-SG algorithm
performs the best with ω = 0.8.

V. CONCLUSIONS

In this paper, a dual-rate Wiener systems stochastic gradi-
ent algorithm (DRW-SG) is presented. In order to improve
the algorithm’s convergence rate, a dual-rate Wiener sys-
tems stochastic gradient algorithm with a forgetting factor
algorithm (DRW-FF-SG) is presented. The simulation shows
the forgetting factor’s impact on the performance of the
algorithm. In order to further improve the performance of
the algorithm, a dual-rate Wiener systems stochastic gradient
algorithm with an increasing forgetting factor algorithm
(DRW-IFF-SG) is presented which performs excellently. The
numerical simulation confirms the established theorem.
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