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Abstract— As a highly complex multi-input and multi-output
system, blast furnace plays an important role in industrial
development. Although much research has been done in the
past few decades, there still exist many problems, such as the
modeling and control problems. In view of these reasons, this
paper is concerned with developing a Wiener model to predict
the silicon content of blast furnace. Unlike traditional Wiener
model, this paper avoids the optimization of high number of
model parameters. The Wiener model here is composed of
a basis filter filter expansion named Laguerre filter and a
linear programming support vector regression (LP-SVR). They
are used to represent the linear dynamic component and the
nonlinear static element. Take the advantages that Laguerre
filter can approximate linear systems with a lower model and
order and LP-SVR can achieve a sparse solution, the proposed
Wiener model not only improves the prediction accuracy but
also reduces the computation complexity. Simulation results
show that this Wiener model is suitable for the prediction of
blast furnace silicon content.

I. INTRODUCTION

IRON and steel making, a typical high energy-consuming,
high emitters and high pollution industry, is a pillar indus-

try for our national economy. Among all the processes, blast
furnace is the major source of sulfur dioxide emissions and
energy consumption. It is a complex industrial reactor used
to produce hot metal from iron ore for subsequent processing
into steel. When a blast furnace runs, most chemical reactions
happen among different phases including gas phase, liquid
phase and solid phase, along with high temperature, high
pressure [1]. These facts bring the reaction process large time
delay and spatiotemporal characteristics, such as it will take
about 6∼8 hours for a cycle of ironmaking [2]. Due to the
complicated process and hostile environment, current study
focuses on multifields, such as modeling, control method,
performance optimizing and metallurgical analysis. The main
purpose of all the efforts is to obtain a stable and efficient
operation of blast furnace [3]. However, the control of blast
furnace is still implemented by experienced foremen, who
determine status of the reaction process through compre-
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hensive analysis of numerous measured data. Therefore,
modeling of blast furnace is still a crucial problem.

For past decades, a great deal of models including
mechanism-based white-box models and data-based black-
box models have been developed and most of them are
used to predict the hot metal silicon content. Due to the
white-box models fail to capture the dynamic disturbances
in ironmaking process [4], data-based models have attracted
more attention and obtained more achievements which aim
at capturing the intricate interaction between the measured
variables. The main data-driven models include neural net-
works [5-7], fuzzy logic [8], support vector regression [9-10],
state space [11-12], partial least squares recursive analysis
[13] and evolutionary networks [14-15]. They have been
successfully applied to predict the silicon content. For data-
driven models, the modeling process only needs a large set
of observations but no need for the prior information about
the process.

Wiener model can approximate any complex nonlinear
system with short-term memory and it has also been applied
to some practical systems. A sub-space based Wiener model
has been applied to identify the hot metal model in [16],
where the linear dynamic subsystem has a state space repre-
sentation and the inverse of the nonlinear part is described
as a linear combination of polynomial basis functions. Most
Wiener models are based on the standard least square meth-
ods. The model output is a nonlinear function of numerous
parameters after both the linear dynamic subsystem and
nonlinear static subsystem are identified. Then the final task
is to solve a nonlinear least square problem which may has
local optima [17]. In order to avoid the high number of model
parameters, in this paper, an orthonormal filter expansion—
Laguerre filter is used as the linear part and a regularization
term—linear programming support vector regression is used
as the nonlinear part.

As a linear black-box modeling method, orthonormal filter
expansions have achieved much attention in the past decades.
In [18], the advantages of using orthonormal filter network
for system identification are summarized. One is that a good
approximation can be obtained with no much restriction.
Another is that the modeling process does not need any
explicit knowledge about system time constant and time
delay. Later, this orthonormal filter method is combined with
nonlinear map and forms the Wiener-Laguerre model which
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is used to model the nonlinear dynamic system.
Support vector machine (SVM) is a popular machine

learning method. Its main idea is to embed the inputs into
a feature space through a high dimension mapping, and
then find an optimal decision hyperplane among the high
dimension embedded data points[19]. The essence of SVM is
a structure risk minimization principle. It is based on Vapnik-
Chervonenkis (VC) theory. Initially, SVM was used to solve
pattern recognition problems. In order to find a decision rule
with good generalization capability, the so-called support
vectors (SVs) consisted by a small subset of the training
data, are selected to support the optimal hyperplane [20].
Later, support vector regression (SVR) was exploited to cope
with the regression estimation and function approximation
problems. Although the traditional SVR is very effective for
function estimation, there still exist shortcomings, such as the
high computational complexity and the solution is not sparse
enough. Therefore, the idea of linear programming support
vector regression (LP-SVR) is born and used to capitalize
on the advantages of the mode sparsity. It is developed
to change the support vector regression from a quadratic
programming to a linear programming problem which uses
the l1 norm of the coefficient vector [20]. Specifically, the
nonlinear regression problem is treated as a linear one in the
kernel space [21].

In this work, a Wiener model is presented to model the
blast furnace ironmaking process, viz. the silicon content.
For the proposed model, the linear dynamic subsystem is
described by Laguerre filter and the nonlinear static part is
represented by linear programming support vector regression.

This paper is organized as follows. Brief review of related
methods for the modeling process is in Section 2. Section 3
gives the experimental validation in nonlinear blast furnace
system which conclude the experimental data and screening
and the predictive results. Finally, Section 4 concludes this
paper.

II. PROBLEM FORMULATION

A. Wiener model

Nonlinear system can be approximated by Wiener model
which consists of a linear dynamic element followed by
a nonlinear static element. In this paper, Wiener model is
used to identify a multi-input singler-output discrete-time
nonlinear dynamical system as follows

X(k + 1) = f(X(k),u(k)) (1)

ŷ(k) = h(X(k)) (2)

where u is the scalar input signal which is selected in
advance, X is the state vector which is both the linear
dynamic element output and the static nonlinear component
input. ŷ is the model output. f(·, ·) and h(·) are the linear
and nonlinear mappings. The structure of Wiener model is
shown in Fig. 1.

In this paper, the linear dynamic component is parame-
terized by Laguerre filter while the nonlinear static part is
represented by linear programming support vector regression.

( )ku ( )kx ( )ky
Fig. 1: Structure of Wiener model

Our goal is to find an appropriate Wiener model which
can explain the input-output data {u(k), y(k)} as well as
possible, where y is the measured output signal.

B. Laguerre filters

The idea of representing the linear dynamic block using
orthonormal filter networks such as Laguerre and Kautz
filter has received increasing attention in the past decades.
A discrete Laguerre filter which does not need any explicit
information about system time constant and time delay can
expand the output of the linear dynamics as an expression
of finite input bases [22]. Consider a SISO linear system
modeled by a Laguerre filter as follows [18]

ŷ(z) =

(
n∑
i=1

ciLi(z)

)
u (z) (3)

where

Li(z) =

√
(1− a2)T
(z − a)

(
1− az
z − a

)i−1
(4)

Here Li(z) indicates the ith order Laguerre filter, n is number
of Laguerre filter used for model development, ci is the
Laguerre coefficient, a(−1 < a < 1) is the Laguerre filter
time-scaling factor, T is the sampling interval, ŷ is the model
output, and u represents manipulated input.

The state vector is defined as

X(k) = [x1(k), x2(k), . . . , xn(k)]
T (5)

where xi(k) represents the output from ith order Laguerre
filter at the kth sampling instant, a discrete state space
realization of the Laguerre filter network can obtained as

X(k + 1) = φ(a)X(k) + γ(a)u(k) (6)

where u(k) is the system input, γ(a) is an n dimensional
vector defined as

γ(a) = [
√

(1− a2)T , . . . , (−a)n−1
√
(1− a2)T ]T (7)

and φ(a) is an n× n lower triangular matrix defined as

φ(a) =


a 0

(1− a2) a
−a(1− a2) (1− a2)

...
...

(−1)nan−2(1− a2) (−1)n−1an−3(1− a2)

(8)

0 · · · 0
0 · · · 0
a · · · 0
...

. . .
...

(−1)n−2an−4(1− a2) · · · a


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For the SISO linear model (3), the model output can be
expressed as the weighted sum of states

ŷ(k) = cTX(k) (9)

where c = [c1, c2, ..., cn]
T .

Consider to develop a Wiener-Laguerre SISO nonlinear
model, a nonlinear state-output map can be constructed so
that the model output is represented as

ŷ(k) = Ψ(X(k)) (10)

where Ψ(·) : Rn −→ R represents the nonlinear mapping.
Then let’s expand the SISO model to MISO condition

which has m inputs. For simplicity, we assume each input
has the same number of filters ni(n) and the same Laguerre
coefficient ai(a). The input vector is defined as

U(k) = [u1(k), u2(k), . . . , um(k)]T (11)

and state vector is defined as

X(k) = [X1(k), X2(k), . . . , Xm(k)]T (12)

Xi(k) = [xi1(k), xi2(k), . . . , xin(k)]
T , i = 1, 2, . . . ,m

(13)
where xij(j = 1, 2, . . . , n) is the state vector correlating the
jth order Laguerre filter with ith input.

The corresponding state dynamics can be defined as

X(k + 1) = Φ(a)X(k) + Γ(a)U(k) (14)

and

Φ(a) = block diag[φ(a), φ(a), . . . , φ(a)]N×N (15)

Γ(a) = block diag[γ(a), γ(a), . . . , γ(a)N×m] (16)

where
N = m× n (17)

The output of the MISO Wiener-Laguerre model can be
expressed as

ŷ(k) = Ψ[X(k)] (18)

where Ψ(·) : RN −→ R represents the nonlinear mapping.

C. Linear programming support vector regression

SVM is a kernel-based method and frequently used for
nonlinear classfication. It is performed by using a real-valued
function f : X ⊆ Rn → Rm(m > n) in the following
way: the input x = (x1, . . . , xn) is assigned to the positive
class if f(x) ≥ 0, and otherwise to the negative class.
The basic idea is to construct a so-called optimal separating
hyperplane in a high-dimensional (even infinite-dimensional)
feature space by maximizing the margin between the nearest
training data points of the two classes. It is based on Vapnik’s
ε-insensitive loss function and structural risk minimization
that the SV solution derived can be sparse. The goal of SVR
is to bound the mean approximation error of a finite data set
[8]. The select of kernel function and the homologous kernel
parameters is very important for the accuracy of results.

For a given training set D = {(xi, yi), i = 1, . . . , l}, where
xi is the ith input vector, yi is the corresponding response

variable, l is the total number of exemplars. In this paper, xi
is the ith state of the Laguerre filters. We consider the case
can be written as a nonlinear mapping as follows

f(x) = wTφ(x) + b (19)

where f(x) maps a data point xi into a higher dimensional
space. In ε−SVR, the goal is to find a function f(x) that
has at most ε deviation from the actually obtained target yi.
In the traditional support vector method, the problem of the
ε−SVR is formulated as

min
w,b

1
2 ∥ w ∥

2 +C
l∑
i=1

(ξi + ξ∗i )

s.t.

 yi −
(
wT · φ (xi) + b

)
6 ε+ ξi

wT · φ (xi) + b− yi 6 ε+ ξ∗i
ξi, ξ

∗
i > 0, i = 1, . . . , l

(20)

where the parameter C > 0 decides the trade-off between the
large margin and a small error penalty, ε > 0 controls the
admissible uncertainty on the data points, ξi and ξ∗i are slack
variables, ξi denotes the training error above ε, whereas ξ∗i
denotes the training error below ε. This is a classic quadratic
optimization problem with inequality constraints. By defining
the ε−insensitive loss function

Hε (yi − f(xi)) = max {0, |yi − f(xi)| − ε} (21)

the optimization problem (20) is equivalent to the following
regularization problem [20]

min
f

{
λ ∥ w ∥2 +

l∑
i

Hε (yi − f(xi))

}
(22)

where f(x) is in the form of (19) and λ ∥ w ∥2 is the
regularization term. According to the well-known Represen-
ter Theorem, the solution to the optimal function (22) can
be written as the linear combination of the kernel functions
centering the training examples

f(x) =

l∑
i=1

βik (x,xi) (23)

where k (x,xi) is the kernel function which can be chosen
from the following functions

• Gaussian radial basis function (GRBF) kernel:

k (x,x′) = exp

(
− ∥ x− x′ ∥2

2σ2

)
(24)

• Polynomial kernel:

k (x,x′) = (1 + ⟨x,x′⟩)q (25)

• Sigmoid kernel:

k (x,x′) = tanh (α⟨x,x′⟩+ γ) (26)

where σ, q, α, γ are the adjustable parameters of the above
kernel functions. In this paper, the GRBF kernel is the choice.
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Linear programming support vector regression changes the
l2 norm in (22) to l1 norm as

min
f

{
λ ∥ β ∥1 +

l∑
i

Hε (yi − f(xi))

}
(27)

where β= [β1, β2, . . . , βl]
T , f(x) is in the form of (23). This

regularization programming is equivalent to the following
optimization problem

min
β

1
2 ∥ β ∥1 +C

l∑
i=1

(ξi + ξ∗i )

s.t.


yi −

l∑
j=1

βjk (xj ,xi) 6 ε+ ξi

l∑
j=1

βjk (xj ,xi)− yi 6 ε+ ξ∗i

ξi, ξ
∗
i > 0, i = 1, . . . , l

(28)

From [21], it can be followed that ξiξ∗i = 0 in SV
regression and it is sufficient to just introduce slack variable
ξi in the constrained optimization problem (28). Thus, the
optimization problem can be written as

min
β

1
2 ∥ β ∥1 +2C

l∑
i=1

ξi

s.t.


yi −

l∑
j=1

βjk (xj ,xi) 6 ε+ ξi

l∑
j=1

βjk (xj ,xi)− yi 6 ε+ ξi

ξi > 0, i = 1, . . . , l

(29)

In order to transform the above optimization problem into
a linear programming problem, the variable βi and |βi| can
be decomposed to the following form

βi = α+
i − α

−
i , |βi| = α+

i + α−i (30)

where α+
i , α

−
i > 0. It is worth noting that the decompositions

of (30) are unique that for a given βi there is only one
pair

(
α+
i , α

−
i

)
which fulfills both equations. α+

i · α
−
i = 0

is guaranteed implicitly to guarantee both variables cannot
be larger than zero at the same time. In this way, the l1 norm
of β can be written as

∥ β ∥1=

1, . . . , 1︸ ︷︷ ︸
l

, 1, . . . , 1︸ ︷︷ ︸
l

( α+

α−

)
(31)

where α+ =
(
α+
1 , α

+
2 , . . . , α

+
l

)T
and α− =(

α−1 , α
−
2 , . . . , α

−
l

)T
. Then plug (30) into (29), we obtain

min
α+,α−

1
2

l∑
i=1

(
α+
i + α−i

)
+ 2C

l∑
i=1

ξi

s.t.


yi −

l∑
j=1

(
α+
j − α

−
j

)
k (xj ,xi) 6 ε+ ξi

l∑
j=1

(
α+
j − α

−
j

)
k (xj ,xi)− yi 6 ε+ ξi

ξi > 0, α+
i , α

−
i > 0, i = 1, . . . , l

(32)
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Fig. 2: Wiener model with Laguerre filter and LP-SVR

For the sake of simplicity, the above optimization problem
can be written as the following linear programming problem

min cTx
s.t. Ax 6 b

(33)

where

c =

1, . . . , 1︸ ︷︷ ︸
l

, 1, . . . , 1︸ ︷︷ ︸
l

, 2C, . . . , 2C︸ ︷︷ ︸
l

T ,

x =

α+
1 , . . . , α

+
l︸ ︷︷ ︸

l

, α−1 , . . . , α
−
l︸ ︷︷ ︸

l

, ξ1, . . . , ξl︸ ︷︷ ︸
l


T

,

A =

[
K −K −I
−K K −I

]
with Kij = k (xi,xj),

b =

ε+ y1, . . . , ε+ yl︸ ︷︷ ︸
l

, ε− y1, . . . , ε− yl︸ ︷︷ ︸
l

T ,

I is l × l identity matrix.
After (33) is solved, we can get the predictive result as

f(x) =
∑

xi∈SV

(
α+
i − α

−
i

)
k (x,xi) (34)

Here, SV represents the small set of support vectors.
The state space illustration of the whole MISO Wiener

model is below in Fig. 2

III. EXPERIMENTAL VALIDATION IN NONLINEAR BLAST
FURNACE SYSTEM

In this section, the proposed Wiener model is applied to
data collected from No.2 blast furnace of Liuzhou Steel in
China. The volume of the blast furnace is 2000 m3. There
are, in total, 500 consecutive data points available from the
selected blast furnace with the preceding 300 data points to
be the training set and the rest 200 data points to be the test
set.

A. Experimental data and preprocessing

There are 23 candidate variables from which to select
model inputs. As mentioned in Section 2, not all monitored
process variables have an influence on the fluctuation of
silicon content. Additionally, too many inputs will increase
the complexity of the model while too little inputs will reduce
the model precision. So it is necessary to select the more
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important variables as inputs from all these listed variables.
Here grey correlation method is used for the selection [23].

The grey correlation degree is a quantitative value of the
correlation between the factors. Positive correlation between
main-array and sub-array indicates that the sub-factor will
enhance the main-factor. However, negative correlation indi-
cates that the sub-factor will weaken the main-factor. The
higher the value of grey correlation degree is, the more
relevant the main-factor and the sub-factor are. To get the
grey relational degree and the grey relational order, the grey
correlation analysis method can be summarized as follows

1) Get the reference X0 = (x0(1), x0(2), . . . , x0(n))
and comparison sequences Xi =
(xi(0), xi(1), . . . , xi(n)) , i = 1, 2, . . .m.

2) Calculate the relational degree. To determine the re-
lational degree between the reference and comparison
sequences, a discrete function of the relational degree
coefficient (the grey relational coefficient) is represented
by

ς0i(k) =
∆min + ρ∆max

∆0i(k) + ρ∆max
, k = 1, 2, . . . , n (35)

where
∆0i(k) =| xi(k), x0(k) |

∆max = max
i

max
k
{∆0i(k)}

∆min = min
i

min
k
{∆0i(k)}

and ρ ∈ [0, 1] is the coefficient to distinguish the degree
of proximity of X0 and Xi such that ς0i ∈ [0, 1].
This value can be adjusted based on the actual system
requirements. In this paper, we consider ρ = 0.5. After
the grey relational coefficients have been obtained, the
mean of the coefficients usually adopted as the grey
relational degree. Then

γ (x0, xi) =
1

n

n∑
k=1

ς0i(k) (36)

is called the grey correlation degree of the ith compar-
ison sequence Xi to the reference sequence X0.

3) Order the grey correlation degree. From the ordered
γ (x0, xi), we shall pick the sequence with the greatest
relational degree.

Table I lists the grey correlation degree of candidate
variables. The variables with grey correlation degree larger
than 0.8800 are selected as the inputs of the model.

B. Parameter settings

There are three parameters to be determined in advance
while using RBF kernel, viz. ε, C, and σ2. We examine
the forecasting performance of the method with ε = 0.01.
C and σ2 are determined by Grid-search method. The
theory of this search method is to divide the feasible region
of each parameter into some small subregions. Computer
can calculate the parameters combination sequentially and

TABLE I: The grey correlation degree of candidate variables.

Variable Grey correlation degree

The latest silicon content 0.9008

Cold wind flowrate 0.8850

Feed wind ratio 0.8849

Hot blast pressure 0.8835

Furnace top pressure 0.8823

Pressure difference 0.8847

Top pressure blast volume ratio 0.8817

Gas permeability 0.8839

Drag coefficient 0.8810

Hot blast temperature 0.8762

Oxygen enrichment flowrate 0.7966

Oxygen enrichment percentage 0.7964

Pulverized coal injection 0.8702

Blast humidity 0.8860

Standard wind speed 0.8850

Actual wind speed 0.8788

Blast momentum 0.8718

Bosh gas volume 0.8847

Bosh gas index 0.8847

Top temperature (northeast) 0.8825

Top temperature (southwest) 0.8830

Top temperature (northwest) 0.8849

Top temperature (southeast) 0.8847

provide the corresponding error. Parameters will be updated
if the error value is reduced. Finally, the best parameters will
be given. The final search results are C = 500, σ2 = 2.

The laguerre filter and order have an effect on the model
accuracy. Through analysis, we select the laguerre filter pole
a = 0.2 and filter orders M = 4.

C. Predictive results and evaluation

To better exhibit the performance of the proposed method,
RMSE (Root Mean Square Error) is defined as a derivation
measurement between the target and the predictive values.
All experiments are carried out using MATLAB R2009a with
2GB memory and the operating system of Windows XP.

RMSE =

√√√√1

l

l∑
i=1

(ŷi − yi)2 (37)

The RMSEs of the train set and test set are trainRMSE =
0.049077, testRMSE = 0.061938.

Fig. 3 shows the predictive results and APEs (Absolute
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Fig. 3: Predictive results and the APEs.

Percentage Error) compared with the measured output.

APEi =
|ŷi − yi|
yi

× 100% (38)

It can be seen that the proposed Wiener model can
successfully model the silicon content of blast furnace. The
Laguerre filter part and LP-SVR part approximate the linear
and nonlinear part without knowing the inner information of
industrial process but still predict the next silicon content
with small error. In addition, linear programming support
vector regression enables us to obtain a much sparser ap-
proximation model which makes the model process simpler.
In conclusion, the proposed Wiener model is suitable to the
blast furnace system and it can be spread to other complex
industrial systems.

IV. CONCLUSION

This paper has developed a Wiener model to identify
the silicon content of blast furnace ironmaking process,
where Laguerre filter and linear programming support vec-
tor regression represent the linear and nonlinear compo-
nent. Experimental results show that this model structure
is suitable for hot metal prediction. The proposed Wiener
model structure reduces the parameters to be optimized,
only several parameters need to be selected. This modeling
process greatly reduce the modeling complexity and achieve
a good result. Due to the complexity of blast furnace smelting
process, we should deepen the analysis of blast furnace and

improve the prediction technique so that the method could
be more suitable to the smelting process.

Future work research work will focus on the deep analysis
of blast furnace ironmaking process and the exploration of
modeling approach.
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