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Abstract—The requirement for correct bandwidth allocation
and management in a multitude of different communication
mediums has generated some exceedingly tedious challenges that
need to be addressed both intelligently and with innovative
solutions. Current advances in high speed broadband technologies
have manifold increased the amount of bandwidth required
during successful multimedia streaming. The progressive growth
of Neuro-Evolutionary techniques have presented themselves
as worthy options to address many of the challenges faced
during multimedia streaming. In this paper a Neuro-Evolutionary
technique called the Recurrent Cartesian Genetic Programming
Evolved Artificial Neural Network(RCGPANN) is presented for
prediction of future frame sizes. The proposed technique takes
into account the traffic size trend of the historically transmitted
data for future frame size prediction. The predicted frame size
forms the basis for estimation of the amount of bandwidth
necessary for transmission of future frame. Different linear
regression and probabilistic approaches are employed to estimate
the allocated bandwidth, while utilizing the predicted frame size.
Our proposed intelligent traffic size prediction along with band-
width estimation and management results in a 98% increased
efficiency.

Keywords—scheduling, evolutionary algorithm, traffic estima-
tion, MPEG-4, bandwidth allocation.

I. INTRODUCTION

In the current scheme of major technological advance-
ments, many new handheld devices such as smart phones and
tablets have emerged having a vast improvement in term of
their processing power and memory. These devices have the
tendency to capture very high resolution images and videos.
This high resolution content requires higher data rates while
transference and streaming across the internet leading to some
serious issues while appropriate bandwidth utilization. In a
wireless network constrained by the available bandwidth, users
tend to contest for channel availability time to support their
respective multimedia flows. An efficient bandwidth allocator
and scheduler becomes an essential entity for proper and
optimum scheduling of multimedia traffic while multimedia
streaming in such cases.

Recent times have seen a lot of effort being put into
devising original and superior techniques to tackle the issue of
efficient bandwidth scheduling and allocation. One of the pop-
ular means, among these methods include techniques based on
Kalman Filtering. Bandwidth Available in Real Time (BART)
proposed by Bergfeldt et. al [1] is one such technique. It uses

self induced congestion in a packet switched network along
with Kalman filtering for bandwidth estimation. An extension
to BART has been proposed by Sedighizad et.al [2], known as
Multi Rate BART (MR-BART), which tends to converge faster
than its predecessor BART. Sometimes a combination of two
or more techniques might lead to a novel and state of the art
solution for bandwidth scheduling. Such combinations tend to
merge the benefits of the contributing techniques. One such
example lies in the combination of genetic algorithm, neural
networks and fuzzy logic proposed by Chin-Teng et. al [3],
known as Genetic Algorithm-based Neural Fuzzy Decision
Tree (GANDFT). Probing based bandwidth estimations [4] [5]
are also quite popular for proper bandwidth allocation and
scheduling of variable bit rate (VBR) multimedia traffic. Such
techniques make use of probe packets to collect information
regarding channel utilization and available bandwidth and
based on this information proper scheduling of the multimedia
traffic is performed.

Some popular techniques employed while bandwidth esti-
mation make use of frame size forecasters to predict the size of
the future frames or packets. Bandwidth allocation is then per-
formed based on the predicted size. An efficient size forecaster
can thus play a vital role in the proficient estimation of required
bandwidth for packet transmission, thus maintaining a fair
amount of Quality of Service (QoS). Yi-Hsien et al. [6] have
proposed Variable Step Size Normalized Least Mean Square
Algorithm (VSSNLMS) for traffic prediction. Their proposed
technique is quite efficient but tends to introduces a large error
while predicting frames at the scene boundaries. Yuang and
Tien [7] devised an intelligent bandwidth estimator based on an
online traffic predictor utilizing the benefits of neural networks
and fuzzy logic having two phase learning (i.e. Structural
and parameter learning). For long term traffic prediction Lee
and Chang [8] proposed an efficient ρ-domain rate model as
a predictor. The technique when compared against Adaptive
Least Mean Square(ALMS) [9] proposed by Yoo and Least
Mean Square(LMS) algorithm [10] by Adas was shown to
outperform both of these techniques.

The current research focuses on introducing a Neuro-
Evolutionary Technique known as the Cartesian Genetic Pro-
gramming Evolved Artificial Neural Network (CGPANN) [11]
to develop an MPEG-4 frame size predictor, whose results
are then employed for efficient bandwidth estimation. Neuro
Evolution leads to the artificial evolution of all the components
of an Artificial Neural Network (ANN) i.e. the evolution of
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network inputs, neuron inputs, weights, functions and network
outputs as well as the complete network topology. It leads
to new, innovative and efficient solutions as the entire ANN
structure is altered during evolution. A CGPANN can either be
feedforward or recurrent. A Recurrent CGPANN is employed
to solve non-linear problems. The research proposed here also
employs the Recurrent CGPANN (RCGPANN). The proposed
solution is quite efficient in terms of problem solving during
proper bandwidth allocation and management. Compared to an
ANN, CGPANN gives simpler yet better solution in terms of
implementation.

II. CARTESIAN GENETIC PROGRAMMING EVOLVED
ARTIFICIAL NEURAL NETWORK (CGPANN)

Engulfing the core concept of Neuro-Evolution, the
CGPANN makes use of Cartesian Genetic Programming
(CGP) [12] to evolve an artificial neural network (ANN). A
CGPANN involves complete component-wise evolution of the
entire neural network leading to an innovative, robust and
highly efficient solution [11]. The evolutionary process is per-
formed continuously until an efficient system having the best
fitness value is obtained. A CGPANN, like an ANN can also be
feed-forward and recurrent (i.e. FCGPANN and RCGPANN).
In the current research a Recurrent CGPANN (RCGPANN)
based frame size predictor is evolved. The predicted frame
size from the evolved network is then utilized for bandwidth
allocation and estimation for different number of users under
different constraints on the total available bandwidth. The next
section gives details regarding the RCGPANN composition and
evolution strategy.

III. RECURRENT CARTESIAN GENETIC PROGRAMMING
EVOLVED ARTIFICIAL NEURAL NETWORK (RCGPANN)

Based on the ’Jordan Network’, an RCGPANN becomes
the implementation choice, whenever the solution for a non-
linear and dynamic problem is being devised. The neurons
within the RCGPANN are identical in composition to its
counterpart the FCGPANN. The only difference lies in the
connection formed by these neuron inputs during evolution.
Contrary to the FCGPANN, the neuron inputs of the RCG-
PANN may also form connections with outputs from recurrent
nodes, in addition to the outputs of the preceding nodes or
system inputs. A recurrent node takes in as input the system
outputs and then multiplies these inputs with some weights
within the range -1 to 1. These weighted values are then
summed up and a standard activation function(log-sigmoid
or tangent-hyperbolic) is applied on the sum to obtain the
recurrent node output. A simple node and a recurrent node
within the RCGPANN can be viewed from Fig. 1. In Fig. 1(a),
the input R is basically the output taken from a recurrent node.
It is not a compulsion for the simple node to form a connection
with a recurrent node. The connection formed is basically on
the basis evolution.

An RCGPANN can either be represented as a genotype
(Fig. 2(a)) or as a phenotype(Fig. 2(b)). Each column in
the genotype represents a simple node in the RCGPANN.
The phenotype gives the evolved topological structure of the
network specified by the genotype. The grayed column within
the genotype and the dotted box within the phenotype of Fig. 2
are clear representations of nodes which are redundant or junk

Fig. 1. Basic composition of (a) A Simple Node and (b) A Recurrent Node
operating within an RCGPANN

nodes. This brings to light another quality of the RCGPANN
which differentiates it from a typical recurrent ANN, i.e.
output from every neuron within the layers of the RCGPANN
is not being fed to the inputs of the subsequent nodes or
network outputs. Such non-utilized neurons are termed as
junk nodes. The junk nodes are produced during evolution
along with the rest of the network components and topology.
The selection of a node output, a recurrent node output or
a system input as a connection to an RCGPANN node or
network output is performed using a Pseudo Random Number
Generator [13]. The evolution of RCGPANN follows certain
steps of implementation detailed in the next section.

A. RCGPANN Algorithm

The technique involved in evolving an RCGPANN can be
viewed from the algorithm given below.

1) START
• INPUTS
◦ Nnode: Total number of neurons.
◦ Ninput: Total number of node inputs.
◦ SinputV ector: The inputs to the network.
◦ Errorfitness: Minimum error to check

the fitness of the final genotype.
◦ Ngen: Total number of genotypes in a

generation.
◦ functionact: The activation function list

for the neurons.
◦ Nrecurr: Total number of recurrent

nodes.
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Fig. 2. (a) RCGPANN Genotype Representation and (b) RCGPANN Evolved Phenotype Representation

◦ MR%: Mutation Rate.

• OUTPUTS

◦ SoutputV ector = [op1, op2, ......opM ]:
Outputs from the network. Where M is
the total number of system outputs

2) INITIAL Since no previous generations of the geno-
types exist, therefore at the initial stage a population
of Ngen genotypes is created. For this purpose the
neurons or genes of every genotype are produced
using Equation. 1, 2 and 3. Equation. 1 connects
the node inputs to the outputs of preceding nodes,
system inputs or recurrent inputs depending on a
value generated by a random number generator [13].
Thus σ specifies the genotype number, ψ gives the
node number and φ relates to the node input. Equa-
tion. 2 assigns a weight to each input of a node
in the range [-1 to 1]. χ in Equation. 2 refers to
the weight of the node input. This value is also
assigned using a pseudo-random number generator
which produces the index of the weight in the range
to be assigned. Equation. 3 assigns a function to
the neurons from the vector functionact. Activation
functions are the same as the ones utilized in an ANN
(i.e log-sigmoid, tangent-hyperbolic etc). ψ.oper in
equation 3 basically refers to the activation function
assigned to the node. The index for the function in
the functionact list is again generated using a pseudo
random number generator.

netgenotype(σ, ψ, φ) = PRG([SinputV ector :

netgenotype(σ, ψ − 1), . . . , netgenotype(σ, 1) :

netrecurrent(1), . . . , netrecurrent(Nrecurr)])

(1)

netgenotype(σ, ψ, χ) = PRG([−1, . . . , 1]) (2)

netgenotype(σ, ψ.oper) = PRG(functionact) (3)

The genotype or network outputs are generated using
Equation. 4. The outputs can either be connected
with the system inputs or the node outputs. The
connection to the output is also chosen based on
the index generated by a pseudo random number
generator. opm in Equation. 4 is the mth output of
SoutputV ector(m = 1, .....,M).

opm = PRG([SinputV ector : netgenotype(σ, ψ),

. . . , netgenotype(σ, 1)]
(4)

A recurrent node is also created using Equation. 2
and 3, which assign weights and functions respec-
tively to the recurrent node.

3) FITNESS EVALUATION and SELECTION The
fitness of all ten genotypes (parent and offspring)
is calculated. Fitness is actually a measure of the
Root Mean Square Error (RMSE) [14] produced by
a genotype network. From the Ngen genotypes the
fittest(i.e. the one having the least RMSE) is chosen
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as the parent for mutation. If the RMSE of the parent
is less than errorfitness, then evolution stops and
the chosen parent genotype is selected as the final
evolved network.
During fitness evaluation if a parent and the child
have the same and highest fitness, then the child is
chosen as the parent for next generation [12].

4) MUTATION The parent genotype is now mutated
to produce Ngen − 1 offspring. Mutation is per-
formed by changing either the simple nodes input
(using Equation. 1), weights (equation 2), functions
(Equation. 3) or system outputs (Equation 4). The
recurrent nodes can also be mutated while producing
new offspring. The mutation is performed by MR%
(the mutation rate). Mutation is performed on the
1+λ strategy given by Miller and Thompson [12](i.e.
λ offspring for a single parent). After mutation the
Ngen genotypes (parents along with the offspring)
are again sent to step 3 for fitness evaluation of the
chromosomes.

5) END

IV. RCGPANN FRAME SIZE PREDICTOR SIMULATION
SETUP

For the current proposed RCGPANN packet size estimator,
ten setups were evolved using the algorithm specified in
Section. III-A having different number of total nodes(50, 100,
150, 200, 250, 300, 350, 400, 450, 500). These include the
both the active and the junk nodes. The mutation rate for
the networks is set at 10%, as this value has been shown to
give exemplary results [11]. All the networks take in as input
the frame sizes of ten past frames thus leading to networks
having 10 system inputs. All the setups have 10 system outputs
which are averaged to produce the predicted packet size. The
number of maximum recurrent nodes for these setups has
been set at 10. Thus the evolved systems have 10 feedbacks,
of which some or all might not be utilized. The predicted
frame size from the RCGPANN networks is then used further
for bandwidth allocation to aide in lose less MPEG-4 traffic
streaming. For the testing of the predictor a total of seven
different MPEG-4 file sources have been taken. The list of
the movies used during system testing can be viewed from
Table. I. Mean Absolute Percentage Error (MAPE) [14] is
used to evaluate the performance of the traffic predictor. The
performance of the predictor is evaluated in detail in the next
section (Section. V). The best packet predictor was obtained
for 100 nodes and the experimental setup for the evolved
system can be viewed from Fig. 3. From the figure it can
be seen that after evolution, only five nodes are active in the
end system. Furthermore only one recurrent input is being
employed as the feedback input. It can also be observed that
among the previous packet size values, the latest or the 10th

input plays the highest role in predicting the future packet
size. It can also be seen that many of the system inputs
(i0, i3, i4, i6) play no role in producing the future packet size.
Mean Absolute Percentage Error (MAPE) is used as a criteria
for judging the performance of the predictor.

The evolved packet size predictor is given in Equation. 5.
The exponential expression(standard log-sigmoid function) in
the equation gives the composition of the 13th node and N9 is
the ninth node expressed in Equation 6. Equation. 7, 8 and 9

TABLE I. TESTING DATA

S.No MPEG4-Sources Number
of Frames

Average
to Peak
Ratio

MAPE
(%)
for 100
Nodes

1 First Contact 50,712 0.13 1.9065

2 Silence of the Lambs 50,287 0.09 1.2808

3 Star Wars IV 37,536 0.12 1.8566

4 The Firm 1 65,527 0.06 1.4132

5 The Firm 2 65,527 0.23 1.4338

6 From Dusk till Dawn 52,520 0.21 3.2529

7 Starship Troopers 65,529 0.21 1.8649

give the zeroth, second and first node which are inputs to the
9th node. i0, i1, ...., i9 are the system inputs.

packetSize =
1

10
{7i9 + i7 + i8 +

1

1 + e3.9334N9−0.9911i5
}
(5)

N9 =
1

1 + e1.9782N2+0.9962i5+0.9801N0
(6)

N0 =
1

1 + e1.996i2+2.9103i5
(7)

N2 =
1

1 + e1.9565i5+1.9704i9−0.9775N1
(8)

N1 =
1

1 + e−1.296i5+0.2794R0−0.4212i1
(9)

Different probabilistic and linear regression methods are
utilized to further estimate the bandwidth required for frame
transmission using the frame size estimated by the best 100
node RCGPANN setup. The results for frame size prediction
will be presented and evaluated in the next section.

V. TRAFFIC PREDICTION RESULTS AND ANALYSIS

Table. I shows that for the frame predictor evaluation,
more than 80,000 frames of 7 different movies were taken
into consideration. These movies were selected randomly and
gave rise to a considerably huge data set. The results are
indicative of the efficiency of the frame predictor. MAPE (%)
was calculated for the estimated size values against the actual
values. It can be observed from the table that a minimum
MAPE of 1.2% has been achieved, thus proving the accuracy
with which the predictor forecasts the size values.

Fig. 4 shows the MAPE for simulation setups with different
number of nodes. The figure indicates that the setup with 100
nodes gives the best solution. The traffic predictor proposed
in the current research has been compared against some
very popular techniques. Observing Table. II, the comparison
greatly supports the use of the proposed predictor as opposed
to its predecessors.
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Fig. 3. (a) Evolved Packet Size Estimator (b) Allocated Bandwidth

Fig. 4. Mean MAPE for Systems with Different Number of Nodes

TABLE II. FRAME PREDICTION COMPARISON

S.No Technique % Prediction Error

1 LMS [10] 10.7

2 ALMS [9] 7.4

3 ρ− LSP [8] 5.2

4 SARIMA [15] 1.37

5 [16] 1.4

7 Proposed Scheme RCGPANN 1.2

VI. BANDWIDTH ALLOCATION SIMULATION SETUP

To compare bandwidth allocation efficiency as a conse-
quence size prediction by the RCGPANN predictor, different
simulation scenarios have been taken under consideration.
These scenarios differ from each other based on the number of
users streaming the MPEG-4 data, the percentage bandwidth
available and the different limitations under which bandwidth
allocation is performed. Basic categorization of the simulation
scenarios involves four types of bandwidth allocation setups.

The first setup involves the fixed data rate scenario in which
10% of the users from the total number of users are streaming
traffic based on a fixed packet size. Fixing the packet size
results in allocation of a fixed bandwidth to these users. For the
rest of the users, the RCGPANN predicts the packet size and
bandwidth allocation is performed according to the predicted
size.

The second scenario resembles the fixed data rate scenario
in the sense that in this case, 10% of the users are being given
a higher priority for data streaming as compared to the other
beneficiaries of this scheme. Bandwidth allocation has now
been prioritized. Fig. 5 shows the setup involved for fixed data
rate or priority based bandwidth allocation.

The variable data rate case is the simplest where the
required bandwidth is simply estimated and allocated for frame
based on the predicted frame size.

The probability based bandwidth allocation setup however
allocates bandwidth based on numbers generated by pseudo
random number generator. Basically bandwidth is calculated
for each user based on the predicted packet size. Using the
estimated value, a number is assigned to the user from a pre-
defined range. A random number is then generated lying in this
predefined range. If the number assigned to the user is close to
but greater than the generated random number, then the packet
for the user is dropped, otherwise it is transmitted. Fig. 6 shows
the setup for probability based bandwidth allocation.

VII. BANDWIDTH ALLOCATION RESULTS AND ANALYSIS

The bandwidth allocation efficiency has been calculated
in terms of packet loss for different number of users, while
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Fig. 5. Fixed/Priority based Bandwidth Allocator

Fig. 6. Probability based Bandwidth Allocator

employing the simulation setups detailed in Section. VI. Ta-
ble. III gives details regarding the packet loss resulting from
bandwidth overhead. Bandwidth overhead occurs when the

actual required bandwidth exceeds the estimated amount of
bandwidth. From Table. III, it can be seen that using the
proposed bandwidth allocation scheme considerable packet
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TABLE III. AVERAGE FRAME DROP DUE TO BANDWIDTH OVERHEAD

Users Scenarios % Bandwidth Allocation

15% 25% 35% 50% 100%

Act Est Act Est Act Est Act Est Act Est

10 Fixed 522 523 333 289 96 96 1 9 0 0

Variable 496 494 194 170 38 23 9 0 0 0

Probability 453 272 135 112 26 11 0 0 0 0

Priority 464 462 195 169 49 30 1 0 0 0

50 Fixed 594 409 65 57 2 0 0 0 0 0

Variable 429 429 76 69 1 0 0 0 0 0

Probability 393 311 55 35 1 0 0 0 0 0

Priority 429 429 71 63 2 0 0 0 0 0

100 Fixed 595 419 49 46 0 0 0 0 0 0

Variable 414 414 60 56 0 0 0 0 0 0

Probability 367 318 35 24 0 0 0 0 0 0

Priority 417 417 48 45 0 0 0 0 0 0

500 Fixed 416 416 28 27 0 0 0 0 0 0

Variable 418 418 25 25 0 0 0 0 0 0

Probability 369 312 18 17 0 0 0 0 0 0

Priority 419 419 28 27 0 0 0 0 0 0

1000 Fixed 420 420 28 14 0 0 0 0 0 0

Variable 423 423 17 16 0 0 0 0 0 0

Probability 375 308 15 10 0 0 0 0 0 0

Priority 417 417 15 14 0 0 0 0 0 0

Fig. 7. Bandwidth Allocation Error for 7 MPEG-4 Sources(Table I for
different users

loss reduction occurs. When the waiting time for a packet
reaches its expiry time, then this results in dropping of the
packet. Packets are dropped as a result of overhead because
they do not get the required bandwidth for transmission and
reach their expiry time while waiting in the queue to be
transmitted.

Fig. 7, shows the actual versus estimated bandwidth alloca-
tion error for 6 users. The error has been calculated the seven
different sources given in Table. I. From the figure it can be
seen that the bandwidth allocation efficiency of the proposed
technique gives more than 98% efficient results.

In Table. IV, the bandwidth estimation efficiency of our
proposed technique has been compared against other tech-
niques provided in literature. The first is an intelligent band-
width estimation technique proposed by Yuan et.al [17] which
attempts at dealing only with multimedia packets available
at the application layer. The other technique is a probing
based bandwidth estimation technique proposed by Hu and
Steenkiste [5]. From the table it can be seen that the proposed
technique outperforms both of its contemporaries.

VIII. CONCLUSION

The paper presents a novel packet size estimator utilizing
the Neuro-Evoltionary technique RCGPANN. Based on the

TABLE IV. BANDWIDTH ESTIMATION EFFICIENCY FOR 3 USERS

S.No Technique % Error Rate(Actual Vs Estimated)

1 iBE [17] 0.14

2 Spruce [5] 1.19

3 Proposed Scheme with FCGPANN 0.0128

predicted size, efficient bandwidth management and allocation
is performed. The evolved RCGPANN setup gives an efficient
solution composed of only 5 active nodes from a total of 100
nodes and a frame prediction efficiency of approximately 99%.
Based on the predicted frame size, the required bandwidth for
frame transmission is calculated using different probabilistic
and linear regression approaches. The bandwidth allocation
and estimation efficiency has been evaluated under different
scenarios and the proposed technique gives a bandwidth allo-
cation efficiency of more than 98%. To conclude the method
proposed here is quite efficient in terms of its implementation
and purpose.
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