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Abstract— New sensor streams are being generated at a 

rapidly increasing rate.  The sources of these streams are a 
diverse set of networked sensors, diverse both in sensing 
hardware and sensing modality.  Machine learning algorithms 
are ideally placed to develop generalized methods for stream 
analysis.  One exemplar problem is the detection and analysis of 
periodic structure within these streams.  Our contribution is the 
proposal of a new machine learning framework that (i) classifies 
a signal as periodic or aperiodic, (ii) further analyses the signal to 
find periodic structure using a neural network, and (iii) groups 
the motifs in the periodic signals using a modified Self 
Organising Map algorithm. We also demonstrate the framework 
using data generated by an Oyster heart rate sensor.  We find 
that the generalized approach our classifier improves the 
detection of signal periods by reducing the number of functions 
classified as periodic from 11% to 9%; however, most benefit 
occurs for period calculation with the number of erroneously 
calculated periods reducing from 14% to 4%. 

Keywords—frequency estimation, machine learning 

I. INTRODUCTION 
Recently a novel Oyster Heart Rate sensor has been 

developed by the CSIRO and UTAS [1].  The data generated 
by this system presents a challenge familiar to many machine 
learning practitioners: with limited prior knowledge of the 
sensor signal, how to reduce the signal data dimensionality 
and provide meaningful information for subsequent processing 
by human experts.  This challenge is highly relevant to the 
machine learning community as the number of networked 
devices is expected to reach 50 billion by 2020, increasingly 
devices generate new sensor streams and are configured in 
new sensing modalities [2]. 

The Oyster heart-rate signal exhibits a phenomenon common 
in time-series sensor data: the existence of periodic structure.  
Specifically we describe a machine learning framework 
capable of classifying a signal based on extracting the periodic 
structure from signals generated by sensors with no prior 
knowledge of the signal statistics.  The algorithm conducts an 
initial coarse classification of the signal into periodic and 
aperiodic classes by combining a set of algorithms with a 
neural network based classifier. A further fine grained 
classification of periodic signals is conducted based on signal 
shape and similarity to other signals using a modified Self 

Organising Map (SOM) algorithm.  The approach is capable 
of being deployed with multiple sensor types. 

In addition to being a nice demonstration of techniques for 
signal analysis, our results on Oyster heartbeat signals are of 
importance because ultimately it enables the discovery of new 
relationships between the Oyster physiology and environment.  
These relationships will allow the Oyster farming process to 
be optimized to conditions resulting in increased productivity 
across the oyster harvesting industry.  

This paper is structured as follows.  Section II describes 
background material including the Oyster sensor system and 
implications for the signals coming from this sensor type, and 
previous work in period analysis and motif discovery.  Section 
III presents our proposed framework; finally Sections IV and 
V present the results and conclusions respectively. 

II. BACKGROUND 

A. Oyster sensor 
In [3] an optical-coupling based Oyster heart-rate sensor 

was introduced.  The sensor uses red light (632nm) with a 
laser beam illuminating the Oyster heart and an optical fibre 
coupled photo detector to measure the optical signal reflected 
off the Oyster.  A 1cm diameter hole was drilled into the 
Oyster shell to allow access to the heart.  Results were 
presented demonstrating the ability of the sensor to measure 
periodic signals.  The signals comprised of large peaks which 
is indicative of a specular reflection dominating the coupled 
signal at one point in the heart beat cycle.  Measured heart 
rates were ~ 30bpm.  However no details were given about 
automated methods for detecting the heart rate or variation in 
signal structure.  This is likely due to lack of need as in this 
configuration the signals were very spiky and period 
extraction is a simple measurement between peaks.  The 
sensor developed by CSIRO and UTAS consists of a 950nm 
reflective IR sensor placed in a small hole in the shell over the 
heart.  With this arrangement the reflected signal exhibits 
more complex structure and a simplistic peak counting 
analysis is inadequate.  Extracting information from this type 
of scenario has broader relevance and allows our period 
estimation technique is to be deployed across multiple sensor 
types. 
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B. Periodic signal detection 
We begin by defining the type of signal we refer to within 

this paper, the time series sequence:  

Definition 1:  A sequence S = [S(1)….S(N)] is a time ordered 
sequence of real valued values. 

Sequences have periodic structure if they consist of 
ordered sub-sequences, which are shorter and repeat across S.  
Formally we define a periodic sequence as: 

Definition 2: A periodic sequence is composed of a series of 
temporally adjacent, non-overlapping sub-sequences (s) of 
interval length P , sሾiሿ  ൌ  ሾSሺi כ P  1ሻ … . Sሺሺi  1ሻ כ Pሻሿ  , 
where i is the index of each sub-sequence. Each sub-sequence 
is equal to all other sub-sequences from the series , sሾiሿ ൌsሾvሿ, v א  S . In real applications, approximately periodic 
sequences are more common where the sub-sequences are not 
identical but just highly similar to one another. 

Signals with approximately periodic structure are common 
in nature, for instance, water level patterns in water bodies 
will repeat with daily or bi-daily due to gravitational forces 
(the tide).   Many physiological characteristics are periodic 
such as respiration, heart rate, brainwaves and physical 
oscillations produced as a consequence of motion.  Previous 
heart beat analysis has involved human heart beat signals with 
regular structure [4]. 

Historically, an area that has spent significant effort upon 
fundamental period detection has been speech compression. 
The fundamental period, or as commonly known in the speech 
community, the pitch of voiced speech, is a perceptually 
important characteristic that can be coded efficiently. A 
problem common to these techniques is that these algorithms 
detect higher frequency harmonics of the actual period or sub 
harmonics.  The problem becomes one of how to weight the 
different components.  In [5] an approach is given for 
weighting these components based on a Hanning window.  
Here we describe six common techniques that have been 
utilized for speech pitch prediction.  All the approaches 
described include a measure of periodicity which can be 
thresholded to separate the signals into periodic or aperiodic 
classes.  In addition each approach estimates the signal period.  
Detailed explanations of the methods we utilize are presented 
in [6].  We briefly summary the key points of each method to 
aid in the understanding of the method’s limitations and 
demonstrate the need for our machine learning solution. The 
six implemented to determine whether a signal S(t) t=1..N is 
periodic or not are: 

1) Autocorrelation function method (ACM) 
The autocorrelation function method [7] is  
ሺ݉ሻܣ  ൌ ଵே ∑ ܵሺݐሻܵሺݐ  ݉ሻேିଵି௧ୀ     (1) 

 
Where m∈{M_min .. M_max}.  Typically M_min and M_max 
are selected based on prior knowledge of the signal statistics.  
Without prior knowledge we let M_max=N/2 and M_min be 

the first zero crossing of the autocorrelation (thus excluding 
the intitial peak of A(m) produced by coherence time of S(t). 

The sequence is classified as periodic if peak of A is larger 
than a threshold parameter and period P defined as value of m 

at peak.   
 

2) Modified autocorrelation function method (MACM) 
The modified autocorrelation function method involves a 

centre-clipping step before the autocorrelation approach is 
used.  The centre clipping operation replaces S(t) in (1) with 
Sc(t): 

 ܵሺݐሻ ൌ ቐܵሺݐሻ െ ሻݐሺܵ,0,ܥ  ሻݐሺܵ  ,ܥ  ܥെܥ  ܵሺݐሻ  ሻݐሺܵܥ ൏ െܥ      (2) 

This technique emphasizes the peaks in the function in 
determining the periodicity.   

Both these techniques weight shorter timescale interactions 
more highly as a result of the autocorrelation operation 
resulting in a linearly decreasing weight.  They can accidently 
lock on to higher frequency component.  

 
3) Normalised Cross-correlation function method 
(NCFM) 
To avoid the problem of lower weighting of longer 

periods, the NCCF method normalizes each element in the 
auto-correlation such that NCFM(m) = A(m)/N(m) where 
A(m) is calculated as in (1) and N(m) is: ܰሺ݉ሻ ൌ ∑ ܵଶሺݐሻேିଵି௧ୀ · ∑ ܵଶሺݐ  ݉ሻேିଵି௧ୀ    (3) 

 
This technique introduces a weighting that corrects for the 

emphasis to shorter period signals.  However any periodic 
sequences with small oscillation at a half frequency results in 
its autocorrelation being higher, and therefore erroneously 
detecting the lower frequency as it adds to the shorter period. 

4) Average magnitude difference function (AMDF) 
The AMDF is presented in [8]. Whereas the methods 

above use correlation to measure similarity the AMDF method 
minimizes the L1 norm of the shifted signal difference D: ܦሺ݉ሻ ൌ ଵே ∑ |ܵሺݐሻ െ ܵሺݐ  ݉ሻ|ேିଵି௧ୀ     (4) 

 
5) Maximum likelihood method time domain. (MLTD) 
The maximum likelihood method simply selects a period P 

and sums the period sub-sequences in the sequence.  The 
resulting summation is a function M(T) which is maximized at 
T=P. 

ሺܶሻܯ  ൌ 1ܾ  1  ൭ ܵሺݐ  ݊ܲሻ
ୀ ൱ଶିଵ

௧ୀ 1ܾ  ൭ ܵሺݐ  ݊ܲሻିଵ
ୀ ൱ଶ்

௧ୀ  
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Fig. 1.  Framework for classification of signal and determination of 
periodic structure.

 
 
where ܽ ൌ ,ሺܰ݀݉  ܲሻ and ܾ ൌ  .ሺܰ/ܲሻݎ݈݂ 

 
6) Cepstrum method (CEPM) 
The Cepstrum method is described in [9].  The method 

involves taking the log of the sequences’s spectrum magnitude 
before inverting to time domain and calculating the peak.  The 
Cepstrum method is useful where the sequence is caused by a 
convolution process, which is the case for speech; however, 
less likely for heart deformation, possibly a muscle excitation 
convolved with muscle response. 

ሺ݉ሻܥ  ൌ ଵே  ሼܵሺ݊ሻሽ|ሻሽ|                      (6)ܶܨܨ|ሼlog ሺܶܨܨܫ|
 

7) Neural Network approach 
 

Each of the described methods is suited to particular types 
of signals and have their own most likely failure modes.  This 
algorithm diversity and the fact we have limited prior 
knowledge about the signal, motivates a machine learining 
approach.  We apply all techniques and feed the periodicity 
and period values into a multi-layer perceptron (MLP) 
network (WEKA implementation [10]). 

 

C. Motif discovery 
Heart rate motif discovery is a common approach in 

assessing heart beat structure in humans for illness 
identification.  Standard approaches have used Dynamic 
timewarping type approachs based on shape functions for 
classifying signals [11].  SOM can be used to build clusters of 
similar motifs. 

The self organizing map is a type of artificial neural 
network that is widely used to map high dimensional input 
into a lower dimension space (commonly 1 or 2 dimensions), 
which in turn can be used to visualize the similarity between 
high dimensional instances. The network (M) consists of a set 
of neurons that are represented by a map position and weight 
vector (w) with the same sized dimensions as the data 
instance. This network is trained to represent the underlying 
structure of a data set (D ) through a competitive learning 
process that can be summarized as follows: 

 
Method 1 – SOM learning 

 
1.1) Initialise each of the neuron weights ݓ௭ א  where  is ܯ
its map position. 
1.2) For each data instance, ݀ א   :ܦ 
a) Compute the Euclidean distance between di and each ݓ௭. 
b) Select the neuron with  ݓ௭ that is a minimum distance to di. 
This neuron is known as the Best Matching Unit (BMU) in the 
network. 
c) Update each  ݓ௭ in the network according to: 
   

௭,௦ାଵݓ ൌ ௭,௦ݓ  .ݑ ,ݖሺݒ .ெሻݖ ሺ݀ െ  ௭,௦ሻ         (7)ݓ
 

where u is the learning rate, s is the index of the learning 
iteration and vሺz, zBMUሻ  is a neighborhood function that 
influences the update of weights based upon their proximity to 
the BMU neuron.  The weight update is based upon the 
distance between the map position of the current neuron (z) 
and the BMU neuron (zBMU). A neuron at a smaller distance to 
the map position of the BMU will provide a larger update of 
its weight neuron. The influence of the neighborhood function 
will shrink as s  increases.  Hence, the similarity between 
neuron weights in particular regions of the map increase and 
begin to fit local regions of the data space.  

III. PROPOSED FRAMEWORK FOR SIGNAL ANALYSIS 
The proposed framework is shown in Fig. 1.  Each of these 

steps are described in detail in the remainder of this section. 

 

A. Sequence formation 
The entire signal is initially split into sequences of length 

N. N must be chosen to represent a time scale where the 
period (P) of the signal can be assumed to be approximately 
constant. Consequently, if the entire signal is approximately 
stationary (that is periodic is approximately constant), the 
signal does not need to be split into sequences. The periodicity 
of the real world signals, however, tends to change over time. 
In addition, N must be long enough to ensure that multiple 
periods of the signal are captured by the sequence (i.e. 
N>2*P) in order for the periodic structure to be estimated.  
After signal splitting the sequences are normalised to such that 
S(t) has zero DC component and ∑ Sଶሺtሻ ൌ NNିଵ୲ୀ .  We also 
generate a lower bound on P by calculating a time 
corresponding to the signals region of self coherence from the 
signal autocorrelation function.  Specifically the lower bound 

is the time at which the autocorrelation first transitions from 
positive to negative and is related to the bandwidth of the 
signal. 
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The remaining processing steps (B and C) are performed 
upon each sequence of the signal independently. 

B. Periodic vs aperiodic classification of sequences 
Because of the limited information about the signal we 

implemented and tested each of the pitch detection techniques 
listed in Section IIB.  To test the accuracy of the methods a 
number of the sequences were analysed manually to create a 
labeled dataset.  Sequences were randomly selected and 
labeled as either periodic, aperiodic or uncertain until 100 
sequences were in the periodic and aperiodic classes.   The six 
periodicity values were fed to a multi-layer perceptron (MLP) 
that classifies the sequence as periodic or not.  The MLP was 
trained using a 10 fold cross validation procedure on the data.  
The MLP (referred to as MLP1) was optimal with 2 hidden 
layers each containing 6 nodes with sigmoid activation 
functions and linear output node. 

For periodic sequences a further analysis was conducted to 
determine the period.  To analyse the accuracy of the period 
detection the period was manually calculated from the data on 
144 sequences. These sequences were different from the 
aperiodic/periodic labeled set.  The sequences were chosen 
because they spanned large regions of the signal maintaining a 
periodic state.  The period was linearly interpolated between 
the labeled times.  Because the failure mode of the methods 
are likely to lock onto multiples of the period of the form P/k  
or kP we define a method as being correct if it finds a period 
Pi such that 0.8 P < Pi <1.2 P.  This also allows our manual 
period calculation and interpolation to include some error 
without effecting the estimation of the accuracy of the 
approaches.   In addition to optimal selection of threshold 
values a second MLP regression (MLP2) was trained with the 
set of period and periodicity values as inputs to determine the 
signal period.  The MLP was trained using a 10 fold cross-
validation similar to the MLP periodic signal classifier.  This 
MLP was optimal with a single hidden layer containing 6 
nodes. 

C. Periodic structure estimation  
Given the estimated period (P), a single, best estimate of 

the periodic structure of the sequence is computed. The most 
representative period can be estimated by applying the cross 
correlation function to each sliding window of P samples in 
the sequence (used to represent each periodic sub-sequence 
candidate) with respect to the entire sequence: 
 

,ሺܣ ݉ሻ ൌ 1ܰ  ܵሺݐ  ݉ሻܵ ܹሺݐሻ,  ൌ 0 … ܰ െ ܲே
௧ୀ   ܵ ܹሺݐሻ ൌ ሾܼଵ, Sሺpሻ, … , Sሺp  Pሻ, ܼଶሿ                           (8) 

 
where ܼଵ  and ܼଶ  are vectors of zeros of length ܮଵ  and ܮଶ 

such that ܮଵ  ଶܮ  ܲ ൌ ܰ   and therefore ܼଵ  and ܼଶ  pad the 
window SW to ensure it is the same length as the sequence. 
The variable m represents the sequence shift in the cross-
correlation function and variable  represents the start sample 
of the sliding window. The signal is selected as the time-

shifted window ܹܵሺݐ, ሻ  (with zero padding removed) that 
possessed maximum energy in the function defined according 
to: 

 
   arg max୮  Aሺpሻ ൌ ∑ሺ݉ݑݏ ,ሺܣ ݉ሻሻ      ·ୀ                 (9) 
 
where i is largest integer satisfying i · P ൏  ܶ. The window 

that possessed maximum cross correlation energy at integer 
multiples of the estimated P  was the optimal periodic sub-
sequence of the sequence. 

 

D. Periodic Motif discovery  
 

In the final stage of the algorithm, the self organizing map 
is used to discover a set of periodic motifs. The data instances 
( d ) of the SOM are the periodic signals that have been 
estimated from the sequences with (9).  

D1. Issues with the Self Organising Map   
  

There were two issues that needed to be addressed with 
using the conventional SOM (described in section IIC) before 
it could be applied to the motif discovery task. The first issue 
was that the number of samples belonging to each data 
instance varied due to differences in the periodicity of sub-
sequences. The SOM requires that all data instances have a 
consistent dimensionality; with time series clustering, this 
equates to ensuring there is a consistent number of samples. 
Consequently, the set of periodic series were re-sampled to a 
consistent dimensionality (sample size), ensuring re-sampling 
did not extensively degrade the shape of signals in the process. 
The amplitude of each periodic signal was then normalized to 
values between 0 and 1. 

The second issue was that there was no guarantee of 
consistency in the temporal ordering of different data 
instances. The correlation criteria in (9) identified the periodic 
signals with maximum correlation, but the starting points of 
the discovered sub-sequences are likely to be different, even 
when they have a similar shape. This is problematic when 
clustering the signals using the Euclidean distance. For 
instance, the distance between two identical periodic signals 
with different phase (different starting points) may be large, 
and hence, will update different BMU during the training of 
the SOM.    

 One simple approach was to take a reference point upon 
all of the data instances. The minimum value of each 
subsequence was selected as its start point and shifted before 
the SOM was applied. The result of such an approach, 
however, was found to be unreliable given the presence of 
noise. A second reliable but computationally intensive 
approach was to modify the SOM learning process, such that 
an optimal alignment was found between each motif and 
neuron weight prior to the update equation in (7).  This 
optimal alignment was computed with the cross-correlation 
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Fig. 2.  Classifier performances as threshold values are varied. 
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function between d and w. The modified temporally invariant 
SOM learning process can be defined as follows: 

Method 2 – temporally invariant SOM learning 
 

2.1) Initialize each of the neuron weights ݓ௭ א  is ݖ where ܯ
its map position. 
2.2) For each of the periodic signals in the data set ݀ א   :ܦ 
a) Compute the cross correlation between ݀ and each ݓ௭  in 
the network:  

 
,ሺ݉ܣ   ௭ሻݓ ൌ ଵ ∑ ݐሻ݀ሺݐ௭ሺݓ  ݉ሻ௧ୀ                        (10) 

 
where m are the time lags, m=0…P. 

b) Select the ݓ௭ with a maximum cross correlation ܣሺ݉ሻ௫ . 
The neuron associated with ܣሺ݉ሻ௫  becomes known as the 
best matching unit (BMU). 

c)  Update signal ݀ by shifting it by ݉ samples. This 
corresponds to a time shift that produced a maximum value 

for Aሺm, wBMUሻ.   
d) Update each ݓ௭ in the network according to: 
௭,௦ାଵݓ   ൌ ௭,௦ݓ  .ݑ ,ݖሺݒ ,ெݖ .ሻݎ ሺ݀ሺݐ  ݉ሻ െ  ௭,௦ሻ   (11)ݓ

 
where ݑ is the learning rate, ݏ is the index of the learning 

step and ݒሺݖ, ,ெݖ  ሻ is the neighborhood function comprisedݎ

of the normal distribution ݁ିሺషಳಾೆሻమೝమ   where r is the radius 
distance, ݖ  is the map position of the current neuron and ݖெ is the map position of the BMU neuron. The cross 
correlation function of the temporally invariant SOM replaces 
the Euclidean distance of the SOM in (1.2a). Whilst the cross 
correlation was used to select the BMU of each data instance 
similarly to the Euclidean distance, in addition, it enabled each 
periodic signal to be optimally aligned to their BMU before 
update in (2.2d).  

IV. RESULTS 
An oyster was instrumented with an IR sensor and placed 

in the intertidal zone in the Derwent River in Hobart, 
Australia.  The sensor was connected to a custom made 
acquisition / telemetry control unit.  The control unit was 
configured to acquire data from the IR sensor approximately 
every 7 minutes.  Each acquisition consisted of 20 seconds of 
IR data sampled at 100Hz.  Six weeks of this data is analyzed 
in this paper. 

A. Periodic versus non-periodic classification 
The performance of the 6 algorithms is highlighted in Fig. 

2.  If the optimal threshold is selected for each algorithm the 
three best algorithms performed similarly with (MLTD) 
correctly classified 89% and ACM and MACM classifying 
88% of the cases at optimal threshold value.  The MLP1 
classifier performed better at 91%.   

The fraction of incorrectly and correctly calculated periods 
are shown in Fig. 3 for all possible threshold values in the six 
methods and the neural network classifier. Although the 

apparent performance of some of the algorithms is obviously 
bad it is naïve to dismiss these methods.  Firstly performance 
is sensitive to the statistics of the analysed data set, and 
relative performance may change for other data sources.  
Secondly although some of the methods are regularly getting 
the period wrong, the error is often a consequence of the 
algorithms generating solutions at integer harmonics or sub-
harmonics.  For example when the AMDF period is plotted 
against ACM period, many low ACM periods correspond to 
larger periods calculated by AMDF (Fig. 4).  The harmonic 
structure is evident with straight lines superimposed at 1x, 2x 
and 3x ACM period. Therefore information is contained in the 
output of the ‘erroneous’ methods.  The MLP algorithm is 
able to learn this information and period estimation improves 
as a result.  With 3.4% of results in error, MLP2 achieves 
96.6% correct, whereas the best method (ACM) can only 
achieve 86% correct at the same error rate. 

 
A set of 3793 heart beat sequences were classified as 

periodic and their fundamental period was estimated using the 
MLP approach described in section IIB. The optimal periodic 
signal of each sequence was then computed using (8). Each of 
the periods were resampled to a size of 40 and normalized 
between values of 0 and 1. The set of representative periods 

Fig. 3.  Algorithm performance as threshold values are varied. 
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Fig. 4.  Period calculated from AMDF plotted against periods estimated 
from ACM. 
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were clustered with both the SOM (Method 1) and temporally 
invariant SOM (Method 2). The U-matrix map of the original 
SOM and temporally invariant SOM are shown in Fig. 5. The 
U-matrix is used to visualize the data space by representing 
each neuron in the SOM as the Euclidean distance between its 
weight vector and set of adjacent neuron weight vectors. The 
temporally invariant SOM had far more localized clusters of 
low Euclidean distance compared to the original SOM that 
had broader regions with far more variance. These low 
distance clusters of neuron weights each represent a unique 
motif. Hence, only the temporally invariant SOM was used to 

discover a set of motifs. 

The k-means algorithm was applied to the codebook of 
900 weight vectors learnt by the temporally invariant SOM. 
The k-means algorithm was required for motif discovery given 
the weight codebook of the SOM was highly redundant. The 
number of clusters used by the k-means algorithm was set to 
15. This number of clusters was selected by identifying the 
number of low distance clusters in the SOM (Fig. 5(ii)). The 
weight vector that was the median distance to its 
corresponding cluster centroid (computed from k-means) 
became a discovered heart beat motif. The 15 discovered heart 
beat motifs are shown in Fig. 6.  

 
Fig. 6: The 15 heart beat motifs discovered after applying k-means to the 

weight codebook of the temporally invariant SOM. 
The clusters labels are plotted on a time series in Fig. 7. 

This plot gives an indication of the long term temporal 
behavior of the oyster heart beat based on what type of motif it 
had at what time. This helps the oyster physiologists to 
identify events and how they relate to environmental variables 
or other parameters. 

 
Fig. 7: Time ordered plot periodic sequences labels classified into 15 

discovered oyster heart beat motifs shown in Fig. 6. 

V. CONCLUSION 
Practical signals from sensor streams exhibit complex 

structure and no single approach is ideal.  We have proposed 
and implemented a neural network approach and show greatly 
enhanced performance for the period estimation problem. We 
have also presented a modified SOM algorithm to cluster 
motifs that takes into consideration the signal alignment while 

 
(i) 

        
(ii) 

Fig. 5. The U-matrix map of the (i) SOM and (ii) temporally invariant 
SOM learnt from 3793 heart beats. The map represents the Euclidean 
distance between the neuron weights and neighbouring neuron weights.  
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computing distances. Although computationally more 
expensive than any single method, and requiring some initial 
human intervention in generating labeled sets, the advantage is 
the signals can be correctly classified as periodic/aperiodic 
~91% of the time and period estimated accurately ~96.6% of 
the time.   Future work will involve improving the 
aperiodic/periodic classifier by using a larger training set and 
testing the method on different input streams. We also aim to 
investigate automated ways to associate the oyster heart rate 
motifs to environmental variables and discoveries of events. 
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