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Abstract—Human action recognition is an important problem
in computer vision, which has been applied to many applications.
However, how to learn an accurate and discriminative
representation of videos based on the features extracted from
videos still remains to be a challenging problem. In this paper, we
propose a novel method named low-rank representation based
action recognition to recognize human actions. Given a
dictionary, low-rank representation aims at finding the lowest-
rank representation of all data, which can capture the global
data structures. According to its characteristics, low-rank
representation is robust against noises. Experimental results
demonstrate the effectiveness of the proposed approach on
several publicly available datasets.
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L.

Human action recognition is the process of recognizing the
behavior in a real-world video, which has a wide range of
applications, such as video summarization, human-machine
interaction, and video surveillance. It is easy for human to
recognize the behavior in a real-world video, but it is a
challenging job for a computer. Although many impressive
results have been reported on human action recognition, it still
remains as a challenging problem [1] because of viewpoint
changes, occlusions, illumination variations, and background
clutters.

INTRODUCTION

A common framework in human action recognition
includes video representation and classification. Video
representation is the process of acquiring features via interest
point detection and feature representation and obtaining the
behavior representation by encoding the features. In general,
feature representations can be divided into two categories:
global representations [2] and local representations [3]. Global
representations allow a person to be localized by background
subtraction or tracking, and then represent the region of interest
as a whole. Local representations allow a video to be described
as a collection of local descriptors or patches. In this paper, we
use local representations to describe a video, which are less
sensitive to view-point changes, noises, appearance and partial
occlusions. When a video representation is available for an
observed video sequence, human action recognition becomes a
classification problem. In the stage of classification, many
methods have been applied in the field of human action
recognition, including the nearest neighbor (NN)/ k-Nearest
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Neighbor (k-NN) classifiers [4], Support Vector Machine
(SVM) [5], and Sparse Representation based Classification
(SRC) [6]. In our experiment, we use SRC to classify a query
action.

In the previous work, the techniques of tracking or body
pose estimation were used in human action recognition [7].
However it required accurate tracking or body pose estimation,
which is difficult for realistic videos. In recent years, many
approaches adopted an intermediate representation to describe
a video, based on local spatio-temporal descriptors [3,8].
Although traditional Bag-of-Feature (BoF) [9] models with the
local spatio-temporal descriptor could generate promising
results [3], they could not accurately describe a behavior;
because (1) each interest point is only represented by a single
word, thus leading to a large reconstruction error, and (2) the
type of an interest point completely depends on the type of the
closest word, where different interest points may be assigned to
the same type.

Sparse representation (SR) has been widely used and
achieved promising results in pattern recognition. It is based on
the idea that each data vector can be represented by a linear
combination of a few atoms in the dictionary. Given a set of
data vectors, SR allows the sparsest representation to be
computed individually [10,11]. However, SR cannot capture
the global information because there is no global constraint
with its solution. Some modified SR based methods for action
recognition are then proposed to improve the performance. In
[12], a manifold-constrained term was incorporated into the
objective function. This term can preserve the manifold-
geometry of features. In [13], a Laplacian group sparse coding
approach was proposed. This approach can encode a group of
relevant features simultaneously, and allow as less atoms as
possible to participate in the approximation. Meanwhile, by
incorporating Laplacian regularization term, the similarity of
the features can be preserved.

In this paper, we propose a novel method named low-rank
representation (LRR) based action recognition to recognize
human actions. To our best knowledge, it is the first time to
apply LRR in the field of human action recognition. Different
from robust PCA [14] aiming at matrix decomposition, LRR,
which jointly obtains the representation of all data and seeks
the lowest rank representation, is able to capture the global
structures [15]. Experiments in [15] also demonstrated the
effectiveness of LRR for robust subspace segmentation. We
employ LRR to encode the interest points, because (1) some of



the interest points of one action are similar to each other and
the corresponding coding coefficients are low-rank, thus LRR
is feasible and (2) using this representation, we will be able to
obtain a global representation, which will benefit the following
classification. Given a set of action sequences, we employ
Cuboid [3] to represent interest points (described in section
2)and then LRR is used to code those features (section 3). Our
LRR will be demonstrated on the commonly used Weizmann,
KTH datasets and UCF datasets (section 4).The experimental
results show the promising performances of our method.

IL.

To represent each video sequence, effective descriptors
should be employed. By now, extensive methods have been
published [16-19], which represent the interest points of
human actions as local spatio-temporal features. Among those
descriptors, Cuboid [3] is a popular approach and can generate
a large number of features. We choose the popular Cuboid in
our experiment. The Cuboid detector relies on separable linear
filters for computing the response function of a video
sequence. 2D Gaussian smoothing kernel and 1D Gabor filters
[3] are applied along the spatial and temporal dimensions
respectively instead of a 3D filter on the spatio-temporal
domain. It can generate a rich set of interest points. A
response function is calculated as follows:

FEATURE REPRESENTATION

R=(I*g*h,)+(I*g*h,)’ (1

where g(x, y;0)is the 2D Gaussian smoothing kernel applied
in the spatial domain, * is the convolution operation, h_ and

h,, are 1D Gabor filters applied temporally, and defined as:

h, (t;7,w) = —cos(27rtw)e"z/ v

2

h (t;7,w) =—sin2ztw)e "

A3)

We use w =4/t as that used in [3], and there are essentially
two free parameters 0 and 7 which correspond roughly to the
spatial and temporal scales of the detector. Interest points
corresponding to the local maximum of the response function
and areas with spatially distinguishing features will induce a
strong response. After interest points are found, we describe
them using the Cuboid descriptors (we experimentally set the
dimension of each descriptor to 100 in our paper). For more
details, refer to [3].

III. LOW-RANK REPRESENTATION FOR ENCODING THE

FEATURES

The linear representation of data has been widely and
successfully employed in the area of signals processing
recently. LRR is one of the successful cases, which can
capture the global structure of data. In this section, we first
review LRR and then apply it to encoding the features.

1813

A. Review of LRR
Let X=[x,x,

are n data samples drawn from independent spaces. Each
column can be represented by a linear combination of a

daxl .
st ] € R

X | € R be a matrix whose columns

basis 4A=[a,,a,

X =AZ 4

the

each g, being the representation of X;. Thus, we can obtain

where Z=[z,z,,...,2,] 1s coefficient matrix with

infinitely many feasible solutions to Eq. (4).

We assume that the data is clean. Then, the following rank
minimization problem is considered:

min, rank(Z), st.X=AZ ®)]

In real applications, data is often noisy and even grossly
corrupted, so we add a noise term E to Eq. (5). As a common
practice in rank minimization problems, we replace the rank
function with the nuclear norm. Now, we can obtain a low-
rank recovery to X by solving the following convex
optimization problem:

min, . | Z|, + A|E|,,. st.X=AZ+E (6)
where ||Z || is the nuclear norm (i.e., the sum of the singular
values) of Z, which approximates the rank of Z. Similar to [15],

a relaxed constraint £, =>" IZ” ([E].j)z is chosen. 4 is a
) j=1 i=1 i

parameter that controls the effect of the noise matrix E.

B. LRR for Encoding the Features

In this section, we present the method of encoding the
features to obtain the behavior representation. Suppose we
have obtained a set of d-dimensional local spatio-temporal

features matrix X =[x,,x,,...,x,]€ R extracted from a

video. The codebook 4=[a,,a,,...,a,]e R is generated
from cluster centers by using the k-means algorithm reported
in [3] to cluster all the local features. We obtain a low-rank
recovery to X by solving Eq. (6). The optimization problem
(6) is convex and can be solved by various methods. For
efficiency, we adopt the Augmented Lagrange Multiplier
(ALM) [20] method in this paper. We first transform (6) to the
follow problem:

min, , |[J||, + A|E|,,. stX=AZ+E, Z=J

)

This problem can be solved by the ALM method with a
complexity of O(n’) , which minimizes the following

(7

2,1°

augmented Lagrangian function:



L=|J|, +A|E[,, +<Y,X-AZ-E >+

. .. ®
<Y, Z-J>+4(X-AZ-E| +|z-J|,)

The above problem is unconstrained. So it can be
minimized with respect to J, Z and E, respectively, by fixing
the other wvariables and then wupdating the Lagrange
multipliers ¥, and ¥, , where /> 0 is a penalty parameter.

Based on the following lemma, its solution is outlined in
Algorithm 1.Note that Step 1 and 3 of the algorithm are
convex problems they both have closed-form solutions. Step 1
is solved via the Singular Value Thresholding (SVT) operator
[21], while Step 3 is solved via the following lemma.

Lemma 1([22]): Let Q be a given matrix. If there is an
optimal solution to

W’ =min, oW, +5|w -0l ©)
Then the i-th column of W™ is
WQ.., lf"Q” > a;
won-{ ol @ VlekrE
0, otherwise.

The Sum pooling [9] or the max pooling [22]-[25] scheme
has been successfully used in pattern recognition. As shown in
[25], we use a max pooling scheme to capture the global
statistics of an action in video sequences and increase spatial
and time translation invariance. The max pooling is defined
as:

Yi=12,..,0 (1)

Yi= maX(|Z,~1 | ’|Zi2|7' 0|2y

Suppose one video has n local features, and the coding
coefficient of these local features are[z,,z,,...,z,] and the size

of the codebook is /. Then, after max pooling based on Eq.
(11), we will obtain ¥ € R"™ to represent this video.

J =argmin, L|J| +5[J —(Z +Y, /)

2.
F?

Step 2: update Z, when fixing the other variables.

Z=(I+A"A)" (A" (X-E)+J +(A"Y,-Y,) /1)

>

Step 3: update E, when fixing the other variables.
E =argmin, £|E|, +1|E-(X-AZ+Y,/u),.
Step 4: update the multipliers
Y, =Y, +u(X - AZ - E);
Y,=Y,+u(Z-J);
Step 5: update the parameter 1 by ¢ = min(p, i, ) -
Step 6: check the convergence conditions:
|X-A4z-E|_<e|z-J|_<e.
End while
Output: Z and E.

Algorithm 1: Solving Eq. (8) by ALM

Input:

. d
n local features for one video X =[x,,x,,...,x, ]e R,

parameterﬂ.
Initialize: Z=J =0, E=0,¥, =Y, =0,
4=10"u =10 p=1.1,ande=10"

While not converged do

Step 1: update J, when fixing the other variables.
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Iv.

In this section, we will evaluate the performance of our
proposed approach on the Weizmann [26], KTH [27] and UCF
datasets [12, 13] and Weizmann robustness dataset. In the
experiments, we use the leave-one-out cross validation
(LOOCYV) to evaluate the effectiveness of our algorithm
unless otherwise stated. It employs actions from one person as
the test samples, meanwhile leaving the remaining actions
from other people as the training samples.

EXPERIMENTAL RESULTS AND DISCUSSION

A. Action Datasets and Experimental Settings

We select three benchmark action datasets for performance
evaluation. We also evaluate our approach with regards to its
robustness. We first evaluate our proposed approach on the
Weizmann dataset. This dataset contains 93 low-resolution
video sequences from 9 different subjects, each of which
performs 10 different actions including walking (walk),
running (run), jumping (jump), galloping sideways (side),
bending (bend), one-hand-waving (waveone), two-hands-
waving (wavetwo), jumping in place (pjump), jumping jack
(jack), and skipping (skip). One of the subjects performs
walking, running and skipping twice. The dataset uses a fixed
camera setting and a simple background. There is no occlusion
or viewpoint change. Variations in spatial and temporal scale
are also minimal. Examples of the Weizmann dataset can be
seen in Fig. 1 (a).

We then evaluate our proposed approach on the KTH
dataset. This dataset is relatively complex and can be
considered as an important benchmark dataset to evaluate
various human action recognition algorithms. KTH dataset
contains 600 video clips in total. It consists of 6 types of
human actions: walking (walk), jogging (jog), running (run),
boxing (box), hand waving (hwav) and hand clapping (hclap).
Each action is performed by 25 subjects under four different



environment settings: outdoors, outdoors with scale variation,
outdoor with different clothes and indoors. Examples of the
KTH dataset can be seen in Fig. 1 (b).

()=

Fig. 1. Examples from the five public datasets: (a) Weizmann dataset; (b)
KTH dataset; (c) UCF dataset; (d) Weizmann robustness dataset.

We also evaluate our proposed approach on the UCF
dataset. This dataset contains 150 video sequences in total. It
contains 10 different actions: diving, golf swing, horse riding,
kicking, lifting, running, skating, swing bar, swing floor and
walking. It is a challenging dataset with a wide range of
scenarios and viewpoint variations. Examples of UCF dataset
can be seen in Fig. 1(c).

Weizmann robustness: it includes 20 video sequences, ten
of which are walking sequences under various difficult
scenarios such as walking with partial occlusions, clothing
changes and unusual walking styles. The others are walking
sequences with ten different viewpoints (from 0°to 81° with

the increasing speed of9° ). Fig. 1 (d) shows some examples.

In all the experiments, we use Cuboid to extract and
describe interest points. For Cuboid detector, we use standard
spatial scale value 3 and temporal scale value 2. For the
Cuboid descriptors, we use the optimal settings suggested in
[3]. We set the dimension of each descriptor to 100 and
normalize the feature matrix to the range of 0 to 1 in our
experiments. Then k-means is employed to construct the

and SRC on the Weizmann and KTH dataset. Confusion
matrices in Fig. 2 shows in detail the average accuracy of the
recognition of each action based on SRC classifier.

TABLE I. PERFORMANCE COMPARISON AMONG BOF, SR, LLC,
AND LRR
Method BoF SR LLC LRR
Weizmann 94.7 94.7 95.6 96.7
KTH 87.7 93.2 93.5 93.2
UCF 733 75.3 79.3 87.6

TABLE II. PERFORMANCE COMPARISON ON WEIZMANN AND

KTH DATASET
Method CRC SRC
Weizmann 96.9 96.7
KTH 90.8 93.2
UCF 82.7 87.6

dictionary, the number of the atoms in the dictionary is set 500.

Finally, BoF, SR, LLC [24] and LRR are utilized respectively
to obtain the final behavior representation.

B. Performance on Weizmann, KTH and UCF Dataset

We evaluate our algorithm on the Weizmann, KTH and
UCEF dataset. Four representation methods are compared under
the same condition, which include BoF, SR, LLC and LRR.
TABLE I shows the recognition results in the form of average
recognition rate in comparison with different behavior
representation schemes on three datasets. TABLE II shows the
results of different classification schemes including CRC [28]
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TABLE I shows the results on the Weizmann, KTH and
UCF dataset. For the Weizmann dataset, the classification
accuracy of LRR achieves 2% higher average accuracy than
those of BoF and SR. Meanwhile, the classification accuracy
of LRR achieves 1% higher accuracy than that of LLC, which
considers a local structure. For the KTH dataset, the
classification accuracy of LRR achieves higher average
accuracy than that of BoF. In comparison with SR and LLC,
the classification accuracy of LRR achieves competitive
accuracy. For UCF dataset, LRR achieves the best average
accuracy in comparison with other methods. On UCF dataset,
we set the size of dictionary for BoF to 1000.We set the size
of dictionary to 500 for the other representation methods.

TABLE 1I shows the recognition results on the three
datasets based on different classification schemes. It can be
seen that for Weizmann dataset, the classification accuracy of
LRR combined with SRC achieves competitive accuracy. For
KTH dataset, the classification accuracy of LRR combined
with SRC achieves over 2% higher than from LRR combined
with CRC. For UCF dataset, the classification accuracy of
LRR combined with SRC achieves better result.

Though simple and effective, traditional BoF method
would lead to relatively high reconstruction error by assigning
each feature to its closest visual word. Although SR, LLC
and LRR are linear coding methods, SR and LLC do not
consider the relationship among the features, which encode
the features individually. LRR encodes features as a whole.
Thus, the relationship among the features is taken into
consideration, which is the main difference from SR and LLC.
Algorithm 1 shows the details.

Confusion matrices on the Weizmann, KTH and UCF
datasets are shown in Fig. 2. In combination of the confusion
matrix of the Weizmann dataset shown in Fig. 2(a), we find
that some actions, e.g. jump and run, are wrongly classified as
the action skip. In fact, those actions are similar in some key
features which are considered to be included in intense
response areas. From the confusion matrices of the KTH



dataset shown in Fig. 2(b), we can see that there are several
actions which are wrongly classified. Compared with the
Weizmann dataset, the KTH dataset is more complex. We can
also find that similar actions like “jog” and “run” are poorly
recognized. However, those two types of actions “jog” and
“run” are so difficult to classify that a human observer cannot
accurately distinguish them.

bend
jack
jump |.
pjump
run
side
skip
walk

waveone
wavetwo |.00.00.00 .00 .00.00 .00 .00 .00 gy

é@;)g?c‘/ C’O)ﬁ&fa}go "’\/b'@‘s\*f'b %%@Gy{:’:pa

e %o
(@)
box .00 .00 .00 .01
help .00 .00 .00
hwav |.00 .00
jog [.01 .00
run |[.00 .00
walk |.00 .00 .
4 7
% 4% é"'@y{}‘g ‘2{’7 IE:;g’}’;\"
(b)
diving .00 .00 .00 .00.00.00 .00
golf swing .00 .00 .00 .00 .00 .00 .00
horse riding |.00 .00§ .08.00.08 .04
kicking [.00.03. .00.00.03.00
liting |.00 .00 . .00.00.00.00

running |.04 .00 .00 .08 .00§
skating |.00 .04 .08 .00 .00
swing bar |.00 .00.00.00 .00 .
swing floor |.00 .00 .00 .00 .00 .00 .00 .03}
walking [.00.09.05.00.00.00.05.00.

.00
33
.00

Flors % *’O»f /’57/7 R e
%0 V6%

(C)

Fig. 2. Results based on LRR+SRC: (a) Weizmann; (b) KTH; (c) UCF
datasets
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C. Parameter Analysis

From the Eq. (7), we can see that there is a parameter A in
LRR. In this section, we mainly concern how to choose this
parameter and how it affects the classification results. We
conducted experiments on the Weizmann dataset and the KTH
dataset to evaluate the sensitivity of the parameters A. In the
experiments, we choose LRR as the coding method and SRC
as the classifier. The experimental results are shown in Fig. 3.
We can see from Fig. 3(a) that when A is less than 1, the
recognition accuracy of LRR is not good. But when A is larger
than 1, the recognition accuracy of LRR is better and if A is
larger than 10, it achieves 96.7% accuracy. We set A to 10
when we conduct experiments on Weizmann dataset. For
KTH dataset, we can see from the Fig. 3(b), that when A is
larger than 1, the recognition accuracy of LRR is better and
the best result is achieved when A is around to 1. We set A to
Iwhen we conduct experiments on KTH dataset. For UCF
dataset, we can see that from the Fig. 3(c), when A is around
0.2, the accuracy of LRR is better. We set A to 0.2 for this
dataset and obtain the best result 87.6%.

100
95-
90-
85-
80-
75-
70-
65-
6
55-

Avetage accuracy (%)

Poi 01 1 10 100
A

Average accuracy(%)

Average accuracy(%)
s 8.&8 8 & -
_
> 4 U(\)
N

8 0.15 02 0.25 03

Fig. 3. The sensitivity of the parameters A: (a) Weizmann; (b) KTH and (c)
UCEF dataset



D. Robustness Evaluation

The robustness of our proposed approach and the approach
in [3] is evaluated on the Weizmann robustness dataset [12].
We divide this dataset into two parts, one is with viewpoint
changes (sl), and the other is with occlusion (s2). When s1 is
tested, we employ both the Weizmann dataset and the s2 as
training samples; similarly, when s2 is tested, Weizmann
dataset and the s1 are both used as training samples.

TABLE III and TABLE IV present the results under sl
and s2 respectively. We also compare our results with the best
results using random sample reconstruction (RSR) in [10].

TABLE IIL RESULTS ON THE WEIZMANN ROBUSTNESS
DATASET: PERFORMANCE UNDER S1

Test samples

g BoF+NN|3] Guha[10] Ours
(walking inn )
n=0 walk walk walk
n=9 walk walk walk
n=18 walk walk walk
n=27 walk walk walk
n=36 walk walk walk
n=45 bend walk walk
n=54 walk walk walk
n=63 bend walk walk
n=72 walk walk skip
n=81 walk skip skip
TABLE IV. RESULTS ON THE WEIZMANN ROBUSTNESS

DATASET: PERFORMANCE UNDER S2

Test samples BoF+NN]|3] Guha[10] Ours
walk with a bag bend walk walk
walk with a briefcase side walk walk
walk with a dog waveone walk walk
knees up bend walk walk
limp walk walk walk
moonwalk walk walk walk
no feet waveone walk walk
norm walk walk walk walk
occluded by a pole walk walk walk
walk in a skirt waveone walk walk

TABLE III and TABLE IV show that our approach exhibits
robustness against viewpoint changes and small occlusion. In
fact, each of the four actions performed by each people has
viewpoint changes in the KTH dataset. We use the same
descriptor as [3] while local motion pattern (LMP) descriptor
isused in [10].

From TABLE III, we can see that our method is tolerant
up to 63°, it is better than the method in [3]. When the
viewpoint is more than 63°, our approach becomes invalid.
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We can see from TABLE IV that under the method in [3],
many test samples are mistakenly labeled. Consequently, BoF
representation is inaccurate and does not provide semantic
information. Thus, LRR model is robust against occlusion and
viewpoint changes to an extent.

V.

In this paper, we presented a low-rank representation
scheme to encode local spatio-temporal features. Given a set
of local features, low-rank representation aims at finding the
lowest-rank representation jointly. Thus, it can capture the
global structure of local features from one action of each
person. Specifically, a codebook is first created by utilizing
the k-means algorithm. Then, local spatio-temporal features
from one action of each person are represented by the
codebook under the low-rank constraint. Finally, sparse
representation based classification is used to recognize the
actions. Experimental results demonstrate the effectiveness of
the proposed approach on the Weizmann, KTH, and UCF
datasets. Finally, we evaluate the robustness of our proposed
approach on the Weizmann robustness dataset and the results
show that our approach can work properly with certain
occlusion and disturbance.

CONCLUSION
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